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Abstract. We present a general framework for applying machine-learning algo-
rithms to the verification of Markov decision processes (MDPs). The primary
goal of these techniques is to improve performance by avoiding an exhaustive ex-
ploration of the state space. Our framework focuses on probabilistic reachability,
which is a core property for verification, and is illustrated through two distinct
instantiations. The first assumes that full knowledge of the MDP is available,
and performs a heuristic-driven partial exploration of the model, yielding pre-
cise lower and upper bounds on the required probability. The second tackles the
case where we may only sample the MDP, and yields probabilistic guarantees,
again in terms of both the lower and upper bounds, which provides efficient stop-
ping criteria for the approximation. The latter is the first extension of statistical
model checking for unbounded properties in MDPs. In contrast with other related
techniques, our approach is not restricted to time-bounded (finite-horizon) or dis-
counted properties, nor does it assume any particular properties of the MDP. We
also show how our methods extend to LTL objectives. We present experimental
results showing the performance of our framework on several examples.

1 Introduction

Markov decision processes (MDPs) are a widely used model for the formal verification
of systems that exhibit stochastic behaviour. This may arise due to the possibility of
failures (e.g. of physical system components), unpredictable events (e.g. messages sent
across a lossy medium), or uncertainty about the environment (e.g. unreliable sensors in
a robot). It may also stem from the explicit use of randomisation, such as probabilistic
routing in gossip protocols or random back-off in wireless communication protocols.

Verification of MDPs against temporal logics such as PCTL and LTL typically re-
duces to the computation of optimal (minimum or maximum) reachability probabilities,
either on the MDP itself or its product with some deterministic ω-automaton. Optimal
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reachability probabilities (and a corresponding optimal strategy for the MDP) can be
computed in polynomial time through a reduction to linear programming, although in
practice verification tools often use dynamic programming techniques, such as value it-
eration which approximates the values up to some pre-specified convergence criterion.

The efficiency or feasibility of verification is often limited by excessive time or space
requirements, caused by the need to store a full model in memory. Common approaches
to tackling this include: symbolic model checking, which uses efficient data structures
to construct and manipulate a compact representation of the model; abstraction refine-
ment, which constructs a sequence of increasingly precise approximations, bypassing
construction of the full model using decision procedures such as SAT or SMT; and
statistical model checking [37,19], which uses Monte Carlo simulation to generate ap-
proximate results of verification that hold with high probability.

In this paper, we explore the opportunities offered by learning-based methods, as
used in fields such as planning or reinforcement learning [36]. In particular, we focus on
algorithms that explore an MDP by generating trajectories through it and, whilst doing
so, produce increasingly precise approximations for some property of interest (in this
case, reachability probabilities). The approximate values, along with other information,
are used as heuristics to guide the model exploration so as to minimise the solution time
and the portion of the model that needs to be considered.

We present a general framework for applying such algorithms to the verification
of MDPs. Then, we consider two distinct instantiations that operate under different
assumptions concerning the availability of knowledge about the MDP, and produce
different classes of results. We distinguish between complete information, where full
knowledge of the MDP is available (but not necessarily generated and stored), and lim-
ited information, where (in simple terms) we can only sample trajectories of the MDP.

The first algorithm assumes complete information and is based on real-time dynamic
programming (RTDP) [3]. In its basic form, this only generates approximations in the
form of lower bounds (on maximum reachability probabilities). While this may suffice
in some scenarios (e.g. planning), in the context of verification we typically require
more precise guarantees. So we consider bounded RTDP (BRTDP) [30], which sup-
plements this with an additional upper bound. The second algorithm assumes limited
information and is based on delayed Q-learning (DQL) [35]. Again, we produce both
lower and upper bounds but, in contrast to BRTDP, where these are guaranteed to be
correct, DQL offers probably approximately correct (PAC) results, i.e., there is a non-
zero probability that the bounds are incorrect.

Typically, MDP solution methods based on learning or heuristics make assumptions
about the structure of the model. For example, the presence of end components [15]
(subsets of states where it is possible to remain indefinitely with probability 1) can result
in convergence to incorrect values. Our techniques are applicable to arbitrary MDPs.
We first handle the case of MDPs that contain no end components (except for trivial
designated goal or sink states). Then, we adapt this to the general case by means of on-
the-fly detection of end components, which is one of the main technical contributions
of the paper. We also show how our techniques extend to LTL objectives and thus also
to minimum reachability probabilities.
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Our DQL-based method, which yields PAC results, can be seen as an instance of
statistical model checking [37,19], a technique that has received considerable attention.
Until recently, most work in this area focused on purely probabilistic models, without
nondeterminism, but several approaches have now been presented for statistical model
checking of nondeterministic models [13,14,27,4,28,18,29]. However, these methods
all consider either time-bounded properties or use discounting to ensure convergence
(see below for a summary). The techniques in this paper are the first for statistical
model checking of unbounded properties on MDPs.

We have implemented our framework within the PRISM tool [25]. This paper con-
cludes with experimental results for an implementation of our BRTDP-based approach
that demonstrate considerable speed-ups over the fastest methods in PRISM.

Detailed proofs omitted due to lack of space are available in [7].

1.1 Related Work

In fields such as planning and artificial intelligence, many learning-based and heuristic-
driven solution methods for MDPs have been developed. In the complete information
setting, examples include RTDP [3] and BRTDP [30], as discussed above, which gen-
erate lower and lower/upper bounds on values, respectively. Most algorithms make
certain assumptions in order to ensure convergence, for example through the use of
a discount factor or by restricting to so-called Stochastic Shortest Path (SSP) problems,
whereas we target arbitrary MDPs without discounting. More recently, an approach
called FRET [24] was proposed for a generalisation of SSP, but this gives only a one-
sided (lower) bound. We are not aware of any attempts to apply or adapt such methods
in the context of probabilistic verification. A related paper is [1], which applies heuristic
search methods to MDPs, but for generating probabilistic counterexamples.

As mentioned above, in the limited information setting, our algorithm based on de-
layed Q-learning (DQL) yields PAC results, similar to those obtained from statisti-
cal model checking [37,19,34]. This is an active area of research with a variety of
tools [21,8,6,5]. In contrast with our work, most techniques focus on time-bounded
properties, e.g., using bounded LTL, rather than unbounded properties. Several ap-
proaches have been proposed to transform checking of unbounded properties into test-
ing of bounded properties, for example, [38,17,33,32]. However, these focus on purely
probabilistic models, without nondeterminism, and do not apply to MDPs. In [4], un-
bounded properties are analysed for MDPs with spurious nondeterminism, where the
way it is resolved does not affect the desired property.

More generally, the development of statistical model checking techniques for prob-
abilistic models with nondeterminism, such as MDPs, is an important topic, treated in
several recent papers. One approach is to give the nondeterminism a probabilistic se-
mantics, e.g., using a uniform distribution instead, as for timed automata in [13,14,27].
Others [28,18], like this paper, aim to quantify over all strategies and produce an ε-
optimal strategy. The work in [28] and [18] deals with the problem in the setting of
discounted (and for the purposes of approximation thus bounded) or bounded proper-
ties, respectively. In the latter work, candidates for optimal schedulers are generated
and gradually improved, but “at any given point we cannot quantify how close to op-
timal the candidate scheduler is” and “the algorithm does not estimate the maximum
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probability of the property” (cited from [29]). Further, [29] considers compact repre-
sentation of schedulers, but again focuses only on (time) bounded properties.

Since statistical model checking is simulation-based, one of the most important dif-
ficulties is the analysis of rare events. This issue is, of course, also relevant for our
approach; see the section on experimental results. Rare events have been addressed us-
ing methods such as importance sampling [17,20] and importance splitting [22].

End components in MDPs can be collapsed either for algorithmic correctness [15]
or efficiency [11] (where only lower bounds on maximum reachability probabilities are
considered). Asymptotically efficient ways to detect them are given in [10,9].

2 Basics about MDPs and Learning Algorithms

We begin with basic background material on MDPs and some fundamental definitions
for our learning framework. We use N, Q, and R to denote the sets of all non-negative
integers, rational numbers and real numbers respectively. Dist(X) is the set of all
rational probability distributions over a finite or countable set X , i.e., the functions
f : X → [0, 1] ∩Q such that

∑
x∈X f(x) = 1, and supp(f) denotes the support of f .

2.1 Markov Decision Processes

We work with Markov decision processes (MDPs), a widely used model to capture both
nondeterminism (e.g., for control or concurrency) and probability.

Definition 1. An MDP is a tuple M = 〈S, s, A,E,Δ〉, where S is a finite set of states,
s ∈ S is an initial state, A is a finite set of actions, E : S → 2A assigns non-empty sets
of enabled actions to all states, and Δ : S×A → Dist(S) is a (partial) probabilistic
transition function defined for all s and a where a ∈ E(s).

Remark 1. For simplicity of presentation we assume w.l.o.g. that, for every action a ∈
A, there is at most one state s such that a ∈ E(s), i.e., E(s) ∩ E(s′) = ∅ for s �= s′. If
there are states s, s′ such that a ∈ E(s) ∩ E(s′), we can always rename the actions as
(s, a) ∈ E(s), and (s′, a) ∈ E(s′), so that the MDP satisfies our assumption.

An infinite path of an MDP M is an infinite sequence ω = s0a0s1a1 . . . such that
ai ∈ E(si) and Δ(si, ai)(si+1) > 0 for every i ∈ N. A finite path is a finite prefix of
an infinite path ending in a state. We use last(ω) to denote the last state of a finite path
ω. We denote by IPath (resp. FPath) the set of all infinite (resp. finite) paths, and by
IPaths (resp. FPaths) the set of infinite (resp. finite) paths starting in a state s.

A state s is terminal if all actions a ∈ E(s) satisfy Δ(s, a)(s) = 1. An end compo-
nent (EC) of M is a pair (S′, A′) where S′ ⊆ S and A′ ⊆ ⋃

s∈S′ E(s) such that: (1) if
Δ(s, a)(s′) > 0 for some s ∈ S′ and a ∈ A′, then s′ ∈ S′; and (2) for all s, s′ ∈ S′

there is a path ω = s0a0 . . . sn such that s0 = s, sn = s′ and for all 0 ≤ i < n we
have ai ∈ A′. A maximal end component (MEC) is an EC that is maximal with respect
to the point-wise subset ordering.

Strategies. A strategy of MDP M is a function σ : FPath → Dist(A) satisfying
supp(σ(ω)) ⊆ E(last(ω)) for every ω ∈ FPath . Intuitively, the strategy resolves the
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choices of actions in each finite path by choosing (possibly at random) an action enabled
in the last state of the path. We write ΣM for the set of all strategies in M. In standard
fashion [23], a strategy σ induces, for any initial state s, a probability measure PrσM,s

over IPaths. A strategy σ is memoryless if σ(ω) depends only on last(ω).

Objectives and values. Given a set F ⊆ S of target states, bounded reachability for
step k, denoted by ♦≤kF , refers to the set of all infinite paths that reach a state in
F within k steps, and unbounded reachability, denoted by ♦F , refers to the set of all
infinite paths that reach a state in F . Note that ♦F =

⋃
k≥0 ♦≤kF . We consider the

reachability probability PrσM,s(♦F ), and strategies that maximise this probability. We
denote by V (s) the value in s, defined by supσ∈ΣM

PrσM,s(♦F ). Given ε ≥ 0, we
say that a strategy σ is ε-optimal in s if PrσM,s(♦F ) + ε ≥ V (s), and we call a 0-
optimal strategy optimal. It is known [31] that, for every MDP and set F , there is a
memoryless optimal strategy for ♦F . We are interested in strategies that approximate
the value function, i.e., ε-optimal strategies for some ε > 0.

2.2 Learning Algorithms for MDPs

In this paper, we study a class of learning-based algorithms that stochastically ap-
proximate the value function of an MDP. Let us fix, for this section, an MDP M =
〈S, s, A,E,Δ〉 and target states F ⊆ S. We denote by V : S × A → [0, 1] the value
function for state-action pairs of M, defined for all (s, a) where s ∈ S and a ∈ E(s):

V (s, a) :=
∑

s′∈S
Δ(s, a)(s′) · V (s′).

Intuitively, V (s, a) is the value in s assuming that the first action performed is a. A
learning algorithm A simulates executions of M, and iteratively updates upper and
lower approximations U : S ×A → [0, 1] and L : S ×A → [0, 1], respectively, of the
value function V : S ×A → [0, 1].

The functions U and L are initialised to appropriate values so that L(s, a) ≤
V (s, a) ≤ U(s, a) for all s ∈ S and a ∈ A. During the computation of A, simulated
executions start in the initial state s and move from state to state according to choices
made by the algorithm. The values of U(s, a) and L(s, a) are updated for the states
s visited by the simulated execution. Since maxa∈E(s) U(s, a) and maxa∈E(s) L(s, a)
represent upper and lower bound on V (s), a learning algorithm A terminates when
maxa∈E(s) U(s, a) − maxa∈E(s) L(s, a) < ε where the precision ε > 0 is given to
the algorithm as an argument. Note that, because U and L are possibly updated based
on the simulations, the computation of the learning algorithm may be randomised and
even give incorrect results with some probability.

Definition 2. Denote by A(ε) the instance of learning algorithm A with precision ε.
We say that A converges surely (resp. almost surely) if, for every ε > 0, the computation
of A(ε) surely (resp. almost surely) terminates, and L(s, a) ≤ V (s, a) ≤ U(s, a) holds
upon termination.

In some cases, almost-sure convergence cannot be guaranteed, so we demand that the
computation terminates correctly with sufficiently high probability. In such cases, we
assume the algorithm is also given a confidence δ > 0 as an argument.
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Definition 3. Denote by A(ε, δ) the instance of learning algorithm A with precision ε
and confidence δ. We say that A is probably approximately correct (PAC) if, for every
ε > 0 and every δ > 0, with probability at least 1 − δ, the computation of A(ε, δ)
terminates with L(s, a) ≤ V (s, a) ≤ U(s, a).

The function U defines a memoryless strategy σU which in every state s chooses all
actions a maximising the value U(s, a) over E(s) uniformly at random. The strategy
σU is used in some of the algorithms and also contributes to the output.

Remark 2. If the value function is defined as the infimum over strategies (as in [30]),
then the strategy chooses actions to minimise the lower value. Since we consider the
dual case of supremum over strategies, the choice of σU is to maximise the upper value.

We also need to specify what knowledge about the MDP M is available to the learn-
ing algorithm. We distinguish the following two distinct cases.

Definition 4. A learning algorithm has limited information about M if it knows only
the initial state s, a number K ≥ |S|, a number Em ≥ maxs∈S |E(s)|, a number 0 <
q ≤ pmin, where pmin = min{Δ(s, a)(s′) | s ∈ S, a ∈ E(s), s′ ∈ supp(Δ(s, a))},
and the function E (more precisely, given a state s, the learning procedure can ask an
oracle for E(s)). We assume that the algorithm may simulate an execution of M starting
with s and choosing enabled actions in individual steps.

Definition 5. A learning algorithm has complete information about M if it knows the
complete MDP M.

Note that the MDPs we consider are “fully observable”, so even in the limited informa-
tion case strategies can make decisions based on the precise state of the system.

3 MDPs without End Components

We first present algorithms for MDPs without ECs, which considerably simplifies the
adaptation of BRTDP and DQL to unbounded reachability objectives. Later, in Sec-
tion 4, we extend our methods to deal with arbitrary MDPs (with ECs). Let us fix an
MDP M = 〈S, s, A,E,Δ〉 and a target set F . Formally, we assume the following.

Assumption-EC. MDP M has no ECs, except two trivial ones containing distinguished
terminal states 1 and 0, respectively, with F = {1}, V (1) = 1 and V (0) = 0.

3.1 Our Framework

We start by formalising a general framework for learning algorithms, as outlined in the
previous section. We then instantiate this and obtain two learning algorithms: BRTDP
and DQL. Our framework is presented as Algorithm 1, and works as follows. Recall that
functions U and L store the current upper and lower bounds on the value function V .
Each iteration of the outer loop is divided into two phases: EXPLORE and UPDATE. In
the EXPLORE phase (lines 5 - 10), the algorithm samples a finite path ω in M from s to a
state in {1, 0} by always randomly choosing one of the enabled actions that maximises
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Algorithm 1. Learning algorithm (for MDPs with no ECs)
1: Inputs: An EC-free MDP M
2: U(·, ·) ← 1, L(·, ·) ← 0
3: L(1, ·) ← 1, U(0, ·) ← 0 � INITIALISE

4: repeat
5: ω ← s /* EXPLORE phase */
6: repeat
7: a ← sampled uniformly from argmaxa∈E(last(ω)) U(last(ω), a)
8: s ← sampled according to Δ(last(ω), a) � GETSUCC(ω,a)
9: ω ← ω a s

10: until s ∈ {1, 0} � TERMINATEPATH(ω)
11: repeat /* UPDATE phase */
12: s′ ← pop(ω)
13: a ← pop(ω)
14: s ← last(ω)
15: UPDATE((s,a), s′)
16: until ω = s
17: until maxa∈E(s) U(s, a)−maxa∈E(s) L(s, a) < ε � TERMINATE

the U value, and sampling the successor state using the probabilistic transition function.
In the UPDATE phase (lines 11 - 16), the algorithm updates U and L on the state-action
pairs along the path in a backward manner. Here, the function pop pops and returns the
last letter of the given sequence.

3.2 Instantiations: BRTDP and DQL

Our two algorithm instantiations, BRTDP and DQL, differ in the definition of UPDATE.

Unbounded Reachability with BRTDP. We obtain BRTDP by instantiating UPDATE

with Algorithm 2, which requires complete information about the MDP. Intuitively,
UPDATE computes new values of U(s, a) and L(s, a) by taking the weighted average
of the correspondingU and L values, respectively, over all successors of s via action a.
Formally, denote U(s) = maxa∈E(s) U(s, a) and L(s) = maxa∈E(s) L(s, a).

Algorithm 2. BRTDP instantiation of Algorithm 1
1: procedure UPDATE((s,a), ·)
2: U(s, a) :=

∑
s′∈S Δ(s, a)(s′)U(s′)

3: L(s, a) :=
∑

s′∈S Δ(s, a)(s′)L(s′)

The following theorem says that BRTDP satisfies the conditions of Definition 2 and
never returns incorrect results.

Theorem 1. The algorithm BRTDP converges almost surely under Assumption-EC.

Remark 3. Note that, in the EXPLORE phase, an action maximising the value of U is
chosen and the successor is sampled according to the probabilistic transition function
of M. However, we can consider various modifications. Actions and successors may
be chosen in different ways (e.g., for GETSUCC), for instance, uniformly at random,
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in a round-robin fashion, or assigning various probabilities (bounded from below by
some fixed p > 0) to all possibilities in any biased way. In order to guarantee almost-
sure convergence, some conditions have to be satisfied. Intuitively we require, that the
state-action pairs used by ε-optimal strategies have to be chosen enough times. If this
condition is satisfied then the almost-sure convergence is preserved and the practical
running times may significantly improve. For details, see Section 5.

Remark 4. The previous BRTDP algorithm is only applicable if the transition proba-
bilities are known. However, if complete information is not known, but Δ(s, a) can
be repeatedly sampled for any s and a, then a variant of BRTDP can be shown to be
probably approximately correct.

Unbounded Reachability with DQL. Often, complete information about the MDP is
unavailable, repeated sampling is not possible, and we have to deal with only limited
information about M (see Definition 4). For this scenario, we use DQL, which can be
obtained by instantiating UPDATE with Algorithm 3.

Algorithm 3. DQL (delay m, estimator precision ε̄) instantiation of Algorithm 1
1: procedure UPDATE((s,a), s′)
2: if c(s, a) = m and LEARN(s, a) then
3: if accumU

m(s, a)/m < U(s, a)− 2ε̄ then
4: U(s, a) ← accumU

m(s, a)/m+ ε̄
5: accumU

m(s, a) = 0

6: if accumL
m(s, a)/m > L(s, a) + 2ε̄ then

7: L(s, a) ← accumL
m(s, a)/m− ε̄

8: accumL
m(s, a) = 0

9: c(s, a) = 0
10: else
11: accumU

m(s, a) ← accumU
m(s, a) + U(s′)

12: accumL
m(s, a) ← accumL

m(s, a) + L(s′)
13: c(s, a) ← c(s, a) + 1

Macro LEARN(s, a) is true in the kth call of UPDATE((s, a), ·) if, since the (k − 2m)th call
of UPDATE((s,a), ·), line 4 was not executed in any call of UPDATE(·, ·).

The main idea behind DQL is as follows. As the probabilistic transition func-
tion is not known, we cannot update U(s, a) and L(s, a) with the actual values∑

s′∈S Δ(s, a)(s′)U(s′) and
∑

s′∈S Δ(s, a)(s′)L(s′), respectively. However, we can
instead use simulations executed in the EXPLORE phase of Algorithm 1 to estimate
these values. Namely, we use accumU

m(s, a)/m to estimate
∑

s′∈S Δ(s, a)(s′)U(s′)
where accumU

m(s, a) is the sum of the U values of the last m immediate successors
of (s, a) seen during the EXPLORE phase. Note that the delay m must be chosen large
enough for the estimates to be sufficiently close, i.e., ε̄-close, to the real values.

So, in addition to U(s, a) and L(s, a), the algorithm uses new variables
accumU

m(s, a) and accumL
m(s, a) to accumulate U(s, a) and L(s, a) values, respec-

tively, and a counter c(s, a) recording the number of invocations of a in s since the
last update (all these variables are initialised to 0 at the beginning of computation).
Assume that a has been invoked in s during the EXPLORE phase of Algorithm 1,
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Fig. 1. MDP M with an EC (left), MDP M{m1,m2} constructed from M in on-the-fly BRTDP
(centre), and MDP M′ obtained from M by collapsing C = ({m1, m2}, {a, b}) (right)

which means that UPDATE((s, a), s′) is eventually called in the UPDATE phase of Al-
gorithm 1 with the corresponding successor s′ of (s, a). If c(s, a) = m at that time,
a has been invoked in s precisely m times since the last update concerning (s, a) and
the procedure UPDATE((s, a), s′) updates U(s, a) with accumU

m(s, a)/m plus an ap-
propriate constant ε̄ (unless LEARN is false). Here, the purpose of adding ε̄ is to make
U(s, a) stay above the real value V (s, a) with high probability. If c(s, a) < m, then
UPDATE((s, a), s′) simply accumulates U(s′) into accumU

m(s, a) and increases the
counter c(s, a). The L(s, a) values are estimated by accumL

m(s, a)/m in a similar way,
just subtracting ε̄ from accumL

m(s, a). The procedure requires m and ε̄ as inputs, and

they are chosen depending on ε and δ; more precisely, we choose ε̄ = ε·(pmin/Em )|S|

12|S|

and m =
ln(6|S||A|(1+ |S||A|

ε̄ )/δ)

2ε̄2 and establish that DQL is probably approximately cor-
rect. The parametersm and ε̄ can be conservatively approximated using only the limited
information about the MDP (i.e. using K , Em and q). Even though the algorithm has
limited information about M, we still establish the following theorem.

Theorem 2. DQL is probably approximately correct under Assumption-EC.

Bounded Reachability. Algorithm 1 can be trivially adapted to handle bounded reach-
ability properties by preprocessing the input MDP in standard fashion. Namely, every
state is equipped with a bounded counter with values ranging from 0 to k where k is the
step bound, the current value denoting the number of steps taken so far. All target states
remain targets for all counter values, and every non-target state with counter value k
becomes rejecting. Then, to determine the k-step reachability in the original MDP, we
compute the (unbounded) reachability in the new MDP. Although this means that the
number of states is multiplied by k + 1, in practice the size of the explored part of the
model can be small.

4 Unrestricted MDPs

We first illustrate with an example that the algorithms BRTDP and DQL as presented
in Section 3 may not converge when there are ECs in the MDP.

Example 1. Consider the MDP M in Fig. 1 (left) with EC ({m1,m2}, {a, b}). The
values in states m1,m2 are V (m1) = V (m2) = 0.5 but the upper bounds are
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U(m1) = U(m2) = 1 for every iteration. This is because U(m1, a) = U(m2, b) = 1
and both algorithms greedily choose the action with the highest upper bound. Thus, in
every iteration t of the algorithm, the error for the initial state m1 is U(m1)−V (m1) =
1
2 and the algorithm does not converge. In general, any state in an EC has upper bound
1 since, by definition, there are actions that guarantee the next state is in the EC, i.e., is
a state with upper bound 1. This argument holds even for standard value iteration with
values initialised to 1.

One way of dealing with general MDPs is to preprocess them to identify all
MECs [10,9] and “collapse” them into single states (see e.g. [15,11]). These algorithms
require that the graph model is known and explore the whole state space, but this may
not be possible either due to limited information (see Definition 4) or because the model
is too large. Hence, we propose a modification to the algorithms from the previous sec-
tions that allows us to deal with ECs “on-the-fly”. We first describe the collapsing of a
set of states and then present a crucial lemma that allows us to identify ECs to collapse.

Collapsing States. In the following, we say that an MDP M′ = 〈S′, s′, A′, E′, Δ′〉 is
obtained from M = 〈S, s, A,E,Δ〉 by collapsing a tuple (R,B), where R ⊆ S and
B ⊆ A with B ⊆ ⋃

s∈R E(s) if:

– S′ = (S \R) ∪ {s(R,B)},
– s′ is either s(R,B) or s, depending on whether s ∈ R or not,
– A′ = A \B,
– E′(s) = E(s), for s ∈ S \R; E′(s(R,B)) =

⋃
s∈R E(s) \B,

– Δ′ is defined for all s ∈ S′ and a ∈ E′(s) by:
• Δ′(s, a)(s′) = Δ(s, a)(s′) for s, s′ �= s(R,B),
• Δ′(s, a)(s(R,B)) =

∑
s′∈R Δ(s, a)(s′) for s �= s(R,B),

• Δ′(s(R,B), a)(s
′) = Δ(s, a)(s′) for s′ �= s(R,B) and s the unique state with

a ∈ E(s) (see Remark 1),
• Δ′(s(R,B), a)(s(R,B)) =

∑
s′∈R Δ(s, a)(s′) where s is the unique state with

a∈E(s).

We denote the above transformation, which creates M′ from M, as the COLLAPSE func-
tion, i.e., COLLAPSE(R,B). As a special case, given a state s and a terminal state s′ ∈
{0, 1}, we use MAKETERMINAL(s, s′) as shorthand for COLLAPSE({s, s′}, E(s)),
where the new state is renamed to s′. Intuitively, after MAKETERMINAL(s, s′), every
transition previously leading to state s will now lead to the terminal state s′.

For practical purposes, it is important to note that the collapsing does not need to
be implemented explicitly, but can be done by keeping a separate data structure which
stores information about the collapsed states.

Identifying ECs from Simulations. Our modifications will identify ECs “on-the-fly”
through simulations that get stuck in them. The next lemma establishes the identification
principle. To this end, for a path ω, let us denote by Appear(ω, i) the tuple (Si, Ai) of
M such that s ∈ Si and a ∈ Ai(s) if and only if (s, a) occurs in ω more than i times.

Lemma 1. Let c = exp (− (pmin/Em)
κ
/ κ), where κ = KEm + 1, and let i ≥

κ. Assume that the EXPLORE phase in Algorithm 1 terminates with probability less
than 1. Then, provided the EXPLORE phase does not terminate within 3i3 iterations, the
conditional probability that Appear (ω, i) is an EC is at least 1− 2cii3 · (pmin/Em)

−κ.
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The above lemma allows us to modify the EXPLORE phase of Algorithm 1 in such
a way that simulations will be used to identify ECs. The ECs discovered will subse-
quently be collapsed. We first present the overall skeleton (Algorithm 4) for treating
ECs “on-the-fly”, which consists of two parts: (i) identification of ECs; and (ii) pro-
cessing them. The instantiations for BRTDP and DQL will differ in the identification
phase. Hence, before proceeding to the individual identification algorithms, we first
establish the correctness of the processing phase.

Algorithm 4. Extension for general MDPs
1: function ON-THE-FLY-EC
2: M ← IDENTIFYECS � IDENTIFICATION OF ECS

3: for all (R,B) ∈ M do � PROCESS ECS

4: COLLAPSE(R,B)
5: for all s ∈ R and a ∈ E(s) \ B do
6: U(s(R,B), a) ← U(s, a)
7: L(s(R,B), a) ← L(s, a)

8: if R ∩ F �= ∅ then
9: MAKETERMINAL(s(R,B), 1)

10: else if no actions enabled in s(R,B) then
11: MAKETERMINAL(s(R,B), 0)

Lemma 2. Assume (R,B) is an EC in MDP M, VM the value before the PROCESS ECS

procedure in Algorithm 4, and VM′ the value after the procedure, then:
– for i ∈ {0, 1} if MAKETERMINAL(s(R,B), i) is called, then ∀s ∈ R : VM(s) = i,
– ∀s ∈ S \R : VM(s) = VM′(s),
– ∀s ∈ R : VM(s) = VM′(s(R,B)).

Interpretation of Collapsing. Intuitively, once an EC (R,B) is collapsed, the algo-
rithm in the EXPLORE phase can choose a state s ∈ R and action a ∈ E(s)\B to leave
the EC. This is simulated in the EXPLORE phase by considering all actions of the EC
uniformly at random until s is reached, and then action a is chosen. Since (R,B) is an
EC, playing all actions of B uniformly at random ensures s is almost surely reached.
Note that the steps made inside a collapsed EC do not count towards the length of the
explored path.

Now, we present the on-the-fly versions of BRTDP and DQL. For each case, we
describe: (i) modification of Algorithm 1; (ii) identification of ECs; and (iii) correctness.

4.1 Complete Information (BRTDP)

Modification of Algorithm 1. To obtain BRTDP working with unrestricted MDPs, we
modify Algorithm 1 as follows: for iteration i of the EXPLORE phase, we insert a check
after line 9 such that, if the length of the path ω explored (i.e., the number of states) is ki
(see below), then we invoke the ON-THE-FLY-EC function for BRTDP. The ON-THE-
FLY-EC function possibly modifies the MDP by processing (collapsing) some ECs as
described in Algorithm 4. After the ON-THE-FLY-EC function terminates, we interrupt
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the current EXPLORE phase, and start the EXPLORE phase for the i+1-th iteration (i.e.,
generating a new path again, starting from s in the modified MDP). To complete the
description we describe the choice of ki and identification of ECs.

Choice of ki. Because computing ECs can be expensive, we do not call ON-THE-FLY-
EC every time a new state is explored, but only after every ki steps of the repeat-until
loop at lines 6–10 in iteration i. The specific value of ki can be decided experimentally
and change as the computation progresses. A theoretical bound for ki to ensure that
there is an EC with high probability can be obtained from Lemma 1.

Identification of ECs. Given the current explored path ω, let (T,G) be Appear(ω, 0),
that is, the set of states and actions explored in ω. To obtain the ECs from the set
T of explored states, we use Algorithm 5. This computes an auxiliary MDP MT =
〈T ′, s, A′, E′, Δ′〉 defined as follows:

– T ′ = T ∪ {t | ∃s ∈ T, a ∈ E(s) such that Δ(s, a)(t) > 0},
– A′ =

⋃
s∈T E(s) ∪ {⊥},

– E′(s) = E(s) if s ∈ T and E′(s) = {⊥} otherwise,
– Δ′(s, a) = Δ(s, a) if s ∈ T , and Δ′(s,⊥)(s) = 1 otherwise.

It then computes all MECs of MT that are contained in T and identifies them as ECs.
The following lemma states that each of these is indeed an EC in the original MDP.

Algorithm 5. Identification of ECs for BRTDP
1: function IDENTIFYECS(M, T )
2: compute MT

3: M′ ← MECs of MT

4: M ← {(R,B) ∈ M′ | R ⊆ T}

Lemma 3. Let M,MT be the MDPs from the construction above and T be the set of
explored states. Then every MEC (R,B) in MT such that R ⊆ T is an EC in M.

Finally, we establish that the modified algorithm, which we refer to as on-the-fly
BRTDP, almost surely converges; the proof is an extension of Theorem 1.

Theorem 3. On-the-fly BRTDP converges almost surely for all MDPs.

Example 2. Let us describe the execution of the on-the-fly BRTDP on the MDP M
from Fig. 1 (left). Choose ki ≥ 6 for all i. The loop at lines 6 to 10 of Algorithm 1
generates a path ω that contains some (possibly zero) number of loops m1 am2b fol-
lowed by m1 am2 cm3 d t where t ∈ {0, 1}. In the subsequent UPDATE phase, we
set U(m3, d) = L(m3, d) = 0.5 and then U(m2, c) = L(m2, c) = 0.5; none of
the other values change. In the second iteration of the loop at lines 6 to 10, the path
ω′ = m1 am2 bm1 am2 b . . . is being generated, and the newly inserted check for
ON-THE-FLY-EC will be triggered once ω achieves the length ki.

The algorithm now aims to identify ECs in the MDP based on the part of the MDP
explored so far. To do so, the MDP MT for the set T = {m1,m2} is constructed
and we depict it in Fig. 1 (centre). We then run MEC detection on MT , finding that
({m1,m2}, {a, b}) is an EC, and so it gets collapsed according to the COLLAPSE pro-
cedure. This gives the MDP M′ from Fig. 1 (right).
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The execution then continues with M′. A new path is generated at lines 6 to 10
of Algorithm 1; suppose it is ω′′ = sCcm3d0. In the UPDATE phase we then update
the value U(sC , d) = L(sC , d) = 0.5, which makes the condition at the last line of
Algorithm 1 satisfied, and the algorithm finishes, having computed the correct value.

4.2 Limited Information (DQL)

Modification of Algorithm 1 and Identification of ECs. The modification of Algo-
rithm 1 is done exactly as for the modification of BRDTP (i.e., we insert a check after
line 9 of EXPLORE, which invokes the ON-THE-FLY-EC function if the length of path
ω exceeds ki). In iteration i, we set ki as 3	3i , for some 	i (to be described later). The
identification of the EC is as follows: we consider Appear(ω, 	i), the set of states and
actions that have appeared more than 	i times in the explored path ω, which is of length
3	3i , and identify the set as an EC; i.e., M in line 2 of Algorithm 4 is defined as the set
containing the single tuple Appear(ω, 	i). We refer to the algorithm as on-the-fly DQL.

Choice of 	i and Correctness. The choice of 	i is as follows. Note that, in iteration i,
the error probability, obtained from Lemma 1, is at most 2c�i	3i · (pmin/Em)

−κ and we
choose 	i such that 2c�i	3i · (pmin/Em)

−κ ≤ δ/2
2i , where δ is the confidence. Note that,

since c < 1, we have that c�i decreases exponentially, and hence for every i such 	i
exists. It follows that the total error of the algorithm due to the on-the-fly EC collapsing
is at most δ/2. It follows from the proof of Theorem 2 that for on-the-fly DQL the
error is at most δ if we use the same ε̄ as for DQL, but now with DQL confidence δ/4,

i.e., with m =
ln(24|S||A|(1+ |S||A|

ε̄ )/δ)

2ε̄2 . As before, these numbers can be conservatively
approximated using the limited information.

Theorem 4. On-the-fly DQL is probably approximately correct for all MDPs.

Example 3. Let us now briefly explain the execution of on-the-fly DQL on the MDP
M from Fig. 1 (left). At first, paths of the same form as ω in Example 2 will be
generated and there will be no change to U and L, because in any call to UPDATE

(see Algorithm 3) for states s ∈ {m1,m2} with c(s, a) = m the values accumulated
in accumU

m(s, a)/m and accumL
m(s, a)/m are the same as the values already held,

namely 1 and 0, respectively.
At some point, we call UPDATE for the tuple (m3, d) with c(m3, d) = m, which will

result in the change of U(m3, d) and L(m3, d). Note, that at this point, the numbers
accumU

m(s, d)/m and accumL
m(s, d)/m are both equal to the proportion of generated

paths that visited the state 1. This number will, with high probability, be very close to
0.5, say 0.499. We thus set U(m3, d) = 0.499 + ε and L(m3, d) = 0.499− ε.

We then keep generating paths of the same form and at some point also update
U(m2, c) and L(m2, c) to precisely 0.499 + ε and 0.499 − ε, respectively. The sub-
sequently generated path will be looping on m1 and m2, and once it is of length 	i, we
identify ({m1,m2}, {a, b}) as an EC due to the definition of Appear (ω, 	i). We then
get the MDP from Fig. 1 (right), which we use to generate new paths, until the upper
and lower bounds on value in the new initial state are within the required bound.
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4.3 Extension to LTL

So far we have focused on reachability, but our techniques also extend to linear temporal
logic (LTL) objectives. By translating an LTL formula to an equivalent deterministic ω-
automaton, verifying MDPs with LTL objectives reduces to analysis of MDPs with ω-
regular conditions such as Rabin acceptance conditions. A Rabin acceptance condition
consists of a set {(M1,N1) . . . (Md,Nd)} of d pairs (Mi,Ni), where each Mi ⊆ S and
Ni ⊆ S. The acceptance condition requires that, for some 1 ≤ i ≤ d, states in Mi are
visited infinitely often and states in Ni are visited finitely often.

Value computation for MDPs with Rabin objectives reduces to optimal reachability
of winning ECs, where an EC (R,B) is winning if R ∩ Mi �= ∅ and R ∩ Ni = ∅ for
some 1≤i≤d [12]. Thus, extending our results from reachability to Rabin objectives
requires processing of ECs for Rabin objectives (line 3-11 of Algorithm 4), which is
done as follows. Once an EC (R,B) is identified, we first obtain the EC in the original
MDP (i.e., obtain the set of states and actions corresponding to the EC in the original
MDP) as (R,B) and then determine if there is a sub-EC of (R,B) that is winning using
standard algorithms for MDPs with Rabin objectives [2]; and if so then we merge the
whole EC as in line 9 of Algorithm 4; if not, and, moreover, there is no action out of
the EC, we merge as in line 11 of Algorithm 4. This modified EC processing yields
on-the-fly BRTDP and DQL algorithms for MDPs with Rabin objectives.

5 Experimental Results

Implementation. We have developed an implementation of our learning-based frame-
work within the PRISM model checker [25], building upon its simulation engine for
generating trajectories and explicit probabilistic model checking engine for storing
visited states and U and L values. We focus on the complete-information case (i.e.,
BRTDP), for which we can perform a more meaningful comparison with PRISM. We
implement Algorithms 1 and 2, and the on-the-fly EC detection algorithm of Sec. 4,
with the optimisation of taking T as the set of all states explored so far.

We consider three distinct variants of the learning algorithm by modifying the GET-
SUCC function in Algorithm 1, which is the heuristic responsible for picking a successor
state s′ after choosing some action a in each state s of a trajectory. The first variant takes
the unmodified GETSUCC, selecting s′ at random according to the distribution Δ(s, a).
This behaviour follows the one of the original RTDP algorithm [3]. The second uses the
heuristic proposed for BRTDP in [30], selecting the successor s′ ∈ supp(Δ(s, a)) that
maximises the difference U(s′)−L(s′) between bounds for those states (M-D). For the
third, we propose an alternative approach that systematically chooses all successors s′

in a round-robin (R-R) fashion, and guarantees termination with certainty.

Results. We evaluated our implementation on four existing benchmark models, using
a machine with a 2.8GHz Xeon processor and 32GB of RAM, running Fedora 14.
We use three models from the PRISM benchmark suite [26]: zeroconf, wlan, and
firewire impl dl; and a fourth one from [16]: mer. The first three use unbounded prob-
abilistic reachability properties; the fourth a time-bounded probabilistic reachability.
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Table 1. Verification times using BRTDP (three different heuristics) and PRISM

Name
[param.s]

Param.
values

Num.
states

Time (s) Visited states
PRISM RTDP M-D R-R RTDP M-D R-R

zeroconf
[N,K]

20, 10 3,001,911 129.9 7.40 1.47 1.83 760 2007 2570
20, 14 4,427,159 218.2 12.4 2.18 2.26 977 3728 3028
20, 18 5,477,150 303.8 71.5 3.89 3.73 1411 5487 3704

wlan
[BOFF ]

4 345,000 7.35 0.53 0.48 0.54 2018 1377 1443
5 1,295,218 22.3 0.55 0.45 0.54 2053 1349 1542
6 5,007,548 82.9 0.50 0.43 0.49 1995 1313 1398

firewire impl dl
[delay,

deadline]

36, 200 6,719,773 63.8 2.85 2.62 2.26 26,508 28,474 22,038
36, 240 13,366,666 145.4 8.37 7.69 6.72 25,214 26,680 20,219
36, 280 19,213,802 245.4 9.29 7.90 7.39 32,214 28,463 25,565

mer
[N, q]

3000, 0.0001 17,722,564 158.5 67.0 2.42 4.44 1950 3116 3729
3000, 0.9999 17,722,564 157.7 10.9 2.82 6.80 2902 4643 4608
4500, 0.0001 26,583,064 250.7 67.3 2.41 4.42 1950 3118 3729
4500, 0.9999 26,583,064 246.6 10.9 2.84 6.79 2900 4644 4608

The latter is used to show differences between heuristics in the case of MDPs contain-
ing rare events, e.g., MDPs where failures occur with very low probability. All models,
properties and logs are available online at [39].

We run BRTDP and compare its performance to PRISM. We terminate it when the
bounds L and U differ by at most ε for the initial state of the MDP. We use ε = 10−6

in all cases except zeroconf, where ε = 10−8 is used since the actual values are very
small. For PRISM, we use its fastest engine, which is the “sparse” engine, running value
iteration. This is terminated when the values for all states in successive iterations differ
by at most ε. Strictly speaking, this is not guaranteed to produce an ε-optimal strategy
(e.g. in the case of very slow numerical convergence), but on all these examples it does.

The experimental results are summarised in Table 1. For each model, we give the
number of states in the full model, the time for PRISM (model construction, precom-
putation of zero/one states and value iteration) and time and number of visited states
for BRTDP with each of the three heuristics described earlier. Some heuristics perform
random exploration and therefore all results have been averaged over 20 runs.

We see that our method outperforms PRISM on all four benchmarks. The improve-
ments in execution time on these benchmarks are possible because the algorithm is able
to construct an ε-optimal policy whilst exploring only a portion of the state space. The
number of states visited by the algorithm is at least two orders of magnitude smaller
than the total size of the model (column ‘Num. states’). These numbers do not vary
greatly between heuristics.

The RTDP heuristic is generally the slowest of the three, and tends to be sensitive to
the probabilities in the model. In the mer example, changing the parameter q can mean
that some states, which are crucial for the convergence of the algorithm, are no longer
visited due to low probabilities on incoming transitions. This results in a considerable
slow-down, and is a potential problem for MDPs containing rare events. The M-D and
R-R heuristics perform very similarly, despite being quite different (one is randomised,
the other deterministic). Both perform consistently well on these examples.
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6 Conclusions

We have presented a framework for verifying MDPs using learning algorithms. Build-
ing upon methods from the literature, we provide novel techniques to analyse un-
bounded probabilistic reachability properties of arbitrary MDPs, yielding either exact
bounds, in the case of complete information, or PAC bounds, in the case of limited
information. Given our general framework, one possible direction would be to explore
other learning algorithms in the context of verification. Another direction of future work
is to explore whether learning algorithms can be combined with symbolic methods for
probabilistic verification.

Acknowledgement. We thank Arnd Hartmanns and anonymous reviewers for careful
reading and valuable feedback.
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Parker, D., Ujma, M.: Verification of Markov decision processes using learning algorithms.
CoRR abs/1402.2967 (2014)

8. Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay, A., Wang,
Z.: UPPAAL-SMC: Statistical model checking for priced timed automata. In: QAPL (2012)

9. Chatterjee, K., Henzinger, M.: An O(n2) algorithm for alternating Büchi games. In: SODA,
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