
Int J Softw Tools Technol Transfer (2013) 15:397–411
DOI 10.1007/s10009-013-0287-9

INTRODUCTION

Algorithmic program synthesis: introduction

Rastislav Bodik · Barbara Jobstmann

Published online: 27 August 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Program synthesis is a process of producing an
executable program from a specification. Algorithmic syn-
thesis produces the program automatically, without an inter-
vention from an expert. While classical compilation falls
under the definition of algorithmic program synthesis, with
the source program being the specification, the synthesis lit-
erature is typically concerned with producing programs that
cannot be (easily) obtained with the deterministic transfor-
mations of a compiler. To this end, synthesis algorithms often
perform a search, either in a space of candidate programs
or in a space of transformations that might be composed to
transform the specification into a desired program. In this
introduction to the special journal issue, we survey the his-
tory of algorithmic program synthesis and introduce the con-
tributed articles. We divide the field into reactive synthesis,
which is concerned with automata-theoretic techniques for
controllers that handle an infinite stream of requests, and
functional synthesis, which produces programs consuming
finite input. Contributed articles are divided analogously. We
also provide pointers to synthesis work outside these cate-
gories and list many applications of synthesis.

Keywords Program synthesis · Controller Synthesis ·
Formal Methods · Specifications of Program Correctness

R. Bodik (B)
Department of Electrical Engineering and Computer Sciences,
University of California, #1776, Berkeley, CA 94720-1776, USA
e-mail: bodik@cs.berkeley.edu

B. Jobstmann
École Polytechnique Fédérale de Lausanne, Station 14,
1015 Lausanne, Switzerland

B. Jobstmann
CNRS-VERIMAG, Centre Equation, 2, Avenue de Vignate,
38610 Gières, France

1 Overview

1.1 Background

Since the early days of computer science, we have aimed
to verify “correctness” of a computer system by proving its
adherence to a logical specification, a mathematical descrip-
tion of the desired behavior. Synthesis goes one step further: it
aims to construct or derive a program or a digital design from
that logical specification. A fully automated solution to the
synthesis problem would augment the current programming
style, which is mostly operational, with a declarative, logical
style. Stating the desired properties of the system, rather than
elaborating how these properties are to be achieved, may be
particularly beneficial for complex systems, such as those
with concurrency.

While the theoretical basis for synthesis from logical spec-
ification has been known for decades, only recently has a
rather broad class of synthesis systems reached the level of
practical applications. These techniques share a high degree
of automation afforded by advances in decision procedures
and static program analysis developed in the context of
verification and model checking. Additional advances stem
from judicious restrictions to a predefined set of programs
and from assuming a particular type of specification. For
instance, two decision procedures [109,144] for realizability
of Linear-Time Temporal Logic (LTL) have led to the devel-
opment of new algorithms and tools for synthesis of finite-
state programs from LTL specifications [15,48,86,87,106,
136,158,170,172], some able to synthesize small but realis-
tic industrial hardware modules [16,17,61]. Other techniques
seek to simplify specific programming tasks by adding new
programming constructs, e.g., synchronization mechanisms
for concurrent data structures [175,195] or deadlock avoid-
ance constructs [198,199], and by allowing implicit com-

123



398 R. Bodik, B. Jobstmann

putation of values and advanced pattern matching [103].
Synthesis techniques have also been used to correct [88]
or optimize [176] existing programs and to build programs
from a fixed set of library components or program state-
ments [85,177,174,180]. Synthesis of spreadsheet macros
from user demonstrations has been incorporated in Excel
2013 [66].

1.2 Goal of this special issue

We have collected recent work in algorithmic program syn-
thesis to provide a starting point for researchers and practi-
tioners interested in this area. The contributions cover two
main areas of program synthesis: synthesis of controllers for
reactive systems and synthesis of functional and imperative
programs. The former are control-oriented while the latter
are data-oriented.

Control-oriented techniques assume finite-state data struc-
tures but can generate non-terminating reactive programs
[127], i.e., programs that accept an infinite stream of requests.
Input specifications describe the desired sequences of behav-
iors using a temporal logic (e.g., LTL). These techniques are
based on automata theory on infinite words and automata-
based game theory. Typically, reactive programs are used to
model digital designs.

Data-oriented techniques assume a bounded (but un-
known) length of the program but can cope with infinite-
state data structures. They start from an input–output relation
given by a formula in a realizable logic, e.g., integer arith-
metic or propositional logic, and construct source code satis-
fying the specification. In some cases, the class of generated
program can be restricted by the set of available statements
or an initial partial program.

Due to the nature of these two classes of programs—
controllers carry out an infinite request–response dialog with
the environment using a finite-state controller, while impera-
tive programs read the input only once but are unconstrained
in their internal structure—, the algorithms for synthesis of
these programs rely on radically different concepts. Yet, the
respective communities have recently reached for similar
techniques, such as exploiting domain knowledge, refine-
ment, bounded synthesis, and constraint solvers. We hope
that this special issue will help transfer ideas between the
two communities.

In Sect. 2, we give background and history of controller
synthesis. Section 3 does the same for functional synthe-
sis. Section 4 lists synthesis work that does not fit either of
the two categories. Section 5 describes applications of syn-
thesis and Sect. 6 summarizes contributions of this special
issue.

2 Reactive synthesis

This section focuses on Reactive Synthesis, which aims to
automatically construct a reactive system from a formal spec-
ification. The specification is given in Linear-Temporal Logic
(Ltl) and describes logical properties of the system. For sim-
plicity, we will refer to this form of high-level synthesis as
LTL synthesis, but emphasize that it should not be confused
with the synthesis of a gate-level description from Verilog,
Rtl code, or from a high-level behavioral description.

2.1 Motivation

Automatically constructing a reactive system from a logical
specification has been an ambitious dream in computer sci-
ence for about half a century [30]. The obvious benefit is
that one only has to give a list of desired behaviors and a
synthesis tool comes up with a finite-state model that takes
into account all desired properties. For systems that have no
further constraints (e.g., on timing or space consumption), a
synthesis tool would completely avoid hand-coding. A less
ambitious benefit is the possibility to turn specifications into
rapid prototypes. These functional prototypes could be used
for early test integration. They would allow one to “simu-
late the specification.” Most developers rely on simulation
to check if the constructed system meets their intent. In the
hardware community, it is believed that formal verification
can only be integrated in the mainstream design flow if it
looks and feels like simulation [8]. A synthesis tool could
thus provide a simulation-like experience for a formal speci-
fication, which would help people in understanding and writ-
ing a formal specification (since faults in the specification
become apparent immediately). Synthesis is a good method
for debugging a specification, a task that will gain impor-
tance as formal specification begins to be used as the basis
for manual implementation.

Although reactive synthesis is solved in theory (see
Sect. 2.2), synthesis tools have not gain acceptance in prac-
tice, for several reasons. One is that synthesis of Ltl proper-
ties is 2EXPTIME-complete [152]. This reason alone should
not prevent one from implementing the synthesis approach
because this bound afflicts also a manually implemented sys-
tem. This is because the bound is a lower bound, as shown
in [152], so there are specifications for which the smallest
correct system is doubly exponential in the size of the spec-
ification. Thus, the worst-case complexity of verifying the
specification on a manual implementation is also 2EXPTIME
in terms of the (full) specification. Another reason is that the
classical solution to synthesis is not compositional and there-
fore does not reflect the usually iterative process of writing a
complete specification. The lack of compositionality repre-

123



Algorithmic program synthesis 399

sents a serious obstacle because writing formal specifica-
tions is known to be difficult. Researchers follow three
main ideas to cope with the complexity and usability of
Ltl synthesis problem: (i) bounding the size of the gen-
erated systems, (ii) specialized algorithms for subsets
of Ltl and way to combined these algorithms, and (iii)
partial program synthesis to reduce the need for com-
plete specifications. The papers in this issue describe these
directions.

2.2 History of reactive synthesis

Synthesis aims to transform a specification into a system that
is guaranteed to satisfy the specification. The theory behind
synthesis of reactive systems is well established and goes
back to Church, who stated the Synthesis Problem [30] using
different fragments of restricted recursive arithmetic (S1S)
as specification. Nowadays this problem is also know as
Realizability or Church’s Problem and is defined as follows:
Given a relation R ⊆ (2I )ω × (2O)ω defined by restricted
recursive arithmetic or another logic (e.g., Ltl), we search for
a function f : (2I )∗ → 2O that generates for all sequences
x = x0, x1, x2, ... ∈ (2I )ω a sequence y = y0, y1, y2, ... ∈
(2O)ω with yi = f (x0, x1, ..., xi−1) for i > 0 such that
R(x, y) holds. We can view I and O as the sets of input and
output signals of a reactive system. The relation R can be seen
as a linear specification including all pairs of input and output
sequences that define the correct behavior of the system. The
function f (called strategy) then maps every possible input
sequence to a correct output sequence and represents a correct
system.

In the following years, Büchi and Landweber [25] and
Rabin [149] presented independent solutions to Church’s
problem. The first is based on infinite game theory, while
the latter uses tree automata. It took nearly 10 years until
researchers discovered the similarities between games and
tree automata [70].

Specifying the behavior of reactive systems in S1S is cum-
bersome. This spurred an urgent need for new specification
languages. A very successful proposal is that of temporal
logic [45,146], which is now widely used in the formal ver-
ification community and provides the basis for commercial
specifications languages as Property Specification Language
(Psl) or System Verilog Assertions (Sva).

Essentially, temporal logic comes in two flavors: linear
and branching time. Computation Tree Logic (Ctl) [45] is
a branching time logic. Given a Ctl formula and a design,
we can check efficiently if the design fulfills the formula.
However, the restricted syntax of Ctl limits the expressive
power and makes writing specifications in Ctl rather com-
plicated. Specifying is easier in Ltl [126,146], which is
also more suitable for compositional reasoning [110,191].
In theory, the model checking problem for Ltl is PSPACE-

complete [167], but in practice (cf. [46,178]), it takes expo-
nential time and space in the size of the Ltl formula assuming
P �= PSPACE.

The introduction of temporal logic gave rise to further
developments in the area of synthesis of reactive systems.
Emerson and Clarke [45] and Manna and Wolper [128] con-
sidered the problem for temporal specifications given in Ctl
and Ltl, respectively. Both concluded that if a specification
ϕ is satisfiable, we can construct a system that adheres to
the specification using the model that satisfies ϕ. Due to the
reduction to satisfiability, the approaches are limited to con-
structing closed systems, which lead to systems that are only
guaranteed to work correctly in cooperative environments
(environments that help to satisfy ϕ).

In the late 1980s, Pnueli and Rosner [147] reconsidered
the topic for Ltl and provided a solution for constructing
open systems (reactive systems). The key observation (also
observed in [149]) is that even though the specification can
be represented as infinite sequences (words) over the input
and output signals, the solution to the synthesis problem is
an infinite tree. Furthermore, Rosner proved that synthesis
of Ltl properties is 2EXPTIME-complete [152]. The first
exponent derives from the translation of the Ltl formula into
a non-deterministic Büchi automaton. The second exponent
is due to the determinization of the automaton. In theory
Ltl synthesis was classified as solved but it was said to be
hopelessly intractable and so the topic was dropped for a
decade.

At the same time, Ramadge and Wonham [150] intro-
duced the problem of controller synthesis, which deals with
constructing a controller for a plant. They considered speci-
fication of the form always p and proved that the controller
can be synthesized in linear time for such specifications.

In order to overcome the complexity issues of Ltl synthe-
sis, people started to concentrate on subsets of the language,
for e.g., Maidl [123] and Alur and La Torre [2] identified sub-
sets of Ltl for which deterministic automaton of less than
doubly exponential size can be constructed. Wallmeier et
al. [197] provided an efficient symbolic algorithm to synthe-
size request–response specification, which are of the form
always (pi → eventually qi ) for i ∈ {0..n}. Harding et
al. [73] observed that by leaving out the determinization step,
they obtain an efficient but incomplete symbolic algorithm.
Jobstmann et al. [88] made the same observations indepen-
dently in the context of using Ltl synthesis to repair finite-
state systems.

Recently, Pnueli et al. [144] proposed an efficient sym-
bolic algorithm to automatically synthesize designs from
Ltl formulas belonging to the class of generalized reac-
tivity of rank 1 (GR(1)) in time N 3, where N is the size of
the state space of the design. The class GR(1) covers the
vast majority of properties used in practice. GR(1) formu-
las have the form (

∧
i∈{0···n} always eventually (Ei )) →

123



400 R. Bodik, B. Jobstmann

(
∧

j∈{0···m} always eventually (S j )), where Ei and S j are
Boolean formulas over atomic propositions representing the
signals of the system. Most commonly used specifications
can be transformed into this form using deterministic moni-
tors.

Work concentrating on full Ltl is sparse and has not been
pursued for a long time. A major issue in Rosner’s solu-
tion to Ltl synthesis is the construction of a determinis-
tic automaton for the given formula, which includes con-
structing a non-deterministic Büchi automaton and deter-
minizing it. The first translation for Ltl to non-deterministic
Büchi automaton has been proposed by [202], and since then
translators from Ltl to automaton have improved a lot (cf.
[33,59,178]). Unfortunately, constructions to determinize
(arbitrary) Büchi automaton did not make such progress.
In 1988, Safra [154] was the first to provide a determiniza-
tion construction that was asymptotical optimal. The lower
bound to determinization [118] was extended from the lower
bound of [133] to the complementation of non-deterministic
Büchi automata. (Kupferman and Vardi [107] showed a dou-
bly exponential lower bound when one starts from Ltl.)
Later, Muller and Schupp [139] and Klarlund [93] provided
different constructions that also match the lower bound.
These algorithms turned out to be quite resistant to efficient
implementations [80,94,160]. So their implementations can
determinize automaton with approximately ten states and
Rosner’s solution to the Synthesis Problem was never
implemented.

In 2005, Kupferman and Vardi [109] proposed an alter-
native solution that goes through universal co-Büchi and
weak alternating tree automata. In contrast to previous
approaches, it avoids Safra’s determinization constructions.
This approach was optimized by Schewe and Finkbeiner and
implemented by Jobstmann and Bloem [86] and Filiot et al.
[49].

Kupferman et al. [106] proposed a compositional version
of the Safraless approach, which is based on generalized
universal co-Büchi automata. In 2006, Piterman proposed
improvements to Safra’s construction that lead to better com-
plexity bounds and deterministic Parity Automata [143]. In
[79], Henzinger and Piterman introduced non-deterministic
automata that are good for games (GFG). Those automata
fairly simulate their deterministic equivalent and can be
used to solve the synthesis problem. Henzinger and Piter-
man provided a simple algorithm to construct GFG automata
from non-deterministic Büchi automata. The construction is
a replacement for a determinization construction and so it
has the same worst-case complexity. However, since it can
be implemented symbolically, it is expected to perform bet-
ter in practice. In [97], Kretínský and Esparza presented a
direct translation of the (F,G)-fragment of LTL into deter-
ministic ω-automata that avoids the known determinization
procedures.

3 Functional synthesis

A defining characteristic of a synthesizer is the candidate
space, which is the set of programs that the synthesizer con-
siders when deriving (or searching for) a program that meets
the specification. The synthesizers of the previous section
considered the space of finite-state programs. The candidate
spaces of this section will be more expressive, ranging from
relational queries to arbitrary programs in general-purpose
languages. This section divides synthesizers on the basis of
whether they define the candidate space semantically (with
axioms) or syntactically (with grammars). This distinction
impacts both the expressiveness and the algorithmic founda-
tions of the synthesizer. (Additional characterizations of the
synthesis landscape can be found in [65,161].)

• Axiomatic synthesizers are equipped with a set of
axioms in the form of an equational domain algebra or
semantics-preserving rewrite rules. The desired program
is obtained by axiom-driven derivation from the speci-
fication. Since the axioms are semantics-preserving, the
resulting program is correct by construction. An advan-
tage of axiomatic synthesizers is efficiency; they search
only a space of correct programs (since only correct pro-
grams can be derived with given axioms). A disadvantage
is that a complete behavioral specification is typically
required as the starting point for the derivation; it is non-
trivial to incorporate partial specifications, for example,
in the form of input–output pairs. In terms of expres-
siveness, axiomatic synthesizers can synthesize only pro-
grams derivable with the set of axioms.

• Syntactically defined synthesizers consider candidates
from a language defined, typically, by a context-free
grammar. In practice, the syntactic pattern is defined
by a programming language construct, such as a par-
tial program, which is a parameterizable template pro-
gram. Naturally, most candidate programs do not meet
the specification, so the synthesis problem boils down
to searching the candidate space for a correct program.
To judge correctness, the synthesis algorithm employs a
program checker. The use of a checker facilitates flex-
ible specifications, which could combine safety proper-
ties with input–output pairs. In terms of expressiveness,
syntactically defined can synthesize those programs that
the checker can validate. The correctness assurance also
rests on the checker, whose strength can vary from a full
verifier to a dynamic program tester.

3.1 Axiomatic synthesizers

Problem domains with well-developed mathematical foun-
dations, such as relational algebra [31] or linear filters [190],

123



Algorithmic program synthesis 401

are amenable to axiomatization needed for synthesis. This
subsection organizes existing work on the basis of the prob-
lem domain and discusses the nature of the domain algebra
and the synthesis problems solved with the algebra.

Linear filters FFTW [58] and Spiral [148] develop schema-
guided synthesizers for linear filters such as Discrete Fourier
Transform (DFT). Efficient algorithms for linear transforms
work by recursively decomposing the transform into trans-
forms of smaller sizes. The schema defines the divide-and-
conquer decomposition, giving rise to a particular linear-
filter algorithm, such as the Cooley–Tukey algorithm for
FFT [157]. The FFTW system optimizes the base case of
the decomposition with DFT-specific tree rewrite and reg-
ister allocation rules, discovering novel algorithms. Spiral
uses a library of divide-and-conquer rules obtained by for-
malizing the published transform algorithms; an implemen-
tation is synthesized by selecting a suitable algorithm on
each level of decomposition, guided by an empirical search.
Spiral’s operator language, based on linear algebra, uni-
formly supports not only linear-filter algorithm rules but also
parallel-hardware compilation rules and recently also non-
linear algorithms [56]. The StreamBit [176] synthesizer used
similar decomposition rules to derive bitvector-manipulating
programs. Using ideas from syntactically defined synthesis,
some of the decomposition rules were non-deterministic, i.e.,
the rules were partial and were completed by the synthesizer
into semantics-preserving rules.

Linear algebra The FLAME project uses linear algebra and
Hoare-style proof rules to systematically derive an efficient
algorithm for linear algebra operations such as triangular
solvers [12,69]. The expert-guided derivation process starts
from a worksheet, which syntactically defines the control-
flow shape of the program to be derived, and proceeds by
computing predicates that describe point-specific properties
of matrix-valued variables. The program is then completed
by adding executable statements that satisfy those predicates,
viewing them as pre- and post-conditions. Since alternative
predicates can be derived, the derivation process can pro-
duce alternative algorithms. This systematic process has been
automated for at least one domain.

Polyhedral frameworks for matrix programs In the domain
of programs that operate on dense matrices, polyhedral
frameworks based on linear constraints over loop iteration
spaces [47] have been used as foundations for algebras of
loop transformations, such as loop reordering and loop block-
ing [6,22]. Strout et al. have extended dense polyhedral
frameworks for sparse matrix codes [184]. The challenge
in sparse matrix codes is in the indirect indexing of sparse
matrices. Strout solves the problem by modeling the indirect
index expression as a compile-time uninterpreted function;
at runtime, the uninterpreted function is replaced with an

inspector/executor algorithm that reorders loop iterations to
satisfy all dependences of the sparse matrix.

Relational algebra Relational algebra has been used to
describe container data structures in imperative programs [7,
77,168]. Relational schemas describe data organization and
relational queries model how a program uses the data struc-
ture. Efficient data structure are synthesized by producing
more efficient schemas and modifying the original queries to
work with the new schemas.

Statistical data analysis Fischer and Schumann [52] exploi-
ted an algebra based on probability theory and numerical
theory to synthesize efficient statistical inference algorithms.
Their system, AutoBayes, accepts a declarative description of
random variables and uses schema-based synthesis to break
down the declarative graphical model into a composition of
algorithms. Symbolic reasoning based on the algebra is used
to (i) test the applicability of algorithms expressed in the
schema and (ii) obtain a closed-form solution when possible.

Arithmetic expression equivalence Optimizing compilers
typically perform program optimizations using tree rewrite
rules that capture equivalence of expressions, such as x +0 =
x , as well as equivalence of machine instructions. In com-
pilers, these rewrites are typically applied heuristically. The
Denali superoptimizer [89] produces all programs (up to a
bound) derivable from the specification using a given set of
expression equality axioms and selects the fastest program.
The derivation exploits the E-graph data structure used in
automatic theorem provers [40].

3.2 Syntactically defined synthesizers

Foundations for syntactically defined synthesizers have their
origins in inductive inference of functions and formal lan-
guages from examples [5]. Inductive inference developed the
crucial notion of syntactic bias, which is the restriction that
the function to be induced must have a particular syntactic
form. The central idea is that a syntactic restriction reduces
the search space. A strong restriction, for example to a regular
language, may additionally permit specialized algorithms.

The first well-known syntactic synthesizer of what one
might call “programs” was SMARTedit, a programming-by-
demonstration (PBD) system for synthesis of editing macros,
by Lau et al. [112]. SMARTedit produced programs that
were straight-line sequences of editing commands, for exam-
ple, move the cursor to end of line minus 5 positions; insert
“hello”. User demonstrations were sequences of the initial,
intermediate, and final program states observed as the user
manually carried out the editing sequence. The program state
included the text buffer value, the cursor position, but not the
command performed by the user, allowing the user some

123



402 R. Bodik, B. Jobstmann

flexibility in achieving the editing action. The SMARTEdit
designer provided the syntactic bias, i.e., the set of available
commands and the syntactic form of their arguments, which
were functions over the program state. The bias is expressed
with version space algebra [114], in this setting equivalent to
a subset of context-free grammars. The synthesis algorithm
processed demonstrations one by one, maintaining the set of
candidate programs consistent with demonstrations seen so
far. The algorithm is particularly efficient because the pro-
gram state in the demonstration included also the program
point, which effectively decomposed the demonstrations into
input–output specifications of individual commands, decom-
posing the synthesis problem into several smaller ones. The
assumption that the demonstration includes program points
was later lifted in [113], where programs with loops and con-
ditionals are also synthesized.

The programming language aLisp (agent Lisp) by Andre
et al. [4,130] was designed for expressing prior knowledge
in hierarchical reinforcement learning of agent policies. A
typical aLisp program would express the strategy of an agent
playing a game such as Stratagus. The program would be
non-deterministic in that certain low-level decisions would
be left unspecified by the aLisp programmer. These deci-
sions are predicates to be learnt (synthesized) by a reinforce-
ment learning algorithm. The correctness specification was
to maximize the reward function that measured the success
of an agent in the actual game. Syntactic bias comes in two
parts: (i) the aLisp partial program written by the agent pro-
grammer, who expresses his prior knowledge; and (ii) the
syntax of the predicate to be learnt, fixed by the choice of the
learning algorithm.

The Sketch language by Solar-Lezama et al. [177] intro-
duces general-purpose partial programs, where program-
mers control the bias both via the partial programs and the
syntax of code fragments that complete the “holes” in the
partial programs. On the algorithmic side, Sketch showed
how to solve the synthesis problem symbolically with a
SAT solver, relying on the solver’s learnt conflict clauses to
prune the search of the candidate space. Sketch is described
in this issue [173]. Template-based synthesis of program
invariants [179] extended synthesis of invariants into syn-
thesis of programs [180]. This work, by Srivastava et al., is
also reported in this issue [181]. Itzhaky et al. [83] devel-
oped an efficient, tabular synthesis algorithm for partial
programs that adhere to a special guarded-command form.
Udupa et al. [188] showed that, in some cases, the synthesis
process can proceed by exhaustive enumeration of the syn-
tactically defined candidate space, rather than by symbolic
means.

Genetic programming can also be viewed as syntactically
defined synthesis [90,200]. Rather than defining the candi-
date space up front with a partial program, the candidate
space in genetic programming is defined gradually as new

candidate programs are obtained with mutations and other
transformations of promising existing candidates.

Syntactic bias has also been used in controller synthesis.
In [137], Morgenstern and Schneider considered the problem
of expressing as partial programs a class of (non-terminating)
reactive systems that should satisfy a formal specification
given the full branching time logic CTL*. They showed how
this partial programming problem can be reduced to a CTL*
model checking problem. Madhusudan [122] used syntacti-
cally restricted tree automata.

4 Other approaches

There is a large variety of approaches and applications related
to synthesis techniques that we would have liked to include
in this journal but could not due to space restrictions. In this
section we are trying to summary most of these.
Synthesis and theorem proving Theorem provers have been
used for systematic semi-automated construction of pro-
grams from their logical specifications. The desired program
or algorithm is specified in full first-order or second-order
logic and the program is constructed from the proof of a
theorem prover. Thanks to the high expressive power of
these logics, this approach provides complete freedom as
to what programs can be synthesized but the approach is
based on human interaction in the program finding process.
For example, the expert provides tactics and domain the-
ories, e.g., the divide-and-conquer principle, to guide the
underlying theorem prover (cf. the KIDS system [169] and
Nuprl [11]).

Game theory Reactive synthesis is often based on automata-
based game theory. Grädel et al. [62] edited a comprehensive
guide to research in the areas of Automata, Logics, and Infi-
nite Games.

Inductive programming Synthesis of programs from incom-
plete specifications presented as positive and negative exam-
ples [55] has been developed for functional programs [92]
and logic programs [54,138].

Quantitative synthesis In several application areas of syn-
thesis, researchers have observed the need for additional
(non-functional) constraints, e.g., realizability and robust-
ness. Such constraints are often expressed by assigning costs
or rewards for certain actions of the controller. Reward and
costs extensions have been considered for various types of
systems (cf. [14,18,23,24,27,34–36,39,42,53]).

Timed and hybrid systems Maler et al. [124] presented algo-
rithms for automatic synthesis of real-time controllers via
solving timed-automata games [1]. Lygeros et al. [121] for-
mulated the controller synthesis problems for reachability

123



Algorithmic program synthesis 403

specifications in hybrid systems and presented a solution
based on game theory. Synthesis for timed and hybrid sys-
tems is an active research area with new algorithms and tools
developed in recent years (e.g., [9,41,117,132]).

Programming by demonstration The origins of program-
ming by demonstration are in end-user-oriented systems [32].
Harel et al. developed Play-in/Play-out [76] based on Live
Sequence Charts [75] for designers of reactive systems. Com-
positional synthesis from scenario-based reactive specifica-
tion was done by Kugler et al. [101].

Requirement engineering Often, formalizing and debugging
the specification is the most challenging aspect of system
design. Requirements engineering synthesizes behavioral
models (for e.g., for autonomous systems) from scenario-
based requirements and visualizes declarative specifications
for the purpose of their understanding [74,99,186,187,189,
201].

Distributed synthesis Synthesis of distributed controllers led
to formulation of distributed games and synthesis problems
with imperfect information [50,63,91,105,108,135,145].

5 Applications of synthesis

The synthesis techniques described in previous sections have
been employed in a variety of applications. In this section,
we organize related work by the application problem and
highlight the key attributes of synthesis algorithms used for
the problem.

Synthesis of client code Given a software library (e.g., a set
of modules or classes), the goal is to compose library com-
ponents into a client code with desirable functionality. The
challenges of this problem include how to specify both the
desired functionality and the behavior of existing compo-
nents. The complex semantics of components requires mod-
eling the behavior abstractly, for example with types. The
consequence is that specifications are inherently ambigu-
ous, necessitating programmer involvement in the synthesis
process, which in turn requires research in new modes of pro-
grammer interaction and potentially incorporating secondary
semantic information such as documentation expressed in
natural language. An additional challenge is efficiency of
synthesis algorithms for real-world object-oriented libraries,
which may contain 105 to 106 methods.

The ETI system models component semantics with a
type system and synthesizes the client code with a theorem
prover [57,111,183]. Typsy [20] and Prospector [125] rely on
the readily available Java static type annotations and address
the ambiguity by ranking the candidate client code snippets.
Strahcona [81] and ParseWeb [185] analyze code samples to

mine candidate client code sequences. SNIFF [26] takes into
consideration textual information in a code corpus. Reiss’
semantic search [151] combines both static and dynamic
information, while Matchmaker [203] collects extensive
dynamic traces from which it builds a model library usage
that is then used in synthesis. PROPHETS [140] synthesizes
desired code based on types of components and SLTL con-
straints. Prime [134] mines temporal API specification, while
InSynth Ruzica [71] develops a type system that prunes the
search and ranks the solutions based on a code corpus.
Program and model repair and fault tolerance Shapiro [162]
developed a general algorithm for bug localization that iden-
tifies inconsistencies in the program with respect to speci-
fications of program’s procedures. He also developed algo-
rithmic repair for logic programs that operates via inductive
inference [163].

Griesmayer et al. [64] developed a game-theoretical algo-
rithm for repair of Boolean programs. In their formulation,
if a memory-less winning strategy can be identified, then the
Boolean program has been correctly repaired. Samanta et
al. [155] showed how to repair Boolean programs by posing
statement-level synthesis queries, which, if successful, will
repair the program.

Demsky et al. [38] addressed bugs that cause data structure
inconsistency by means of repairing not the program text but
the value of its data structure, at runtime. Their algorithm
searches a space of data structure edits to satisfy consistency
specifications. Elkarablieh et al. [44] used static analysis to
scale dynamic repair to large data structures.

Weimer et al. [200] formulated program repair via evo-
lutionary programming. The space of candidate programs is
defined by means of local program transformations which
the evolutionary programming algorithm uses to derive pro-
grams that gradually pass more test cases. Samimi et al. [156]
developed a solver-based algorithm for repair of PHP pro-
grams.

In [119], Logozzo and Ball studied the problem of sug-
gesting code repairs at design time, based on the warnings
issued by modular program verifiers.

In [196], von Essen and Jobstmann showed how to repair a
reactive program with respect to a specification such that the
repair does not introduce new bugs by requiring it to preserve
correct behaviors.

Reactive synthesis techniques have been used to auto-
matically add fault-tolerant behaviors to a given program
(cf. [28,60,102]). Bonakdarpour and Kulkarni applied simi-
lar ideas in the context of revising distributed (UNITY) pro-
grams [21,43].

Synthesis of string manipulating functions Lau et al. [113]
designed a PDB tool for synthesis of text editing macros,
based on version space algebra and user demonstrations.

123



404 R. Bodik, B. Jobstmann

Gulwani [66] developed an algorithm for synthesis of
spreadsheet text-manipulating macros, based on a carefully
designed macro language of candidate macro programs and
based on efficient algorithms for version space algebra. His
algorithm has later appeared in Microsoft Office Excel under
the name FlashFill. The algorithm was later extended to
semantic manipulations based on domain theories of rela-
tions, currencies, dates, etc. [164].

Superoptimization The superoptimization problem is to find
an optimal sequence of instructions that implements a certain
function. The function is usually specified with a sub-optimal
implementation.

The first superoptimizer was due to Massalin [131], whose
algorithm enumerated all instruction sequences of up to size
4 or 5, testing them on a few inputs. This generate-and-test
superoptimizer performed certain symmetry reductions, e.g.,
canonical register naming.

Joshi et al. [89] developed Denali, a superoptimizer that
obtained the optimal sequence by rewriting the executable
specification program into many alternative sequences using
axioms similar to those employed in optimizing compilers.
The resulting sequences were only as good as the sequence
of axioms but they were correct by construction.

Jha et al. [67] developed a solver-based superoptimizer.
Their algorithm also searches a space of all instruction
sequences of up to a certain size but does so symbolically, that
it can find instruction sequences of up to about 25 instruc-
tions. Correctness is verified symbolically, too.

Schkufza et al. [159] developed an algorithm that searches
the candidate space stochastically, applying local mutations
to program candidates that are deemed to be close to the
correct program, based on a heuristic, test-based measure of
correctness.

Mash-ups of web services and web scraping The Internet
offers a diverse spectrum of web services, such as maps,
dictionaries, and schedules of public transportation. These
services are typically accessed from a web browser. When
a user consults these services, he often manually composes
them, e.g., when copying an address produced by a restau-
rant search into a mapping service. To avoid this manual
composition, it is desirable to compose these services auto-
matically, based on a user demonstration or some other
specification.

Planning and synthesis techniques have been successfully
used to compose web services, e.g., in [10,37].

Vegemite [116] produces browser scripts in the CoScripter
language [115] based on user demonstrations.

Kubczak et al. [100] synthesized mash-ups using planning
from service specifications produced in domain analysis.

A problem related to web service composition is that of
extracting relational data from semistructured web pages.

This problem is sometimes referred to as web scraping.
Huynh et al. [82] developed an algorithm that synthesizes
an extraction program from user demonstration. The demon-
stration identifies a sample or relational data; the extraction
program is expressed as a path expression that identifies a
relation embedded in the tree representation of the web page.

Data structure synthesis The problem of designing an effi-
cient physical representation of a logical data structure can
also be viewed as that of synthesis. Work in this area views
the logical data structure as a relational store and synthesizes
an efficient implementation starting from relational queries
that characterize how the data structure is to be used by a
client program [7,77,168]. Hawkins et al. [78] extended the
work to the concurrent setting.

Database algorithms Spielmann et al. [95] showed how to
automatically synthesize database algorithms that efficiently
make use of memory hierarchy and external storage, start-
ing from declarative descriptions that ignore memory access
costs.

Cheung et al. [29] optimized code that uses a database
by lifting, with synthesis, an imperative database client code
fragment into a high-level relational query, which is then
optimizable by an off-the-shelf database query planner.

Synthesis of efficient algorithms While most work in syn-
thesis focuses on obtaining a relatively low-level implemen-
tation, some approaches could be considered to synthesize
a high-level algorithm. Blaine et al. [13] synthesized highly
scalable algorithms for logistical planning. Itzhaky et al. [83]
synthesized incremental algorithms by allowing the user to
provide a partial program (called a target language) that
described a space of candidate incremental algorithms. Liu
et al. developed an optimizing compiler that incrementalizes
an object-oriented program. The technique, based on finite
program differencing developed by Paige [142], comes with
rewrite rules that introduce into objects auxiliary storage and
simultaneously modify object methods to update this storage
and exploit it for (asymptotically) more efficient optimiza-
tions. Pu et al. developed a synthesizer of linear-time dynamic
programming algorithms based on partial programs.

Concurrent garbage collectors The challenge is to synthe-
size an algorithm that stops the mutator as little as pos-
sible while guaranteeing correctness and reducing garbage
collection overhead. The Paraglide project developed tech-
niques for synthesis of concurrent garbage collectors. Their
CGCExplorer searches a space of candidate collectors that
is constructed from building blocks selected by an expert
according to his intuition as to how the collector should oper-
ate [193,194].

123



Algorithmic program synthesis 405

Compiling declarative specification Compiling declarative
specifications into executable programs can also be con-
sidered to belong in program synthesis. Along these lines,
Krishamurthi et al. [98] designed a compiler for alloy [84]
specifications.

Aspect-oriented programming Maoz and Sa’ar [129] pre-
sented a framework based on reactive synthesis that allows
the specification and implementation of crosscutting con-
cerns using temporal logic.

Cache coherence protocols Cache coherence protocols
implement a shared-memory programming model by govern-
ing how caches of a multiprocessor exchange cached mem-
ory locations. These protocols are distributed programs run-
ning at each cache as well as at the cache directory. Udupa
et al. [188] synthesized the tricky guard expressions that con-
trol transitions among automata states that are maintained by
the protocol.

Education Synthesis has been successfully applied in auto-
mating mundane as well as creative aspects of education.
Singh et al. [165] extended the Sketch synthesizer to automat-
ically grade Python programs. Gulwani et al. [68] designed
algorithms that solve ruler-and-compass geometry problems.
Seshia et al. [153] showed how to automatically generate
problems in cyber-physical systems and Singh et al. [166]
did so for algebra. Other systems that generate programs of
controlled complexity are [182], in the controller domain,
and [3], in algebra.

6 Summary of contributions

The contribution that perhaps best bridges the world of con-
troller synthesis with the methods used for imperative pro-
grams is Abstraction-Guided Synthesis of Synchronization,
by Vechev et al. [192]. Their goal is to synthesize synchro-
nization for a multithreaded program so that a safety violation
is avoided. In the framework of controller synthesis, this goal
corresponds to synthesizing a controller that takes the form
of atomic guards, over statements in the original (unsynchro-
nized) program, which prevent the scheduler from preempt-
ing the running thread. From the algorithmic standpoint, the
paper contributes a refinement algorithm whose novelty is
that not only the abstraction, but also the program (i.e., the
placement of atomic guards) is adjusted. The ability to mod-
ify the program allows authors to rule out program interleav-
ings not only when they are known to be invalid, but also
when they cannot be verified under the given abstraction.

Two papers exploit properties of specifications to design
efficient synthesis algorithms. The first paper decomposes
LTL specifications, while the second paper restricts itself

to decidable logics to turn decision procedures into synthe-
sis procedures. In Safety First: A Two-Stage Algorithm for
the Synthesis of Reactive Systems [171], Sohail and Somenzi
describe an algorithm that solves safety and persistence prop-
erties in the first step and accounts for liveness in the second
step. This division allows a divide-and-conquer strategy in
the first step, through merging of winning strategies for sub-
problems. The second step is a one-level divide-and-conquer
algorithm because winning strategies for liveness need to be
computed in a whole-program fashion. Liveness is computed
with a symbolic conjunctive parity game, which manipulates
characteristic functions rather than elements. In this paper,
the specification is viewed as a conjunction of properties,
assuming that each conjunct is small enough to allow explicit
determinization. This paper may thus be of interest to the
reader if her specification (i) contains a lot of small proper-
ties, (ii) uses the full expressive power of LTL (rather than
the less expressive GR(1)), (iii) mostly contains safety or per-
sistence properties, and (iv) contains the (general) liveness
properties that are small enough to construct explicit deter-
ministic parity automata. From the engineering standpoint,
the paper offers a tunable tradeoff between the number of
components of the conjunctive game and the size of individ-
ual properties, allowing one to conjoin these properties.

In Functional Synthesis for Linear Arithmetic and Sets,
Kuncak et al. [104] integrate synthesis of functions into a
host language, Scala, allowing one to program declaratively
by expressing a relational specification over the inputs and
outputs of the desired function. The function is synthesized
conceptually by partial evaluation of a decision procedure
with respect to the specification. To specialize a decision
procedure, the authors observe that decision procedures are
often based on quantifier elimination, which solves the con-
straint system by eliminating variables one at a time and then
computing the variable values in reverse direction. It thus suf-
fices to ask the quantifier elimination to produce a witness
function, which computes the eliminated variable from the
remaining variables. A suitable chaining of witness func-
tions then constructs the synthesized function. The authors
also help with debugging of declarative specifications. For
example, when a specification is discovered to be undercon-
strained, the synthesizer identifies an input on which the func-
tion is allowed to return one of several values. Reporting the
input to the programmer might hint at the constraint that is
missing in the specification.

The next two papers synthesize imperative programs by
reduction to constraint solving. Both papers allow the pro-
grammer to supply a partial program (called respectively a
sketch or template), which is a program with holes that will
be completed by the synthesizer. Partial programs both make
the synthesis more efficient and allow the programmer to
express his insight about the desired program.

123



406 R. Bodik, B. Jobstmann

In Program Sketching, Solar-Lezama [173] shows how
to generate an implementation from a partial program using
counterexample-guided inductive synthesis (CEGIS). Induc-
tive synthesis is a process of generating candidate imple-
mentations from concrete examples of correct or incorrect
behavior. CEGIS combines a SAT-based inductive synthe-
sizer with an automated validation procedure, typically a
bounded model, which supplies the concrete examples.

In Template-based Program Verification and Program
Synthesis, Srivastava et al. [181] show how to complete a
partial program by reducing the synthesis problem into a
verification problem. The synthesizer is based on their prior
work on template-based verifiers. While in the verifier it is
the program invariant what is partially described with a tem-
plate, in the synthesizer it is the program. Still, in an elegant
twist, the synthesized program can be viewed as an invariant,
providing the reduction.

The papers Bounded Synthesis by Finkbeiner and Schewe
[51], and Exploiting Structure in LTL Synthesis by Filiot et
al. [49] focus on synthesizing small reactive systems from
arbitrary LTL specifications. They both search for all solu-
tions that fall below a given bound on the size of the imple-
mentations. Incrementally increasing the bound allows them
to obtain completeness for all decidable synthesis problems.
Finkbeiner and Schewe were the first to present this idea in an
initial version of their paper. In this paper, they also showed
the generality of the approach by presenting experimental
results indicating that many synthesis problems with gener-
ally intractable complexity can be solved efficiently for rea-
sonably small bounds. Raskin, Jin, and Filiot observed that
the resulting synthesis problems have a special structure that
can be exploited for efficient implementations. Specifically,
there is a partial order over the configurations used in the syn-
thesis process. This partial order allows them to collapse con-
figurations and represent them efficiently using a symbolic
data structure based on anti-chains. In addition, they present
a simplification of their original algorithm and a reduction to
SAT solving which together lead to large gains in efficiency.

Synthesis is impossible without a correct specification.
In Debugging Formal Specifications, Koenighofer et al. [96]
develop algorithms for explaining unrealizable specifications
to the specification author. Conceptually, this task boils down
to pinpointing why none of the (infinitely many) implementa-
tions meets the specification. To sidestep enumerating incor-
rect implementations, the authors encouraged the user to find
bugs in the informal design intent that exists only in his mind.
The authors swapped the roles between the tool and the user:
the tool plays the environment and the user plays the sys-
tem to be synthesized, trying to meet the specification. The
tool follows a counterstrategy that makes the user fail, forc-
ing him to realize why the imagined implementation fails to
meet the specification. This knowledge can then inform a fix
to the specification.

The paper Synthesis of AMBA AHB from Formal Spec-
ifications: A Case Study by Godhal et al. [61] is intended
for the reader interested in the state-of-the-art of automat-
ically synthesizing integrated circuits from temporal spec-
ifications. The authors significantly improved the work of
Bloem et al., who were the first to present a formal specifica-
tion for ARM AMBA AHB Arbiter and synthesized the AHB
Arbiter circuit. The Advanced Microcontroller Bus Archi-
tecture (AMBA) was developed by ARM, one of the leading
companies in microprocessor Intellectual Property. AMBA
is used as on-chip bus in a wide range of ASIC and SoC parts
including processors used in smartphones. Chatterjee, Hen-
zinger, and Godhal present detailed formal specifications for
AHB Arbiter, and obtain significant improvement in synthe-
sis results (both with respect to the number of gates in the
synthesized circuit and with respect to time taken to syn-
thesize the circuit). They also discuss principles for writing
formal specifications for efficient hardware synthesis

Oddos et al. [141] also aim to synthesize a circuit from a
set of formal properties. Their approach differed from reac-
tive synthesis, as they turned each property into a compo-
nent that combined classical monitor and generator features.
The approach cannot handle arbitrary specifications but was
extremely efficient, in particular, it allowed synthesizing cir-
cuits specified by hundred of temporal properties in a few
seconds.

Finally, the paper Synthesis from Component Libraries
by Lustig and Vardi [120] examines decidability ques-
tions of LTL program synthesis. Specifically, they examined
component-based synthesis, an important direction for mak-
ing synthesis more efficient through modularity. They intro-
duced two notions of composition and described how to sum-
marize a component so that synthesizer can compose it with
the client of the component.

7 Conclusions

Despite extensively covering both fundamental techniques
and practical applications of program synthesis, we were
forced to leave out plenty of inspiring work. We trust that the
interested reader will follow the citations from our bibliogra-
phy to identify these papers. Readers interested in open prob-
lems that guide current research in synthesis will be served
well by proceedings of conferences such as CAV, POPL, and
PLDI, which typically include papers on the cutting edge of
program synthesis.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput.
Sci. 126, 183–235 (1994)

123



Algorithmic program synthesis 407

2. Alur, R., La Torre, S.: Deterministic generators and games for
LTL fragments. In: Symposium on Logic in Computer Science
(LICS’01), pp. 291–302 (2001)

3. Andersen, E., Gulwani, S., Popovic, Z.: A trace-based frame-
work for analyzing and synthesizing educational progressions.
In: Mackay, W.E., Brewster, S.A., Bødker, S. (eds.), CHI. ACM,
New York, pp. 773–782 (2013)

4. Andre, D., Russell, S.J.: State abstraction for programmable rein-
forcement learning agents. In: Dechter, R., Sutton, R.S. (eds.)
AAAI/IAAI, pp. 119–125. AAAI Press/The MIT Press, Menlo
Park (2002)

5. Angluin, D., Smith, C.H.: Inductive inference: theory and meth-
ods. ACM Comput. Surv. 15(3), 237–269 (1983)

6. Bastoul, C., Cohen, A., Girbal, S., Sharma, S., Temam, O.: Putting
polyhedral loop transformations to work. In: Languages and Com-
pilers for Parallel Computing, pp. 209–225. Springer, Berlin
(2004)

7. Batory, D.S., Thomas, J.: P2: a lightweight dbms generator. J.
Intell. Inf. Syst. 9(2), 107–123 (1997)

8. Baumgartner, J.: Integrating FV into main-stream verification: the
IBM experience, 2006. Invited Talk at the Conference on Formal
Methods in Computer Aided Design (FMCAD’06) (2006)

9. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G.,
Lime, D.: Uppaal-tiga: time for playing games! In: CAV, pp. 121–
125 (2007)

10. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of
web services via planning in asynchronous domains. Artif. Intell.
174(3), 316–361 (2010)

11. Bickford, M., Constable, R.L., Halpern, J.Y., Petride, S.:
Knowledge-based synthesis of distributed systems using event
structures. Log. Methods Comput. Sci., 7(2:14), 1–36 (2011)

12. Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Ortí, E.S.,
van de Geijn, R.A.: The science of deriving dense linear algebra
algorithms. ACM Trans. Math. Softw. 31(1), 1–26 (2005)

13. Blaine, L., Gilham, L., Liu, J., Smith, D.R., Westfold,
S.J.: Planware—domain-specific synthesis of high-performance
schedulers. In: ASE, p. 270 (1998)

14. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better
quality in synthesis through quantitative objectives. In: Bouajjani,
A., Maler, O. (eds.), CAV. Lecture Notes in Computer Science,
Vol. 5643, pp. 140–156. Springer, Berlin (2009)

15. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Koenighofer,
R., Roveri, M., Schuppan, V., Seeber, R.: Ratsy—a new require-
ments analysis tool with synthesis. In: Comput. Aided Verification
(2010, To appear)

16. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A.,
Weiglhofer, M.: Automatic hardware synthesis from specifica-
tions: a case study. In: DATE (2007)

17. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A.,
Martin W.: Specify, compile, run: hardware from PSL. In: COCV,
Electronic Notes in Computer Science, pp. 3–16 (2007)

18. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthe-
sizing robust systems. In: FMCAD, pp. 85–92 (2009)

19. Boehm, H.-J., Flanagan, C.: (eds.) ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI
’13, Seattle, 16–19 June 2013. ACM, New York (2013)

20. Bolton, C., Nelson, G.: Typsy: a type-based search tool for java
programmers. Technical Report SRC Technical Note, 2001–004
(Selected: SRC Summer Intern Reports). Compaq SRC, Decem-
ber (2001)

21. Bonakdarpour, B., Kulkarni, S.S.: Sycraft: a tool for synthesiz-
ing distributed fault-tolerant programs. In: Breugel, F., Chechik,
M. (eds.), CONCUR 2008—Concurrency Theory. Lecture Notes
in Computer Science, vol. 5201, pp. 167–171. Springer, Berlin
(2008)

22. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A
practical automatic polyhedral parallelizer and locality optimizer.
In: Gupta, R., Amarasinghe, S.P. (eds.), PLDI, pp. 101–113. ACM,
New York (2008)

23. Bouyer, P.: Weighted timed automata: model-checking and
games. In: Brookes, S., Mislove, M. (eds.), Proceedings of the
22nd Conference on Mathematical Foundations of Programming
Semantics (MFPS’06). Electronic Notes in Theoretical Computer
Science, vol. 158, pp. 3–17, Genova, Italy, May 2006. Elsevier
Science Publishers, Amsterdam (2006, Invited paper)

24. Bouyer, P., Markey, N., Sankur, O.: Robust weighted timed
automata and games. In: Braberman, V., Fribourg, L. (eds.), Pro-
ceedings of the 11th International Conference on Formal Mod-
elling and Analysis of Timed Systems (FORMATS’13). Lecture
Notes in Computer Science, Buenos Aires, Argentina, August
2013. Springer, Berlin (2013, To appear)

25. Büchi, J.R., Landweber, L.H.: Solving sequential conditions
by finite-state strategies. Trans. Am. Math. Soc. 138, 295–311
(1969)

26. Chatterjee, S., Juvekar, S., Sen, K.: Sniff: a search engine for
java using free-form queries. In: Chechik, M., Wirsing, M. (eds.),
FASE. Lecture Notes in Computer Science, vol. 5503, pp. 385–
400. Springer, Berlin (2009)

27. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis,
A.: PRISM-games: a model checker for stochastic multi-player
games. In: Piterman, N., Smolka, S. (eds.), Proceedings of the
19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’13). LNCS, vol.
7795, pp. 185–191. Springer, Berlin (2013)

28. Cheng, C.-H., Rueß, H., Knoll, A., Buckl, C.: Synthesis of fault-
tolerant embedded systems using games: from theory to practice.
In: Verification, Model Checking, and Abstract Interpretation, pp.
118–133. Springer, Berlin (2011)

29. Cheung, A., Solar-Lezama, A., Madden, S.: Optimizing database-
backed applications with query synthesis. In: Boehm and Flana-
gan, vol. 19, pp. 3–14

30. Church, A.: Logic, arithmetic and automata. In: Proceedings Inter-
national Mathematical Congress (1962)

31. Codd, E.F.: A relational model of data for large shared data banks.
Commun. ACM 13(6), 377–387 (1970)

32. Cypher, A., Dontcheva, M., Lau, T., Nichols, J.: No Code
Required: Giving Users Tools to Transform the Web. Morgan
Kaufmann Publishers Inc., San Francisco (2010)

33. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata gen-
eration for linear time temporal logic. In: Halbwachs, N., Peled,
D. (eds.), Eleventh Conference on Computer Aided Verification
(CAV’99), LNCS 1633, pp. 249–260. Springer, Berlin (1999)

34. de Luca, A.: How to specify and verify the long-run average
behavior of probabilistic systems. In: LICS, pp. 454–465 (1998)

35. de Luca, A., Henzinger, T.A., Majumdar, R.: Discounting the
future in systems theory. In: ICALP, pp. 1022–1037 (2003)

36. de Luca, A., Majumdar, R., Raman, V., Stoelinga, M.: Game rela-
tions and metrics. In: LICS, pp. 99–108 (2007)

37. De Giuseppe, G., Patrizi, F.: Automated composition of nondeter-
ministic stateful services. In: Web Services and Formal Methods,
pp. 147–160. Springer, Berlin (2010)

38. Demsky, B., Rinard, M.C.: Goal-directed reasoning for
specification-based data structure repair. IEEE Trans. Softw. Eng.
32(12), 931–951 (2006)

39. Desharnais, J., Gupta, V., Jagadeesan, R.: Metrics for labelled
markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)

40. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for
program checking. J. ACM 52(3), 365–473 (2005)

41. Donzé, A.: Breach, a toolbox for verification and parameter syn-
thesis of hybrid systems. In: CAV, pp. 167–170 (2010)

123



408 R. Bodik, B. Jobstmann

42. Doyen, L., Henzinger, T.A., Legay, A., Nickovic, D.: Robustness
of sequential circuits. In: ACSD, pp. 77–84 (2010)

43. Ebnenasir, A., Kulkarni, S.S., Bonakdarpour, B.: Revising unity
programs: possibilities and limitations. In: Principles of Distrib-
uted Systems, pp. 275–290. Springer, Berlin (2006)

44. Elkarablieh, B., Khurshid, S., Vu, D., McKinley, K.S.: Starc: static
analysis for efficient repair of complex data. In: ACM SIGPLAN
Notices, vol. 42, pp. 387–404. ACM, New York (2007)

45. Emerson, E.A., Clarke, E.M.: Using branching time temporal
logic to synthesize synchronization skeletons. Sci. Comput. Pro-
gram. 2, 241–266 (1982)

46. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In:
Proceedings of the 11th International Conference on Concurrency
Theory (CONCUR2000), LNCS 1877, pp. 153–167. Springer,
Berlin (2000)

47. Feautrier, P.: Automatic parallelization in the polytope model.
In: Perrin, G., Darte, A. (eds.), The Data Parallel Programming
Model. Lecture Notes in Computer Science, vol. 1132, pp. 79–
103. Springer, Berlin (1996)

48. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for ltl
realizability. In: Proceedings of the Computer Aided Verification,
pp. 263–277 (2009)

49. Filiot, Emmanuel: Jin, N., Raskin. J.-F.. Exploiting structure in ltl
synthesis, STTT (2013, in this issue)

50. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Pro-
ceedings of the 20th Annual IEEE Symposium on Logic in Com-
puter Science, 2005. LICS 2005, pp. 321–330. IEEE, New York
(2005)

51. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT (2013, in
this issue)

52. Fischer, B., Schumann, J.: Autobayes: a system for generating
data analysis programs from statistical models. J. Funct. Program.
13(3), 483–508 (2003)

53. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In:
TACAS, pp. 190–204 (2010)

54. Flener, P.: Logic program synthesis from incomplete information.
The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Boston (1995)

55. Flener, P., Schmid, U.: An introduction to inductive programming.
Artif. Intell. Rev. 29(1), 45–62 (2008)

56. Franchetti, F., de Mesmay, F., McFarlin, D.S., Püschel, M.: Oper-
ator language: a program generation framework for fast kernels.
In: Taha, W.M. (ed.), DSL. Lecture Notes in Computer Science,
vol. 5658, pp. 385–409. Springer, Berlin (2009)

57. Freitag, B., Margaria, T., Steffen, B.: A pragmatic approach to
software synthesis. SIGPLAN Not. 29(8), 46–58 (1994)

58. Frigo, M.: A fast fourier transform compiler. In: Ryder, B.G.,
Zorn, B.G. (eds.), PLDI, pp. 169–180. ACM, New York
(1999)

59. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In:
Berry, G., Comon, H., Finkel, A. (eds.), Thirteenth Conference on
Computer Aided Verification (CAV ’01), LNCS 2102, pp. 53–65.
Springer, Berlin (2001)

60. Girault, A., Rutten, E.: Automating the addition of fault toler-
ance with discrete controller synthesis. Formal Methods in System
Design 35(2), 190–225 (2009)

61. Godhal, Y., Chatterjee, K., Henzinger, T.A.: Synthesis of amba
ahb from formal specifications: a case study. STTT (2013, in this
issue)

62. Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a
Dagstuhl seminar, February 2001]. Lecture Notes in Computer
Science, vol. 2500. Springer, Berlin (2002)

63. Graf, S., Peled, D., Quinton, S.: Achieving distributed control
through model checking. Formal Methods Syst. Des. 40(2), 263–
281 (2012)

64. Griesmayer, A., Bloem, R., Cook, B.: Repair of boolean programs
with an application to c. In: Ball, T., Jones, R.B. (eds.), CAV.
Lecture Notes in Computer Science, vol. 4144. Springer, Berlin
(2006)

65. Gulwani, S.: Dimensions in program synthesis. In: Bloem, R.,
Sharygina, N. (eds.), FMCAD, p. 1. IEEE, New York (2010)

66. Gulwani, S.: Automating string processing in spreadsheets using
input–output examples. In: Ball, T., Sagiv, M. (eds.), POPL, pp.
317–330. ACM, New York (2011)

67. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-
free programs. In: Hall, M.W., Padua, D.A. (eds.), Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, pp. 62–73. ACM, New
York (2011)

68. Gulwani, S., Korthikanti, V.A., Tiwari, A.: Synthesizing geometry
constructions. In: Hall, M.W., Padua, D.A. (eds.), Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, pp. 50–61. ACM, New
York (2011)

69. Gunnels, J.A., Gustavson, F.G., Henry, G., van de Geijn, R.A.:
Flame: formal linear algebra methods environment. ACM Trans.
Math. Softw. 27(4), 422–455 (2001)

70. Gurevich, Y., Harrington, L.: Trees, automata, and games. In:
Proceedings of the 14th ACM Symposium. Theory of Comp.,
pp. 60–65, San Francisco (1982)

71. Gvero, T.: Kuncak, V., Kuraj, I., Piskac, R.: Complete comple-
tion using types and weights. In: ACM SIGPLAN PLDI, Ruzica
(2013)

72. Hall, M.W., Padua, D.A. (eds.) Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, San Jose, 4–8 June 2011. ACM,
New York (2011)

73. Harding, A., Ryan, M., Schobbens, P.-Y.: A new algorithm
for strategy synthesis in LTL games. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2005),
pp. 477–492, Edinburgh. LNCS 3440 (2005)

74. Harel, D., Kugler, H., Pnueli, A.: Synthesis revisited: generat-
ing statechart models from scenario-based requirements. In: For-
mal Methods in Software and Systems Modeling, pp. 309–324.
Springer, Berlin (2005)

75. Harel, David, Marelly, Rami: Come, Let’s Play: Scenario-Based
Programming Using LSC’s and the Play-Engine. Springer, Secau-
cus (2003)

76. Harel, D., Segall, I.: Synthesis from scenario-based specifications.
J. Comput. Syst. Sci. 78(3), 970–980 (2012)

77. Hawkins, P., Aiken, A., Fisher, K., Rinard, M.C., Sagiv, M.: Data
representation synthesis. In: Hall and Padua, vol. 72, pp. 38–49

78. Hawkins, P., Aiken, A., Fisher, K., Rinard, M.C., Sagiv, M.:
Concurrent data representation synthesis. In: Vitek, J., Lin,
H., Frank, T. (eds.) PLDI, pp. 417–428. ACM, New York
(2012)

79. Henzinger, T.A., Piterman, N.: Solving games without deter-
minization. In: Proceedings of the 15th Conference on Computer
Science Logic, pp. 395–410 (2006)

80. Kurshan, R.P., Touati, H.J., Brayton, R.K.: Testing language con-
tainment for ω-automata using BDD’s. Inf. Comput. 118(1), 101–
109 (1995)

81. Holmes, R., Walker, R.J., Murphy, G.C.: Strathcona example
recommendation tool. In: Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, ESEC/FSE-13, pp. 237–240. ACM, New York
(2005)

82. Huynh, D.F., Miller, R.C., Karger, D.R.: Enabling web browsers
to augment web sites’ filtering and sorting functionalities. In: Pro-
ceedings of the 19th Annual ACM Symposium on User Interface

123



Algorithmic program synthesis 409

Software and Technology, UIST ’06, pp. 125–134. ACM, New
York (2006)

83. Itzhaky, S., Gulwani, S., Immerman, N., Sagiv, M.: A simple
inductive synthesis methodology and its applications. In: Cook,
W.R., Clarke, S., Rinard, M.C. (eds.), OOPSLA, pp. 36–46. ACM,
New York (2010)

84. Jackson, D.: Alloy: a new technology for software modelling.
In: Katoen, J.-P., Stevens, P. (eds.), TACAS. Lecture Notes in
Computer Science, vol. 2280, p. 20. Springer, Berlin (2002)

85. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided
component-based program synthesis. In: ICSE 2010 (2010)

86. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis.
In: Conference on Formal Methods in Computer Aided Design,
pp. 117–124 (2006)

87. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: a
tool for property synthesis. In: Comput. Aided Verif., pp. 258–
262 (2007)

88. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a
game. In: Etessami, K., Rajamani, S.K. (eds.), 17th Conference on
Computer Aided Verification (CAV’05), pp. 226–238. Springer,
Berlin. LNCS 3576 (2005)

89. Joshi, R., Nelson, G., Zhou, Y.: Denali: a practical algorithm for
generating optimal code. ACM Trans. Program. Lang. Syst. 28(6),
967–989 (2006)

90. Katz, G., Peled, D.: Model checking-based genetic programming
with an application to mutual exclusion. In: Ramakrishnan, C.R.,
Rehof, J. (eds.), TACAS. Lecture Notes in Computer Science, vol.
4963, pp. 141–156. Springer, Berlin (2008)

91. Katz, G., Peled, D., Schewe, S.: Synthesis of distributed con-
trol through knowledge accumulation. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV. Lecture Notes in Computer Science, vol.
6806. Springer, Brelin (2011)

92. Kitzelmann, E.: Inductive programming: a survey of program syn-
thesis techniques. In: Schmid, U., Kitzelmann, E., Plasmeijer,
R. (eds.) AAIP. Lecture Notes in Computer Science, vol. 5812,
pp. 50–73. Springer, Berlin (2009)

93. Klarlund, N.: Progress measures for complementation of ω-
automata with application to temporal logic. In: Proceedings of
the 32nd IEEE Symposium on Foundations of Computer Science,
pp. 358–367, San Juan (1991)

94. Klein, Joachim, Baier, Christel.: Experiments with deterministic
omega-automata for formulas of linear temporal logic. In: Confer-
ence on Implementation and Application of Automata (CIAA’05),
pp. 199–212. LNCS 3845 (2005)

95. Klonatos, Y., Nötzli, A., Spielmann, A., Koch, C., Kuncak, V.:
Automatic synthesis of out-of-core algorithms. In: Ross, K.A.,
Srivastava, D., Papadias, D. (eds.) SIGMOD Conference, pp. 133–
144. ACM, New York (2013)

96. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal
specications—a practical approach using model-based diagnosis
and counterstrategies. STTT (2013, in this issue)

97. Kretínský, J., Esparza, J.: Deterministic automata for the (f, g)-
fragment of ltl. In: CAV, pp. 7–22 (2012)

98. Krishnamurthi, S., Fisler, K., Dougherty, D.J., Yoo, D.: Alchemy:
transmuting base alloy specifications into implementations. In:
Harrold, M.J., Murphy, G.C. (eds.) SIGSOFT FSE. ACM, New
York (2008)

99. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From mscs to state-
charts. In: Proceedings of the IFIP WG10.3/WG10.5 International
Workshop on Distributed and Parallel Embedded Systems, DIPES
’98, pp. 61–71, Norwell. Kluwer Academic Publishers, Dordrecht
(1999)

100. Kubczak, C., Margaria, T., Steffen, B.: Mashup development
for everybody: a planning—based approach. In: Proceedings of
the 3rd International Workshop on Service Matchmaking and
Resource Retrieval in the Semantic Web, SMR2 (2009)

101. Kugler, H., Segall, I.: Compositional synthesis of reactive systems
from live sequence chart specifications. In: TACAS, pp. 77–91
(2009)

102. Kulkarni, S., Arora, A.: Automating the addition of fault-
tolerance. In: Joseph, M. (ed.), Formal Techniques in Real-Time
and Fault-Tolerant Systems. Lecture Notes in Computer Science,
vol. 1926, pp. 82–93. Springer, Berlin (2000)

103. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional
synthesis. In: PLDI (2010)

104. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthesis
for linear arithmetic and sets. STTT (2013, in this issue)

105. Kupermann, O., Varfi, M.Y.: Synthesizing distributed systems.
In: Proceedings of the 16th Annual IEEE Symposium on Logic
in Computer Science, 2001, pp. 389–398. IEEE, New York
(2001)

106. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless composi-
tional synthesis. In: Eighteenth Conference on Computer Aided
Verification, pp. 31–44, LNCS 4144 (2006)

107. Kupferman, O., Vardi, M.Y.: Freedom, weakness, and determin-
ism: from linear-time to branching-time. In: Proceedings of the
13th IEEE Symposium on Logic in Computer Science (1998)

108. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informa-
tio. Adv. Temp. Logic 16, 109–127 (2000)

109. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In:
Foundations of Computer Science, pp. 531–542, Pittsburgh,
(2005)

110. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic
approach to branching-time model checking. J. ACM 47(2), 312–
360 (2000)

111. Lamprecht, A.-L., Margaria, T., Steffen, B.: Bio-jeti: a framework
for semantics-based service composition. BMC Bioinf. 10(S–10),
8 (2009)

112. Lau, T.A., Domingos, P., Weld, D.S.: Version space algebra and
its application to programming by demonstration. In: Langley,
P. (ed.), ICML, pp. 527–534. Morgan Kaufmann, Burlington
(2000)

113. Lau, T.A., Domingos, P., Weld, D.S.: Learning programs from
traces using version space algebra. In: Gennari, J.H., Porter, B.W.,
Gil, Y. (eds.), K-CAP, pp. 36–43. ACM, New York (2003)

114. Lau, T.A., Wolfman, S.A., Domingos, P., Weld, D.S.: Program-
ming by demonstration using version space algebra. Machine
Learn. 53(1–2), 111–156 (2003)

115. Leshed, G., Haber, E.M., Matthews, T., Lau, T.A.: Coscripter:
automating & sharing how-to knowledge in the enterprise. In:
Czerwinski, M., Lund, A.M., Tan, D.S. (eds.), CHI, pp. 1719–
1728. ACM, New York (2008)

116. Lin, J., Wong, J., Nichols, J., Cypher, A., Lau, T.A.: End-user
programming of mashups with vegemite. In: Conati, C., Bauer,
M., Oliver, N., Weld, D.S. (eds.), IUI, pp. 97–106. ACM, New
York (2009)

117. Liu, J., Ozay, N., Topcu, U., Murray, R.M.: Switching protocol
synthesis for temporal logic specifications. In: American Control
Conference (ACC), 2012, pp. 727–734. IEEE, New York (2012)

118. Löding, C.: Optimal bounds for transformations of omega-
automata. In: Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, pp. 97–109
(1999)

119. Logozzo, F., Ball, T.: Modular and verified automatic program
repair. In: Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applica-
tions, pp. 133–146. ACM, New York (2012)

120. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries.
STTT (2013, in this issue)

121. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability
specifications for hybrid systems. Automatica 35(3), 349–370
(1999)

123



410 R. Bodik, B. Jobstmann

122. Madhusudan, P.: Synthesizing reactive programs. Proceedings of
the Comp. Sci. Log., CSL 2011, pp. 428–442 (2011)

123. Maidl, M.: The common fragment of CTL and LTL. In: Proceed-
ings of the 41th Annual Symposium on Foundations of Computer
Science, pp. 643–652 (2000)

124. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete
controllers for timed systems (an extended abstract). In: STACS,
pp. 229–242 (1995)

125. Mandelin, D., Xu, L., Bodík, R., Kimelman, D.: Jungloid mining:
helping to navigate the api jungle. In: Sarkar, V., Hall, M.W. (eds.),
PLDI, pp. 48–61. ACM, New York (2005)

126. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive
and Concurrent Systems *Specification*. Springer, Berlin
(1991)

127. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems:
Safety. Springer, Berlin (1995)

128. Manna, Z., Wolper, P.: Synthesis of communicating processes
from temporal logic specifications. ACM Trans. Program. Lang.
Syst. 6, 68–93 (1984)

129. Maoz, S., Sa’ar, Y.: Aspectltl: an aspect language for ltl specifi-
cations. In: Proceedings of the Tenth International Conference on
Aspect-Oriented Software Development, pp. 19–30. ACM, New
York (2011)

130. Marthi, B., Russell, S.J., Latham, D., Guestrin, C.: Concur-
rent hierarchical reinforcement learning. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI. Professional Book Center, Mumbai
(2005)

131. Massalin, H.: Superoptimizer—a look at the smallest program. In:
Katz, R.H. (ed.) ASPLOS, pp. 122–126. ACM Press, New York
(1987)

132. Mazo Jr, M., Davitian, A., Tabuada, P.: Pessoa: a tool for
embedded controller synthesis. In: Computer Aided Verification,
pp. 566–569. Springer, Berlin (2010)

133. Michel, M.: Complementation is more difficult with automata on
infinite words. Manuscript, CNET, Paris (1988)

134. Mishne, A., Shoham, S., Yahav, E.: Typestate-based semantic
code search over partial programs. In: Proceedings of the ACM
International Conference on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA ’12, pp. 997–1016.
ACM, New York (2012)

135. Mohalik, S., Walukiewicz, I.: Distributed games. In: FST TCS
2003: Foundations of Software Technology and Theoretical Com-
puter Science, pp. 338–351. Springer, Berlin (2003)

136. Morgenstern, A.: Symbolic Controller Synthesis for LTL Speci-
fications. PhD thesis, Universität Kaiserslautern (2010)

137. Morgenstern, A., Schneider, K.: Program sketching via ctl* model
checking. In: Model Checking Software, pp. 126–143. Springer,
Berlin (2011)

138. Muggleton, S.: Inductive logic programming. New Gener. Com-
put. 8(4), 295–318 (1991)

139. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata
by nondeterministic automata: new results and new proofs of the
theorems of Rabin, McNaughton and Safra. Theor. Comput. Sci.
141, 69–107 (1995)

140. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose programming
with PROPHETS. In: de Lara, J., Zisman, A. (eds.), FASE. Lecture
Notes in Computer Science, vol. 7212, pp. 94–98. Springer, Berlin
(2012)

141. Oddos, Y., Morin-Allory, K., Borrione, D.: From assertion-based
verification to assertion-based synthesis. In: VLSI-SoC: Tech-
nologies for Systems Integration, pp. 94–117. Springer, Berlin
(2011)

142. Paige, R.: Symbolic finite differencing—part i. In: Jones, N.D.
(ed.), ESOP. Lecture Notes in Computer Science, vol. 432,
pp. 36–56. Springer, Berlin (1990)

143. Piterman, N.: From nondeterministic Büchi and Streett automata
to deterministic parity automata. In: 21st Symposium on Logic in
Computer Science, pp. 255–264, Seattle (2006)

144. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1)
designs. In: 7th International Conference on Verification, Model
Checking and Abstract Interpretation, pp. 364–380. Springer,
Berlin. LNCS 3855 (2006)

145. Pneuli, A., Rosner, R.: Distributed reactive systems are hard to
synthesize. In: 31st Annual Symposium on Foundations of Com-
puter Science, 1990. Proceedings, pp. 746–757. IEEE, New York
(1990)

146. Pnueli, A.: The temporal logic of programs. In: IEEE Sympo-
sium on Foundations of Computer Science, pp. 46–57, Providence
(1977)

147. Pnueli, A., Rosner, R.: On the synthesis of a reactive module.
In: Proceedings of the Symposium on Principles of Programming
Languages (POPL ’89), pp. 179–190 (1989)

148. Pueschel, M., Franchetti, F., Voronenko, Y.: Encyclopedia of Par-
allel Computing. In: Padua, D.A. (ed.), chapter Spiral. Springer
Reference, Berlin (2011)

149. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem.
Regional Conference Series in Mathematics. American Mathe-
matical Society, Providence (1972)

150. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event
systems. Proc. IEEE 77, 81–98 (1989)

151. Reiss, S.P.: Semantics-based code search. In: Proceedings of the
31st International Conference on Software Engineering, ICSE
’09, pp. 243–253, Washington, DC. IEEE Computer Society, New
York (2009)

152. Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis,
Weizmann Institute of Science (1992)

153. Sadigh, D., Seshia, S.A., Gupta, M.: Automating exercise gener-
ation: a step towards meeting the MOOC challenge for embedded
systems. In: Proceedings of the Workshop on Embedded Systems
Education (WESE) (2012)

154. Safra, S.: On the complexity of ω-automata. In: Symposium on
Foundations of Computer Science, pp. 319–327 (1988)

155. Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic gener-
ation of local repairs for boolean programs. In: Formal Methods
in Computer-Aided Design, 2008. FMCAD’08, pp. 1–10. IEEE,
New York (2008)

156. Samimi, H., Schäfer, M., Artzi, S., Millstein, T.D., Tip, F., Hen-
dren, L.J.: Automated repair of html generation errors in php
applications using string constraint solving. In: Glinz, M., Mur-
phy, G.C., Pezzè, M. (eds.), ICSE, pp. 277–287. IEEE, New York
(2012)

157. Sandryhaila, A., Kovacevic, J., Püschel, M.: Algebraic signal
processing theory: cooley-tukey-type algorithms for polynomial
transforms based on induction. SIAM J. Matrix Anal. Appl. 32(2),
364–384 (2011)

158. Schewe, S.: Bounded synthesis. In: Automated Technology for
Verification and Analysis, pp. 474–488 (2007)

159. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimiza-
tion. In: Sarkar, V., Bodík, R. (eds.) ASPLOS. ACM, New York
(2013)

160. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on deter-
minization of Büchi automata. Theor. Comput. Sci. 363, 224–233
(2006)

161. Seshia, S.A.: Sciduction: combining induction, deduction, and
structure for and synthesis. In: Groeneveld, P., Sciuto, D., Has-
soun, S. (eds.) DAC. ACM, New York (2012)

162. Shapiro, E.Y.: Algorithmic program diagnosis. In: DeMillo, R.A.
(ed.) POPL, pp. 299–308. ACM Press, New York (1982)

163. Shapiro, E.Y.: Algorithmic Program DeBugging. MIT Press,
Cambridge (1983)

123



Algorithmic program synthesis 411

164. Singh, R., Gulwani, S.: Learning semantic string transformations
from examples. PVLDB 5(8), 740–751 (2012)

165. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feed-
back generation for introductory programming assignments. In:
Boehm, H.-J., Flanagan, C. (eds.), Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’13, pp. 15–26. ACM, New York (2013)

166. Singh, R., Gulwani, S., Rajamani, S.K.: Automatically generat-
ing algebra problems. In: Hoffmann, J., Selman, B. (eds.) AAAI.
AAAI Press, Menlo Park (2012)

167. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear
temporal logic. J. ACM 3(32), 733–749 (1985)

168. Smaragdakis, Y., Batory, D.S.: Distil: a transformation library for
data structures. In DSL. USENIX (1997)

169. Smith, D.R.: Kids: a semiautomatic program development system.
IEEE Trans. Softw. Eng. 16(9), 1024–1043 (1990)

170. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for LTL
games. In: FMCAD’09, pp. 77–84. IEEE Press, New York (2009)

171. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the
synthesis of reactive systems. STTT (2013, in this issue)

172. Sohail, S., Somenzi, F., Ravi, K.: A hybrid algorithm for LTL
games. In: VMCAI. LNCS, vol. 4905, pp. 309–323. Springer,
Berlin (2008)

173. Solar-Lezama, A.: Program sketching. STTT (2013, in this issue)
174. Solar-Lezama, A., Arnold, G., Tancau, L., Bodík, R., Saraswat,

V.A., Seshia, S.A.: Sketching stencils. In: PLDI, pp. 167–178
(2007)

175. Solar-Lezama, A., Jones, C.G., Bodík, R.: Sketching concurrent
data structures. In: PLDI, pp. 136–148 (2008)

176. Solar-Lezama, A., Rabbah, R.M., Bodík, R., Ebcioglu, K.: Pro-
gramming by sketching for bit-streaming programs. In: PLDI,
pp. 281–294 (2005)

177. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat,
V.A.: Combinatorial sketching for finite programs. In: ASPLOS,
pp. 404–415 (2006)

178. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL for-
mulae. In: Emerson, E.A., Sistla, A.P. (eds.), Twelfth Confer-
ence on Computer Aided Verification (CAV’00), pp. 248–263.
Springer, Berlin. LNCS 1855 (2000)

179. Srivastava, S., Gulwani, S.: Program verification using templates
over predicate abstraction. In: Hind, M., Diwan, A. (eds.), PLDI,
pp. 223–234. ACM, New York (2009)

180. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification
to program synthesis. In: POPL, pp. 313–326 (2010)

181. Srivastava, S., Gulwani, S., Foster, J.S.: Template-based program
verication and program synthesis. STTT (2013, in this issue)

182. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.:
Property-driven benchmark generation. In: Bartocci, E., Ramakr-
ishnan, C.R. (eds.), SPIN. Lecture Notes in Computer Science,
vol. 7976, pp. 341–357. Springer, Berlin (2013)

183. Steffen, B., Margaria, T., Braun, V.: The electronic tool integra-
tion platform: concepts and design. Int. J. Softw. Tools Technol.
Transfer 1(1–2), 9–30 (1997)

184. Strout, M.M., Georg, G., Olschanowsky, C.: Set and relation
manipulation for the sparse polyhedral framework. In: Kasahara,
H., Kimura, K. (eds.), LCPC. Lecture Notes in Computer Science,
vol. 7760, pp. 61–75. Springer, Berlin (2012)

185. Thummalapenta, S., Xie, T.: Parseweb: a programmer assistant
for reusing open source code on the web. In: Stirewalt, R.E.K.,
Egyed, A., Fischer, B. (eds.) ASE. ACM, New York (2007)

186. Uchitel, S., Brunet, G., Chechik, M.: Behaviour model synthesis
from properties and scenarios. In: Proceedings of the 29th Interna-
tional Conference on Software Engineering, ICSE ’07, pp. 34–43,
Washington, DC. IEEE Computer Society, New York (2007)

187. Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavioral models
from scenarios. IEEE Trans. Softw. Eng. 29(2), 99–115 (2003)

188. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Mar-
tin, M.M.K., Alur, R.: Transit: specifying protocols with concolic
snippets. In: Boehm and Flanagan, vol. 19, pp. 287–296

189. Van, H.T., van Lamsweerde, A., Massonet, P., Ponsard, C.: Goal-
oriented requirements animation. In: Proceedings of the Require-
ments Engineering Conference, 12th IEEE International, RE ’04,
pp. 218–228, Washington, DC. IEEE Computer Society, New
York (2004)

190. Van Loan, C.: Computational Frameworks for the Fast Fourier
Transform. Society for Industrial and Applied Mathematics,
Philadelphia (1992)

191. Vardi, M.Y.: Branching vs. linear time: final showdown. Lecture
Notes in Computer Science 2031, 1–22 (2001)

192. Vechev, M., Yahav, E., Yorsh, G.: Abstraction-guided synthesis
of synchronization. STTT (2013, in this issue)

193. Vechev, M.T., Yahav, E., Bacon, D.F.: Correctness-preserving
derivation of concurrent garbage collection algorithms. In:
Schwartzbach, M.I., Ball, T. (eds.) PLDI. ACM, New York (2006)

194. Vechev, M.T., Yahav, E., Bacon, D.F., Rinetzky, N.: Cgcexplorer: a
semi-automated search procedure for provably correct concurrent
collectors. In: Ferrante, J., McKinley, K.S. (eds.) PLDI. ACM,
New York (2007)

195. Vechev, M.T., Yahav, E., Yorsh, G.: Inferring synchronization
under limited observability. In: 15th International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS). Lecture Notes in Computer Science, vol. 5505,
pp. 139–154. Springer, Berlin (2009)

196. von Essen, C., Jobstmann, B.: Program repair without regret. In:
CAV 2013. Springer, Berlin (2013)

197. Wallmeier, N., Hütten, P., Thomas, W.: Symbolic synthesis of
finite-state controllers for request–response specifications. In:
Proceedings of the International Conference on the Implemen-
tation and Application of Automata. Springer, Berlin (2003)

198. Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., Mahlke, S.A.:
Gadara: dynamic deadlock avoidance for multithreaded pro-
grams. In: Draves, R., van Renesse, R. (eds.) OSDI, pp. 281–294.
USENIX Association, Berkeley (2008)

199. Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., Mahlke, S.A.: The
theory of deadlock avoidance via discrete control. In: POPL, pp.
252–263 (2009)

200. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic
program repair with evolutionary computation. Commun. ACM
53(5), 109–116 (2010)

201. Whittle, J., Jayaraman, P.K.: Generating hierarchical state
machines from use case charts. In: Proceedings of the 14th IEEE
International Requirements Engineering Conference, RE ’06, pp.
16–25, Washington, DC. IEEE Computer Society, New York
(2006)

202. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite com-
putation paths. In: Proceedings of the 24th IEEE Symposium on
Foundations of Computer Science, pp. 185–194 (1983)

203. Yessenov, K., Xu, Z., Solar-Lezama, A.: Data-driven synthesis
for object-oriented frameworks. In: Lopes, C.V., Fisher, K. (eds.)
OOPSLA. ACM, New York (2011)

123


	Algorithmic program synthesis: introduction
	Abstract 
	1 Overview
	1.1 Background
	1.2 Goal of this special issue

	2 Reactive synthesis
	2.1 Motivation
	2.2 History of reactive synthesis

	3 Functional synthesis
	3.1 Axiomatic synthesizers
	3.2 Syntactically defined synthesizers

	4 Other approaches
	5 Applications of synthesis
	6 Summary of contributions
	7 Conclusions
	References


