
Improved Algorithms for One-Pair
and k-Pair Streett Objectives

Krishnendu Chatterjee
IST Austria

krishnendu.chatterjee@ist.ac.at

Monika Henzinger
University of Vienna

Faculty of Computer Science

monika.henzinger@univie.ac.at

Veronika Loitzenbauer
University of Vienna

Faculty of Computer Science

veronika.loitzenbauer@univie.ac.at

Abstract—The computation of the winning set for one-pair
Streett objectives and for k-pair Streett objectives in (standard)
graphs as well as in game graphs are central problems in
computer-aided verification, with application to the verification of
closed systems with strong fairness conditions, the verification of
open systems, checking interface compatibility, well-formedness
of specifications, and the synthesis of reactive systems. We give
faster algorithms for the computation of the winning set for
(1) one-pair Streett objectives (aka parity-3 problem) in game
graphs and (2) for k-pair Streett objectives in graphs. For both
problems this represents the first improvement in asymptotic
running time in 15 years.

Index Terms—Computer-aided verification; Synthesis; Graph
games; Parity games; Streett automata; Graph algorithms.

I. INTRODUCTION

Game graphs and graphs. Consider a directed graph (V,E)
with a partition (V1, V2) of V , which is called a game graph.

Let n = |V | and m = |E|. Two players play the following

alternating game on the graph that forms an infinite path. They

start by placing a token on an initial vertex and then take turns

indefinitely in moving the token: At a vertex v ∈ V1 player 1

moves the token along one of the outedges of v, at a vertex

u ∈ V2 player 2 moves the token along one of the outedges

of u. If V2 = ∅, then we simply have a standard graph.

Objectives and winning sets. Objectives are subsets of infinite

paths that specify the desired set of paths for player 1, and

the objective for player 2 is the complement of the player-1

objective (i.e., we consider zero-sum games). Given an objective

Φ, an infinite path satisfies the objective if it belongs to Φ.

Given a starting vertex x ∈ V and an objective Φ, if player 1

can guarantee that the infinite path starting at x satisfies Φ, no
matter what choices player 2 makes, then player 1 can win
from x and x belongs to the winning set of player 1. Since the

winning sets partition the game graph [33], the complement

of the winning set for player 1 is the winning set for player 2.

In case the game graph is a standard graph (i.e., V2 = ∅),
the winning set consists of those vertices x such that there

exists an infinite path starting at x that satisfies Φ. The winning

set computation for game graphs is more involved than for

standard graphs due to the presence of the adversarial player 2.

Relevant objectives. The most basic objective is reachability
where, given a set U ⊆ V of vertices, an infinite path satisfies

the objective if the path visits a vertex in U at least once. The

next interesting objective is the Büchi objective that requires

an infinite path to visit some vertex in U infinitely often. The

next and a very central objective in formal verification and

automata theory is the one-pair Streett objective that consists of

a pair (L1, U1) of sets of vertices (i.e., L1 ⊆ V and U1 ⊆ V),

and an infinite path satisfies the objective iff the following

condition holds: if some vertex in L1 is visited infinitely often,

then some vertex in U1 is visited infinitely often (intuitively

the objective specifies that if one Büchi objective holds, then

another Büchi objective must also hold). A generalization

of one-pair Streett objectives is the k-pair Streett objective
(aka general Streett objective) that consists of k-Streett pairs

(L1, U1), (L2, U2), . . . , (Lk, Uk), and an infinite path satisfies

the objective iff the condition for every Streett pair is satisfied

(in other words the objective is the conjunction of k one-pair

Streett objectives).

We study (1) game graphs with one-pair Streett objectives

and (2) graphs with general Streett objectives.

Significance in verification. Two-player games on graphs are

useful in many problems in computer science, specially in

verification and synthesis of systems such as the synthesis of re-

active systems [12], [36], [37], verification of open systems [2],

checking interface compatibility [15], well-formedness of

specifications [16], and many others. General and one-pair

Streett objectives are central in verification as most commonly

used specifications can be expressed as Streett automata [38],

[42].

Game graphs with one-pair Streett objectives arise in many

applications in verification. We sketch a few of them. (A) Timed

automaton games are a model for real-time systems. The

analysis of such games with reachability objectives and safety

objectives (which are the dual of reachability objectives)

reduces to game graphs with one-pair Streett objectives [9],

[11], [13], [14]. (B) The synthesis of Generalized Reactivity(1)

(aka GR(1)) specifications exactly require the solution of game

graphs with one-pair Streett objectives [4]; GR(1) specifications

are standard for hardware synthesis [35] and even used in

synthesis of industrial protocols [5], [23]1. (C) Finally, the

1A GR(1) specification expresses that if a conjunction of Büchi objectives
holds, then another conjunction of Büchi objectives must also hold, and since
conjunction of Büchi objectives can be reduced in linear time to a single Büchi
objective, a GR(1) specification reduces to implication between two Büchi
objectives, which is an one-pair Streett objective.

2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science

1043-6871/15 $31.00 © 2015 IEEE

DOI 10.1109/LICS.2015.34

269

problem of fair simulation [26] between two systems also

reduces to game graphs with one-pair Streett objectives [6].

General Streett objectives in standard graphs arise, for

example, in the verification of closed systems with strong

fairness conditions [17], [22], [31]. In program verification,

a scheduler is strongly fair if every event that is enabled

infinitely often is scheduled infinitely often. Thus, verification

of systems with strong fairness conditions directly corresponds

to checking the non-emptiness of Streett automata, which in

turn corresponds to determining the winning set in standard

graphs with Streett objectives. Note, however, that a Streett

objective can either specify desired behaviors of the system or

erroneous ones, and for erroneous specifications, it is useful to

have a certificate (as defined below) to identify an error trace

of the system [17], [18], [31].

Note that standard graphs are relevant for the verification of

closed systems or open systems with demonic non-determinism

(e.g., all inputs are from the environment that are not control-

lable); while game graphs are relevant for the synthesis and

verification of open systems with both angelic and demonic non-

determinism (e.g., certain inputs are controllable, and certain

inputs are not controllable).

Previous results. We summarize the previous results for game

graphs and graphs with Streett objectives.

Game graphs. We consider the computation of the winning

set for player 1 in game graphs. For reachability objectives,

the problem is PTIME-complete, and the computation can be

achieved in time linear in the size of the graph [3], [27]. For

Büchi objectives, the current best known algorithm requires

O(n2) time [7], [8]. For general Streett objectives, the problem

is coNP-complete [19], and for one-pair Streett objectives the

current best known algorithm requires O(nm) time [29]. One-

pair Streett objectives also corresponds to the well-known parity

games problem with three priorities (the parity games problem

in general is in UP ∩ coUP [28]; it is one of the rare and

intriguing combinatorial problems that lie in UP ∩ coUP, but

not known to be in PTIME). Despite the importance of game

graphs with one-pair Streett objectives in numerous applications

and several algorithmic ideas to improve the running time for

general parity games [30], [39], [43] or Büchi games [7],

[8], [10], there has been no algorithmic improvement since

2000 [29] for one-pair Streett games.

Graphs. In standard graphs we study the computation of the

winning set for general Streett objectives. If x belongs to the

winning set, it is often useful to output a certificate for x. Let S
be a (not necessarily maximal) strongly connected component

(SCC) that is reachable from x such that for all 1 ≤ j ≤ k we

have either S∩Lj = ∅ or S∩Uj �= ∅ (i.e., if S contains a vertex

from Lj then it also contains a vertex from Uj). A certificate is

a “lasso-shaped” path that reaches S and then visits all vertices

in S infinitely often to satisfy the general Streett objective.

The basic algorithm [21], [32] for the winning set problem

has an asymptotic running time of O((m+ b)min(n, k)) with

b =
∑k

j=1(|Lj |+ |Uj |) ≤ 2nk. Within the same time bound

Latvala and Heljanko [31] additionally compute a certificate of

size at most nmin(n, 2k). Duret-Lutz et al. [17] presented

a space-saving “on-the-fly” algorithm with the same time

complexity for the slightly different transition-based Streett

automata. The current fastest algorithm for the problem by

Henzinger and Telle [25] from 1996 has a running time of

O(mmin(
√
m log n, k, n) + bmin(log n, k)); however, given

a start vertex x, to report the certificate for x adds an additive

term of O(nmin(n, k)) to the running time bound.

Our contributions. In this work our contributions are two-fold.

Game graphs. We show that the winning set computation for

game graphs with one-pair Streett objectives can be achieved

in O(n2.5) time. Our algorithm is faster for m > n1.5, and

breaks the long-standing O(nm) barrier for dense graphs. We

also discuss the implications of our algorithm for general parity

games in Remark 1.

Graphs. We present an algorithm with O(n2 + b log n)
running time for the winning set computation in graphs

with general Streett objectives, which is faster for m ≥
max(n4/3 log−1/3 n, b2/3 log1/3 n) and k ≥ n2/m. We ad-

ditionally give an algorithm that computes a certificate for a

vertex x in the winning set in time O(m+ nmin(n, k)). We

also provide an example where the smallest certificate has size

Θ(nmin(n, k)), showing that no algorithm can compute and

output a certificate faster. In contrast to [25] the running time

of our algorithm for the winning set computation does not

change with certificate reporting. Thus when certificates need

to be reported and k = Ω(n), our algorithm is optimal up to

a factor of log n as the size of the input is at least b and the

size of the output is Ω(n2).

Technical contributions. Both of our algorithms use a hierarchi-
cal (game) graph decomposition technique that was developed

by Henzinger et al. [24] to handle edge deletions in undirected
graphs. In [7], [8] it was extended to deal with vertex deletions
in directed and game graphs. We combine and extend this

technique in two ways.

Game graphs. The classical algorithm for one-pair Streett

objectives repeatedly solves Büchi games such that the union

of the winning sets of player 1 in the Büchi games is exactly

the winning set for the one-pair Streett objective. Schewe [39]

showed that an algorithm for parity games by Jurdziński [29]

can be used to compute small subsets of the winning set of

player 1, called dominions, and thereby improved the running

time for general parity games. However his ideas do not

improve the running time for one-pair Streett (aka parity-3)

games. With this algorithm dominions with at most h vertices

in Büchi games can be found in time O(mh). We extend this

approach by using the hierarchical game graph decomposition

technique to find small dominions quickly and call the O(n2)
Büchi game algorithm of [7], [8] for large dominions. This

extension is possible as we are able to show that, rather

surprisingly, it is sufficient to consider game graphs with O(nh)
edges to detect dominions of size h (see Lemma 2).

Graphs. In prior work that used the hierarchical graph

decomposition technique the runtime analysis relied on the

fact that identified vertex sets that fulfilled a certain desired

270

condition were removed from the (game) graph after their

detection. The work for identifying the vertex set was then

charged in an amortization argument to the removed vertex set.

This is not possible for general Streett objectives on graphs,

where SCCs are identified and some but not all of its vertices

might be removed. As a consequence a vertex might belong to

an identified SCC multiple times. We show how to overcome

this difficulty by identifying, when an SCC S splits into multiple

SCCs, an SCC X ⊂ S whose size is at most half of the size

of S. We identify X by using Tarjan’s SCC algorithm [41] on

the graph and its reverse graph, thereby finding the smallest top
(i.e. with no incoming edges) or bottom (i.e. with no outgoing

edges) SCC contained in S. The smallest such SCC X has size

at most |S|/2 and the algorithm takes time O(|X|n) to find it,

i.e., O(n) time per vertex in X . This will allow us to bound

the total running time for this part of the algorithm with O(n2)
In Section II we present our algorithm for one-pair Streett

objectives in game graphs, in Section III the algorithm for

general Streett objectives in graphs.

II. ONE-PAIR STREETT OBJECTIVES IN GAME GRAPHS

A. Preliminaries

Parity games. A parity game P = (G,α) consists of a game
graph G = ((V,E), (VO, VE)) and a priority function α : V →
Z that assigns an integer value to each vertex. We denote the

two players with O (for odd) and E (for even). Player O (resp.

player E) wins a play if the lowest priority occurring in the

play infinitely often is odd (resp. even). We say that the vertices

in VO are O-vertices and the vertices in VE are E-vertices. We

use p to denote one of the players {O, E} and p̄ to denote his

opponent. We will specifically consider parity-3 games with

α : V → {−1, 0, 1} and Büchi games with α : V → {0, 1},
where the vertices in the set B = {v | α(v) = 0} are called

Büchi vertices. Büchi games are denoted as (G,B).

One-pair Streett and parity-3 games. A one-pair Streett

objective with pair (L1, U1) is equivalent to a parity game

with three priorities. Let the vertices in U1 have priority −1,

let the vertices in L1 \U1 have priority 0 and let the remaining

vertices have priority 1. Then player 1 wins the game with

the one-pair Streett objective if and only if player O wins the

parity-3 game. As the known algorithms for parity-3 games

are special cases of algorithms for general parity games, we

will use the notion of parity games (i.e., player O and player E
instead of player 1 and player 2).

Plays. For technical convenience we consider that every vertex

in the game graph G has at least one outgoing edge. A game

is initialized by placing a token on a vertex. Then the two

players form an infinite path called play in the game graph

by moving the token along the edges. Whenever the token is

on a vertex in Vp, player p moves the token along one of the

outgoing edges of the vertex. Formally, a play is an infinite

sequence 〈v0, v1, v2, . . .〉 of vertices such that (vj , vj+1) ∈ E
for all j ≥ 0.

For a vertex u ∈ V , we write Out(u) = {v ∈ V | (u, v) ∈
E} for the set of successor vertices of u and In(u) = {v ∈ V |

(v, u) ∈ E} for the set of predecessor vertices of u. We denote

by Outdeg(u) = |Out(u)| the number of outgoing edges from

u, and by Indeg(u) = | In(u)| the number of incoming edges.

Strategies. A strategy of a player p ∈ {O, E} is a function

that, given a finite prefix of a play ending at v ∈ Vp, selects a

vertex from Out(v) to extend the play. Memoryless strategies
do not depend on the history of a play but only on the current

vertex. That is, a memoryless strategy of player p is a function

τ : Vp → V such that for all v ∈ Vp we have τ(v) ∈ Out(v).
It is well-known that for parity games it is sufficient to consider

memoryless strategies (see Theorem 1 below). Therefore we

will only consider memoryless strategies from now on. A start

vertex v together with a strategy σ for E and a strategy π for

O defines a unique play ω(v, σ, π) = 〈v0, v1, v2, . . .〉, which

is defined as follows: v0 = v and for all j ≥ 0, if vj ∈ VE ,

then σ(vj) = vj+1, and if vj ∈ VO, then π(vj) = vj+1.

Winning strategies and sets. A strategy τ is winning for

player p at start vertex v if the resulting play is winning for

player p irrespective of the strategy of player p̄. A vertex v
belongs to the winning set Wp of player p if player p has

a winning strategy from v. By the following theorem every

vertex is winning for exactly one of the two players. When

required for explicit reference of a specific game graph G or

specific parity game P we use Wp(G) and Wp(P) to refer to

the winning sets.

Theorem 1 ([20], [34]): For every parity game the vertices

V can be partitioned into the winning set WE of E and the

winning set WO of O. There exists a memoryless winning

strategy for E (resp. O) for all vertices in WE (resp. WO).

The algorithmic question for parity games is to compute the

set WE . We will use the following algorithm for Büchi games

as a subroutine in our algorithm.

Theorem 2 ([7], [8]): Let (G,B) be a Büchi game with

game graph G and Büchi vertices B. There is an algorithm

BÜCHI(G,B) that computes WE in time O(n2).

For the analysis of our algorithm we further introduce the

notions of closed sets, attractors, and dominions.

Closed sets and attractors. A set U ⊆ V is p-closed if for all

p-vertices u in U we have Out(u) ⊆ U and for all p̄-vertices v
in U there exists a vertex w ∈ Out(v)∩U . Note that player p̄
can ensure that a play that currently ends in a p-closed set

never leaves the p-closed set against any strategy of player p
by choosing an edge (v, w) with w ∈ Out(v) ∩ U whenever

the current vertex v is in U ∩Vp̄ (see also [8, Proposition 2.2]).

Given a game graph G and a p-closed set X , we will denote

by G[X] the game graph induced by the set X of vertices.

In a game graph G, a p-attractor Attrp(U,G) of a set

U ⊆ V is the set of vertices from which player p has a

strategy to reach U against all strategies of player p̄. We

have that U ⊆ Attrp(U,G). A p-attractor can be constructed

inductively as follows: Let R0 = U ; and for all i ≥ 0 let

Ri+1 = Ri ∪ {v ∈ Vp | Out(v) ∩Ri �= ∅}
∪ {v ∈ Vp̄ | Out(v) ⊆ Ri}.

(‡)

271

Then Attrp(U,G) =
⋃

i≥0 Ri. The lemma below summarizes

some well-known facts about closed sets, attractors, and

winning sets.

Lemma 1: Let p ∈ {O, E} and let U ⊆ V . The following

assertions hold for parity games.

1) The set V \Attrp(U,G) is p-closed in G [44, Lemma 4].

2) Let U be p-closed. Then Attr p̄(U,G) is p-closed [44,

Lemma 5].

3) The attractor Attrp(U,G) can be computed in

O(
∑

v∈Attrp(U,G)|In(v)|) time [3], [27].

4) Let U be a subset of the winning set Wp(G) of player p
and let A be its p-attractor Attrp(U,G). Then the winning

set Wp(G) of the player p is the union of A and the

winning set Wp(G[V \A]) in the game graph induced by

V \A, and the winning set Wp̄(G) of the opponent p̄ is

equal to Wp̄(G[V \A]) [30, Lemma 4.5].

Dominions. A set of vertices D ⊆ V is a p-dominion if D �= ∅,
player p has a winning strategy from every vertex in D that

also ensures only vertices in D are visited, and D is a p̄-closed

set. We will only consider E-dominions in this paper and

therefore usually omit the reference to the player. Dominions

of size |D| ≤ h can be computed by running the small-

progress measure algorithm of Jurdziński [29] with a reduced

codomain [39]. A description of the small-progress measure

algorithm for Büchi games is given in [8, Section 2.4.1]. We

will use the following algorithm as a subroutine.

Theorem 3 ([8], [29], [39]): Let (G,B) be a Büchi game

with game graph G and Büchi vertices B. There is an

algorithm BÜCHIPROGRESS(G,B, h) that returns the set of

all dominions of size at most h in time O(mh).

B. Algorithm

In this section we present our new algorithm to compute

the winning set of player E in a parity-3 game P = (G,α) in

time O(n2.5). Its complement is the winning set of player O.

Initialization (Steps 1–4 of Algorithm 1). First the algorithm

constructs the modified game graph G′ = ((V,E′), (VO, VE))
from G. Let Z be the vertices in V with priority −1. In G′ the

vertices in Z are made absorbing, that is, the outgoing edges

of the vertices in Z are replaced with self-loops. Otherwise

G′ contains the same edges as G. We will consider a Büchi

game on G′ where the vertices in Z have priority 1, and thus

in the Büchi game there are only two priorities (priority 0

and 1). The construction of G′ ensures that dominions in the

Büchi game are also dominions in the parity-3 game P (see

Lemma 5).

Iterated vertex deletions (Steps 5–11 of Algorithm 1). The

algorithm will repeatedly remove vertices from the graphs G
and G′. Initially the set V is the set of vertices in the input

game graph G. During the algorithm, we denote with V the

set of remaining vertices after vertex deletions and we denote

with G[V] and G′[V] the subgraphs induced by the vertices

remaining in V . The set of Büchi vertices B maintains the set

of priority-0 vertices in V . The vertex set removal is achieved

by identifying dominions and removing their attractors.

Input a game graph G = ((V,E), (VO, VE)) and a priority

function α : V → {−1, 0, 1}
Output the winning set WE of player E

1: Z = {v ∈ V | α(v) = −1}
2: E′ = {(u, u) | u ∈ Z} ∪ {(u, v) ∈ E | u ∈ V \ Z}
3: G′ = (V,E′) � vertices with α = −1 are absorbing in G′

4: W ← ∅, B ← {v ∈ V | α(v) = 0}
5: repeat
6: D ← BÜCHIDOM(G′[V], B,

√
n)

7: if D = ∅ then
8: D ← BÜCHI(G′[V], B)

9: A← AttrE(D,G[V]); W ←W ∪A
10: V ← V \A; B ← B \A
11: until D = ∅
12: return W

13: procedure BÜCHIDOM(G′[V], B, hmax)

14: for i← 1, . . . , �log(hmax)� do
15: construct G′i
16: Bl i ← {v ∈ VO | Outdeg(v) > 2i}
17: Yi ← AttrO(Bl i, G′i)
18: Di ← BÜCHIPROGRESS(G′i[V \ Yi], B \ Yi, 2

i)
19: if Di �= ∅ then
20: return union of dominions in Di

21: return ∅
Fig. 1. New Algorithm for Parity-3 aka One-Pair Streett Objective

Dominion find and attractor removal. The algorithm repeatedly

finds dominions in the Büchi game (G′[V], B). After a

dominion in the Büchi game G′[V] is found, its E-attractor in

G[V] is removed from V and B. Then the search for dominions

is continued on the remaining vertices. If all vertices in the

Büchi game are winning for O, i.e., no dominion exists in

the Büchi game, then Algorithm 1 terminates. The winning

set of player E is the union of the E-attractors of all found

dominions. The remaining vertices are winning for player O.

We now describe the steps to find dominions.

Steps of dominion find. For the search for dominions in

the Büchi game (G′[V], B) we use two different algorithms,

BÜCHI and BÜCHIDOM. We first search for “small” dominions

with up to O(hmax) vertices with hmax =
√
n with Proce-

dure BÜCHIDOM. If no dominion is found, we can conclude

that either all dominions contain more than
√
n vertices or

the winning set of E on the current game graph is empty (in

this case the algorithm terminates). The former case occurs at

most
√
n times and in such a case we use the O(n2) algorithm

BÜCHI (Theorem 2) to obtain a dominion. Below we describe

the details of BÜCHIDOM.

Graph decomposition for BÜCHIDOM. In the Proce-

dure BÜCHIDOM we use the following graph decomposition.

For a game graph G′ = ((V,E′), (VO, VE)) we denote its

decomposition with {G′i}. We consider the incoming edges

of each vertex in E′ in a fixed order: First the edges from

272

vertices in VE , then the remaining edges. We define �log n�
graphs G′i = (V,E′i), 1 ≤ i ≤ �log n�, where the set of edges

E′i contains for each vertex v ∈ V with Outdeg(v) ≤ 2i all

its outgoing edges in E′ and in addition for each vertex v ∈ V
its first 2i incoming edges in E′. Note that (1) E′i ⊆ E′i+1, (2)

|E′i| ≤ 2i+1n, and (3) G′�logn� = G′. We color O-vertices v

with Outdeg(v) > 2i blue in G′i and denote the set of blue

vertices with Bl i. We call vertices with Outdeg(v) ≤ 2i white.

Procedure BÜCHIDOM (Steps 13–21 of Algorithm 1). The

Procedure BÜCHIDOM searches for dominions in the subgraphs

G′i, starting at i = 1. The index i is increased one by one up

to at most i = �log(hmax)� (with hmax =
√
n) as long as no

dominion was found. Let Yi be the O-attractor of blue vertices

in G′i, i.e., of O-vertices that are missing outgoing edges in G′i.
To ensure that dominions found in the subgraph G′i are also

dominions in G′, only the vertices in V \ Yi are considered.

The BÜCHIPROGRESS algorithm (Theorem 3) is used to find

dominions of size at most O(2i) in G′i[V \ Yi].
The following key lemma describes the central connection

between dominions of a certain size and our graph decomposi-

tion. Namely, if a dominion D is found in G′i but not in G′i−1,

then AttrE(D,G′) contains more than 2i−1 vertices. This has

the remarkable consequence, detailed in Corollary 1, that every

dominion of size h can be found by searching for a dominion

in G′i with i = �log(h)�. This will be crucial for our runtime

analysis.
Lemma 2: Let G′ = ((V,E′), (VO, VE)) be a game graph

and {G′i} its graph decomposition. For 1 ≤ i ≤ �log n�
we define the following sets: the set of blue vertices Bl i =
{v ∈ VO | Outdeg(v) > 2i}, the attractor of blue vertices

Yi = AttrO(Bl i, G′i), and the set of dominions Di =
BÜCHIPROGRESS(G′i[V \ Yi], B \ Yi, 2

i). If a dominion D is

contained in Di but not in Di−1, then AttrE(D,G′) contains

more than 2i−1 vertices.
Proof: We distinguish three cases:

Case 1: The dominion D contains more than

2i−1 vertices. This situation might arise as

Procedure BÜCHIPROGRESS(G′i−1[V \ Yi−1], B \ Yi−1, 2
i−1)

only guarantees to detect dominions of size at most 2i−1. In

this case the lemma is satisfied trivially.
Case 2: The dominion D contains a vertex v ∈ VO that is

blue in G′i−1, i.e., an O-vertex with more than 2i−1 outgoing

edges. Since D is O-closed, we have Out(v) ⊆ D. Thus

|AttrE(D,G′)| ≥ |D| > 2i−1 in this case.
Case 3: All vertices v ∈ VO in D are white in G′i−1 and

thus the outgoing edges of the O-vertices in D are the same

in G′i−1 and G′i. There are two subcases.
Case 3a: All edges (u, v) from vertices u ∈ VE ∩ D to

vertices v ∈ D that are present in G′i are also present in G′i−1.

Let σ be the winning strategy of E for the vertices in D found

in G′i. This implies that (i) D is O-closed in G′i−1 and (ii) all

edges (u, v) with u ∈ D ∩ VE and v = σ(u) are contained in

G′i−1. Thus σ is also a winning strategy of E for the vertices

in D in G′i−1. Hence the set D is a dominion in G′i−1. Thus

either Case 1 applies or the dominion would already have been

detected in iteration i− 1, a contradiction.

Case 3b: There exists a vertex u ∈ VE ∩ D that has an

outgoing edge (u, v) to a vertex v ∈ D in G′i but not in G′i−1.

This implies Indeg(v) > 2i−1. By the ordering of the incoming

edges and the fact that u ∈ VE , at least 2i−1 edges in In(v)
emanate from vertices in VE . By the definition of an attractor,

all these vertices are contained in AttrE(D,G′). Thus we have

|AttrE(D,G′)| > 2i−1 as required.

Corollary 1: Let G′, {G′i}, Bl i, Yi, and Di be defined as in

Lemma 2. Let D be a dominion in G′ with D = AttrE(D,G′)
and h = |D|. Then for i = �log(h)� the set of dominions Di

contains D.

Proof: By the definition of i we have 2i−1 < h ≤ 2i.
Assume by contradiction that Di does not contain D. Since

G′ = G′�logn� and Y�logn� = ∅, by Theorem 3 there exists

some i′ ∈ N with i < i′ ≤ �log n�, such that Di′ contains D.

Let i∗ be the smallest i′ such that Di′ contains D. Note that

i∗ ≥ i+1. We have that D /∈ Di∗−1. By Lemma 2 this implies

|AttrE(D,G′)| > 2i
∗−1 ≥ 2i, a contradiction to h ≤ 2i.

Corollary 2: Either the Procedure

BÜCHIDOM(G′[V], B, hmax) returns a dominion or every

dominion D in G′[V] with D = AttrE(D,G′[V]) has size

greater than hmax.

In the runtime analysis we will additionally use the following

lemma, which follows from the inductive construction of

attractors.

Lemma 3: Let the game graphs G and G′ and the vertex

set V be defined as in Algorithm 1. Then for a player p ∈
{E ,O} and every set U ⊆ V it holds that Attrp(U,G

′[V]) ⊆
Attrp(U,G[V]).

Proof: Let us consider the attractor computation

Attrp(U,G
′[V]) and Attrp(U,G[V]) as defined in (‡), and

let us call the respective sequences as R′i and Ri respectively.

By the definition of G′ for every vertex v in V either (1)

Out ′(v) = Out(v) or (2) Out ′(v) = {v}. It is straightforward

to prove by induction that R′i ⊆ Ri and the desired result

follows.

Lemma 4 (Runtime): Algorithm 1 can be implemented in

O(n2.5) time.

Proof: Algorithm 1 can be initialized in O(m) time as the

graph G′ and the set B can be constructed from G in linear

time. Note that the number of edges m′ in G′ is at most the

number of edges m in G.

For the operations in the repeat-until loop we analyze

the total running time over all iterations of the loop. The

runtime analysis relies on the fact that when a dominion D is

identified, the vertices in AttrE(D,G) and their incident edges

are removed from G and G′. In combination with Corollary 2,

this ensures that BÜCHI is called at most O(n/hmax) times.

By Theorem 2 one call to BÜCHI takes time O(n2). With

hmax =
√
n we obtain a total time spent in BÜCHI of O(n2.5).

To analyze the total time spent in BÜCHIDOM, we first

show how to efficiently construct the graph decomposition

{G′i} of G′. We maintain the following data structure for G′

over all iterations of Algorithm 1. At each vertex v of G′

we maintain (a) a sorted list of inedges In(v), and (b) a list

of outedges Out(v). Additionally we maintain for each edge

273

(u, v) a pointer to its position in the inlist of v and in the

outlist of u. This allows us to update the data structure in time

proportional to the degree of v when a vertex v is removed. As

each vertex can be deleted at most once, the total time to update

this data structure is bounded by O(m). We next analyze the

time needed per iteration i of the for-loop in BÜCHIDOM.

Given the above data structure, the graph G′i, the set of blue

vertices Bl i, and the attractor Yi = AttrO(Bl i, G′i) can be

constructed in time O(n · 2i). By Theorem 3 the time for one

call of the subroutine BÜCHIPROGRESS(., ., 2i) on graph G′i,
is O(n · 2i · 2i) = O(n · 22i).

Let i∗ be the iteration at which Procedure BÜCHIDOM stops

after it is called by Algorithm 1. The runtime for this call to

Procedure BÜCHIDOM from i = 1 to i∗ forms a geometric

series that is bounded by O(n ·22i∗). By Lemmata 2 and 3 and

Corollary 2 either (1) a dominion D with |AttrE(D,G)| >
2i

∗−1 vertices was found by BÜCHIDOM or (2) all dominions

in G′ have more than hmax vertices or there are no more

dominions in G′. Thus either (2a) a dominion D with more

than hmax vertices is detected in the subsequent call to BÜCHI

or (2b) there is no dominion in G′ and this is the last iteration

of Algorithm 1. Case (2b) can happen at most once and its

runtime is bounded by O(n ·22 log(hmax)) = O(n2). In the cases

(1) and (2a) more than 2i
∗−1 vertices are removed from the

graph in this iteration, as hmax > 2i
∗−1. We charge each such

vertex O(n · 2i∗) = O(n · hmax) time. Hence the total runtime

for these cases is O(n2 · hmax) = O(n2.5).
It remains to consider the total time needed to compute

A = AttrE(D,G[V]). By Lemma 1. (3) the attractor A can be

computed in time O(
∑

v∈A|In(v)|). Since the edges adjacent

to vertices in A are removed from G after the iteration in

which D was found, this attractor computation can be done in

total time O(m). We conclude that the runtime of Algorithm 1

is O(n2.5).
We will show the correctness of Algorithm 1 by first

proving that every dominion found in the Büchi game on

G′ is indeed a dominion in the parity-3 game on G. Together

with Lemma 1. (4) this implies that the computed set W is

indeed a part of the winning set of player E in the parity-3

game. We then provide a winning strategy for player O for all

remaining vertices.

Lemma 5: Let the game graphs G and G′ and the vertex

sets V and B be defined as in Algorithm 1. If D is a dominion

in the Büchi game (G′[V], B), then D is a dominion in the

parity-3 game P = (G[V], α).
Proof: Let Z be the vertices in V with priority α equal

to −1. The vertices in Z have priority 1 in the Büchi game,

i.e., Z ∩ B = ∅. Whenever a play in G′[V] reaches a vertex

u in Z, only u will be visited in the subsequent play since

Out(u) = {u}. Thus no vertex in Z is winning for E in

(G′[V], B), i.e., D ∩ Z = ∅. Hence for all vertices in D the

outgoing edges are the same in G[V] and G′[V]. Thus D is

O-closed in G[V] and the winning strategy of player E for D
in the Büchi game (G′[V], B) is also winning for player E for

all vertices in D in the parity-3 game P .

Lemma 6 (Correctness): Given a parity-3 game P , let W

be the output of Algorithm 1. We have: (1) (Soundness). W ⊆
WE(P); and (2) (Completeness). WE(P) ⊆W .

Proof: The first part on soundness follows from Lemmata 5

and 1. (4). We now prove the completeness result. Given

the output W , let W denote the complement set. When

Algorithm 1 terminates, the winning set of player E in the

Büchi game (G′[W], B) is empty (otherwise the algorithm

would not have terminated). Also note that since the algorithm

removes attractors for E , the set W is closed for E (by

Lemma 1. (1)). Consider the set Z = {v ∈W | α(v) = −1},
its attractor X = AttrO(Z,G[W]), and the subgame induced

by U = W \X . Note that in U the game graphs G and G′

coincide. Thus all vertices in U must be winning for player O in

the Büchi game (G[U], B) as otherwise WE would have been

non-empty for (G′[W], B). We prove the lemma by describing

a winning strategy for player O in P for all vertices in W .

Since W is E-closed, for vertices in Z ∩ VO, the winning

strategy chooses an edge in W . For vertices in X player O
follows his attractor strategy to Z. In the subgame induced by

U = W \X player O follows his winning strategy in the Büchi

game (G[U], B). Then in a play either (i) X is visited infinitely

often; or (ii) from some point on only vertices in U are visited.

In the former case, the attractor strategy ensures that then some

vertex in Z with priority −1 is visited infinitely often; and

in the later case, the subgame winning strategy ensures that

only vertices with priority 1 and no vertices with priority 0
are visited infinitely often. It follows that W ⊆WO(P), i.e.,

WE(P) ⊆W , and the desired result follows.

Lemmata 4 and 6 yield the following result.

Theorem 4: Algorithm 1 correctly computes the winning

sets in parity-3 games in O(n2.5) time.

Computation of winning strategies. In parity-3 games the

previous results for computing winning strategies for the players

in their respective winning sets are as follows: The small-

progress measure algorithm of [29] requires O(nm) time to

compute the winning strategy of the player whose parity is

equal to the parity of the lowest priority and O(n2m) time

to compute the respective winning strategies for both players;

Schewe [40] shows how to modify the small-progress measure

algorithm to compute the respective winning strategies of both

players in O(nm) time. We show that our algorithm also

computes the respective winning strategies in O(n2.5) time.

We first observe that the algorithm of [7], [8] that solves Büchi

games in O(n2) time also computes the respective winning

strategies of both players (the algorithm is based on identifying

traps and attractors, and the corresponding winning strategies

are identified immediately with the computation). In Lemma 6

we describe the strategy computation for a winning strategy

for player O which involves an attractor strategy and the

sub-game strategy for Büchi games, each of which can be

computed in O(n2) time. A winning strategy for player E is

obtained in the iterations of the algorithm, i.e., whenever we

obtain a dominion by solving Büchi games we also obtain a

corresponding winning strategy, and similarly for the attractor

computation. Thus the winning strategy for player E can be

274

computed in O(n2.5) time.

Corollary 3: Winning strategies for player E and player O in

parity-3 games in their respective winning sets can be computed

in O(n2.5) time.

Remark 1: (DISCUSSION ON GENERAL PARITY GAMES).

We now discuss the implication of our result for general parity

games (we do not discuss general Streett games where the

problem is coNP-complete [19]). The current best known

algorithm for parity games with dependence on the number

of priorities d is from [39], and the algorithm is referred

as the Big-step algorithm. The (simplified) running time of

the Big-step algorithm for d = o(
√
n) is O(nγ(d) · m),

where γ(d) is approximately d/3 for large d. More precisely,

γ(d) = d/3 + 1/2 − 1/(�0.5d��0.5d�) for odd d, and

γ(d) = d/3 + 1/2 − 1/(3d) − 1/(�0.5d��0.5d�) for even

d. Our algorithm for parity-3 games also extends to parity

games as a recursive algorithm as follows: we apply our

initialization step and iterated vertex deletions, and to find

dominions we replace BÜCHI by our recursive algorithm

that handles games that have one less priority and replace

BÜCHIDOM by a procedure to find dominions with small-

progress measure of [29] with our graph decomposition and

codomain bounded by hmax (where hmax is chosen to balance

the running time of the two dominion find procedures). Note

that, in contrast to the Big-step algorithm, we apply the small-

progress measure algorithm on a game with one less priority;

this does not influence the correctness as we find (possibly

different) dominions for the same player as in the recursion of

the Big-step algorithm but slightly changes the running time

analysis. For the sake of simplicity of presentation we present

the analysis for the case of constantly many priorities, extending

the analysis of [39] in combination with our approach (the

extension for the general case follows from a similar extension

of the analysis of the general case of [39]). Similar to the

analysis and notation of [39], let β(d) = γ(d)/(�0.5d� + 1).
With hmax = nβ(d) we obtain that the running time of our

algorithm is O(n1+γ(d+1)) = O(n2+γ(d)−β(d)) for parity

games with d priorities, i.e., it replaces m of [39] by n2−β(d).

We present the details of the calculation. We show by induction

that our algorithm solves parity games with d − 1 priorities

in O(n1+γ(d)) time. The base case of d − 1 = 3 follows

from our algorithm for parity-3 games. The inductive case

is as follows: To solve a parity game with d priorities, our

algorithm calls the progress measure algorithm (on the graph

decomposition) for d − 1 priorities and recursively calls the

algorithm for d− 1 priorities at most O(n1−β(d)) times. The

total time for the progress measure algorithm is bounded by

O(n2 · (hmax)
�0.5d) = O(n2 · nβ(d)�0.5d), and the total time

for all calls to the algorithm for d − 1 priorities is bounded

by O((n/hmax) · n1+γ(d)) = O(n1−β(d) · n1+γ(d)). We obtain

the recurrence γ(d+1) = 1+ γ(d)− β(d), which yields γ(d)
as defined above and a running time of O(n1+γ(d+1)) for d
priorities. In the limit β(d) approaches 2/3. For small d we

compare our running times with the Big-step algorithm in

Table I. We have presented the details for parity-3 games for

the following reasons: (1) All the key ideas and conceptual

details are easily demonstrated for the simpler case of parity-3

games and (2) while all previous ideas for general parity games

(such as [30], [39]) and for Büchi games (such as [7], [8],

[10]) fail to improve the running time for parity-3 games, our

approach succeeds to break the long-standing O(nm) barrier

for dense graphs.

III. K-PAIR STREETT OBJECTIVES IN GRAPHS

A. Preliminaries

Let G[S] denote the subgraph of a graph G = (V,E) induced

by the set of vertices S ⊆ V . RevG denotes the graph with

vertices V and all edges of G reversed. Let Reach(S,G) be

the set of vertices in G that can reach a vertex in S ⊆ V .

A strongly connected component (SCC) of a directed graph

G = (V,E) is a subgraph G[S] induced by a subset of vertices

S ⊆ V such that there is a path in G[S] between every pair

of vertices in S. We call an SCC trivial if it only contains a

single vertex and no edges. All other SCCs are non-trivial. The

set Reach(S,G) and the maximal SCCs of a graph G can be

found in linear time [3], [27], [41].

Algorithm STREETT and good component detection. The input

is a directed graph G = (V,E) and k Streett pairs (Lj , Uj),
j = 1, . . . , k. The size of the input is measured in terms of

m = |E|, n = |V |, k, and b =
∑k

j=1(|Lj | + |Uj |) ≤ nk.

Consider a maximal SCC C; the good component detection
problem asks to (a) output a non-trivial SCC G[X] ⊆ C induced

by some set of vertices X such that for all 1 ≤ j ≤ k either

no vertex in Lj or at least one vertex in Uj is contained in

the SCC (i.e., Lj ∩ X = ∅ or Uj ∩ X �= ∅), or (b) detect

that no such SCC exists. In the former case, there exists an

infinite path that visits X infinitely often and satisfies the

Streett objective, while in the later case there exists no infinite

path that visits vertices in C infinitely often and satisfies the

Streett objective. It follows from the results of [1] that the

following algorithm, called Algorithm STREETT, suffices for

the winning set computation: (1) Compute the maximal SCC

decomposition of the graph; (2) for each maximal SCC C for

which the good component detection returns an SCC, label the

maximal SCC C as satisfying; (3) output the set of vertices

that can reach a satisfying maximal SCC as the winning set.

Since the first and last step are linear time, the runtime of

Algorithm STREETT is dominated by the detection of good

components in maximal SCCs. In the following we assume

that the input graph is strongly connected and focus on good

component detection.

B. Certificate computation

In this section we present our results for the certificate

computation.

Given a start vertex x that belongs to the winning set,

a certificate is an example of an accepting run, i.e., an

infinite path from x that satisfies the objective. The output of

Algorithm STREETT can be used to construct such an accepting

run. Given a start vertex x and a good component G[X] induced

by some set of vertices X that is reachable from x, we generate

the accepting run as follows. A path from x to X can be found

275

TABLE I
COMPARISON OF RUNNING TIMES FOR FEW PRIORITIES.

priorities

Algorithm 3 4 5 6 7

Big-step [39] O(mn) O(mn3/2) O(mn2) O(mn7/3) O(mn11/4)

Big-step [39] with m = Θ(n2) O(n3) O(n7/2) O(n4) O(n13/3) O(n19/4)

Our algorithm O(n2.5) O(n3) O(n10/3) O(n15/4) O(n65/16)

in linear time by a depth-first search. Let v be the vertex in X
where this path ends. We call v the root of the SCC G[X]. We

show next how to obtain, in O(m+ nmin(n, k)) time, from

the SCC G[X] a cycle starting and ending at the root v such

that the resulting certificate is indeed an accepting run. For

this it is sufficient that the cycle in G[X] contains for each Lj

with Lj ∩X �= ∅ a vertex of Uj ∩X , i.e., we do not have to

include all vertices in X .

We can use Tarjan’s depth-first search based SCC algo-

rithm [41] to traverse the subgraph G[X] in linear O(m) time,

starting from root v. Tarjan’s algorithm constructs a graph called

jungle with O(|X|) edges that for an SCC G[X] consists of

a spanning tree and at most one backedge per vertex in X .

The vertices are assigned pre-order numbers in the order they

are traversed. We say an edge of G[X] is a backedge if it

leads from a vertex with a higher number to a vertex with a

lower number. Spanning tree edges always lead from lower

numbered vertices to higher numbered vertices. In Tarjan’s

algorithm a lowlink is determined for each vertex u which

refers to the lowest numbered vertex w that u can reach by a

sequence of tree edges followed by at most one backedge. We

additionally store at each vertex u �= v a backlink that is the

first edge on the path from u to its lowlink. The backlinks can

be determined and stored during the depth-first search without

increasing its running time.

With this data structure we can find within G[X] a path

from root v to a vertex u ∈ X , u �= v, and back by first

searching for u in the spanning tree and then following the

backlinks back to v. Since no vertex will appear more than

twice on this path, its size and the time to compute it is

O(|X|). As it suffices to find such paths for one vertex per

non-empty set Uj∩X , we can generate a certificate from G[X]
in O(m+ |X|min(|X|, |{j | Uj ∩X �= ∅}|)) time, which can

be bounded with O(m+ nmin(n, k)). This certificate has a

size of O(nmin(n, k)).

Example 1 (Illustration of Tarjan’s jungle graph.): Figure 2

shows the types of edges and the values at the vertices as

assigned by Tarjan’s SCC algorithm for a small example graph.

Example 2 (Lower bound.): Figure 3 shows that the smallest

existing certificate can be as large as Θ(nmin(n, k)).

C. Algorithm

In this section we present the algorithm for good component

detection. First we introduce the different concepts used in

the algorithm for good component detection. We start with

1 [1] 4 [2] 3 [2]

5 [1] 2 [1] 6 [3]

Fig. 2. An example for a “jungle” constructed by Tarjan’s SCC algorithm for
an SCC. Backedges are dotted, spanning tree edges are solid. Backlinks are
marked with a dot. The numbers of the vertices represent the order in which
the vertices are visited, the numbers in brackets are the lowlinks.

s

t v1 vi vk

Θ(n)

· · · · · ·

Fig. 3. Let the only path between s and t be of length Θ(n/2) = Θ(n),
not containing any of the vertices vj for 1 ≤ j ≤ k. Let the Streett pairs
(Lj , Uj) be given by Lj = {s} and Uj = {vj} for 1 ≤ j ≤ k. Then the
size of the smallest certificate is Θ(nk), where k can be of order Θ(n).

describing the hierarchical graph decomposition technique for

this setting, which will be crucial for the runtime analysis.

Graph decomposition. In our algorithm we decompose a graph

G in the following way. For i ∈ {1, . . . , �log n�}, let Gi =
(V,Ei) be a subgraph of G with Ei = {(u, v) | Outdeg(u) ≤
2i}, i.e., the edges of Gi are the outedges of the vertices with

outdegree at most 2i. Note that for i = �log n� we have that

Gi = G. We say vertices in G with Outdeg(v) > 2i are

colored blue in Gi and denote the set of blue vertices in Gi

by Bl i. All other vertices are white. Note that all vertices

in G = G�logn� are white and that all vertices in Bl i have

outdegree zero in Gi.

Top and bottom strongly connected components. The algorithm

will repeatedly find a top or a bottom SCC in the remaining

graph G. A bottom SCC G[S] in a directed graph G, induced by

some set of vertices S, is an SCC with no edges from vertices

in S to vertices in V \S, i.e., no outgoing edges. A top SCC is

a bottom SCC of RevG , i.e., an SCC without incoming edges.

Top and bottom SCCs are by definition maximal SCCs. Note

that every graph has at least one bottom and at least one top

SCC. If they are not the same, then they are disjoint and thus

one of them contains at most half of the vertices of G.

Bad vertices. In contrast to good components we also define

276

bad vertices. The basic idea behind the algorithms for good

component detection, described for example in [25], is to

repeatedly delete bad vertices until either a good component is

found or it can be concluded that no such component exists. A

vertex is bad if for some index j with 1 ≤ j ≤ k the vertex is

in Lj but it is not strongly connected to any vertex in Uj . All

other vertices are good. Note that good vertices can become

bad if some vertex deletion disconnects an SCC or a vertex of

a set Uj is deleted. A good component is a non-trivial SCC

that only contains good vertices.

Data structure. The algorithm maintains for the current graph

G = (V,E) (some vertices of the input graph might have been

deleted) a decomposition into vertex sets S ⊆ V such that

every SCC of G is completely contained in G[S] for one of the

sets S. For all the sets S a data structure D(S) is saved in a list

Q. The data structure D(S) supports the following operations:

(1) Construct(S) initializes the data structure for the set S,

(2) Remove(S,D(S), B) removes a set B ⊆ V from S and

updates the data structure of S accordingly, and (3) Bad(D(S))
returns the set {v ∈ S | ∃j with v ∈ Lj and Uj ∩ S = ∅}.
In [25] an implementation of this data structure was given

that achieves the following running times. For a set of vertices

S ⊆ V let bits(S) be defined as
∑k

j=1 (|S ∩ Lj |+ |S ∩ Uj |).
Lemma 7 (Lemma 2.1 in [25]): After a one-time pre-

processing of time O(k), the data structure D(S) can be

implemented in time O(bits(S) + |S|) for Construct(S),
time O(bits(B)+ |B|) for Remove(S,D(S), B), and constant

running time for Bad(D(S)).

By abuse of notation we denote by G the current graph

maintained by the algorithm where some edges and vertices

might have been deleted and use input graph to denote

the unmodified, strongly connected graph for which a good

component is searched. Our algorithm for good component

detection is given in Algorithm 4. It maintains in a list Q a

partition of the vertices in G into sets such that every SCC of G
is contained in the subgraph induced by one of the vertex sets.

The list is initialized with the set of all vertices in the strongly

connected input graph. We will show that if a good component

exists, its vertices must be fully contained in one of the vertex

sets in the partition. The algorithm repeatedly removes a set S
from Q and identifies and deletes bad vertices from G[S]. If

no edge is contained in G[S], the set S is removed as it can

only induce trivial components. Otherwise the subgraph G[S] is

either determined to be strongly connected and output as a good

component or a “small” maximal SCC in G[S] is identified. To

find a small maximal SCC the algorithm searches alternatingly

in G[S] and in RevG [S] for a bottom SCC and stops as soon

as one of the searches stops. (A bottom SCC in RevG [S] is

a top SCC in G[S].) We use OutdegH(v) to denote the out-

degree of a vertex v in H ∈ {G,RevG}. We only describe

the search in G[S] here, the search in RevG [S] is analogous.

The algorithm uses the hierarchical graph decomposition of

G[S]. The subgraph Gi[S] for any i contains only the outedges

of vertices with an outdegree of at most 2i. The search for

a bottom SCC is started at i = 1, then i is increased one

Input strongly connected graph G = (V,E), Streett pairs

(Lj , Uj) for j = 1, . . . , k
Output a good component in G if one exists

1: add Construct(V) to Q
2: while Q �= ∅ do
3: pull D(S) from Q
4: while Bad(D(S)) �= ∅ do
5: D(S)← Remove(S,D(S),Bad(D(S)))

6: if G[S] contains at least one edge then
7: for i← 1, . . . , �log(|S|)� do
8: for all H ∈ {G,RevG} do
9: construct Hi[S]

10: Bl i ← {v ∈ S | OutdegH(v) > 2i}
11: Z ← S \ Reach(Bl i, Hi[S])
12: � Z cannot reach Bl i
13: if Z �= ∅ then
14: X ← SmallestBSCC (Hi[Z])
15: if X = S then � good component

16: return G[S]

17: if |X| ≤ |S|/2 then
18: add Remove(S,D(S), X) to Q
19: add Construct(X) to Q
20: go to Line 2

21: return no good component exists

Fig. 4. Detection of good components for the winning set computation in
graphs with k-pair Streett objectives

by one if necessary, up to at most �log(|S|)�. If for some

i we can identify a bottom SCC that does not contain any

blue vertex (i.e., a vertex for which some edges are missing

in Gi), then the found SCC in Gi[S] must also be a bottom

SCC in G[S]. If multiple bottom SCCs (without blue vertices)

are found in Gi[S], we only consider the smallest one. The

Procedure SmallestBSCC (H ′) returns the set of vertices that

induces the smallest bottom SCC in the graph H ′. We then put

the newly detected SCC and the “rest” of S back into Q.

The idea of the running time analysis is as follows. We can

show that a bottom SCC of G[S] identified in iteration i of the

outer for-loop must contain Ω(2i) vertices. In time O(n2i) a

standard SCC algorithm can compute all SCCs of Gi[S] and

thus also the smallest bottom SCC. The time needed for the

search in all graphs Gi′ [S] for 1 ≤ i′ < i can be bounded with

an additional factor of two. Thus the work for the search is

O(n) per vertex in the identified SCC.

Given that the subgraph G[S] was split into at least one top

and one bottom SCC, the smallest top or bottom SCC contains

at most half of the vertices of the subgraph. By searching for

a smallest bottom SCC (without blue vertices) in Gi[S] and

RevG i[S], we find one top or bottom SCC with at most half of

the vertices of the subgraph. We charge the work for finding

such an SCC to the vertices in this SCC. We will show that

this yields a total running time of O(n2) for computing SCCs.

We additionally have to take the time for the maintenance

277

of the data structures into account. Here we use the properties

of the data structure D(S) described in Lemma 7 to obtain a

running time of O((n+ b) log n) for the maintenance of the

data structures and the identification of bad vertices over the

whole algorithm. Combined these ideas lead to a total running

time of O(n2 + b log n).
Lemma 8: Let H ∈ {G,RevG} be the graph and let i∗

be the iteration for which in Algorithm 4 the outer for-loop

stops. Let Z be the non-empty set S\Reach(Bl i∗ , Hi∗ [S]) and

let X be the set of vertices that induces the smallest bottom

SCC H[X] in Hi∗ [Z] returned by SmallestBSCC (Hi∗ [Z]).
Assume we have |X| ≤ |S|/2. Then H[X] contains at least

2i
∗−1 vertices.

Proof: As Bl i∗−1 is the set of vertices in Hi∗−1[S]
with outdegree larger than 2i

∗−1, any bottom SCC H[Y]
that contains a vertex of Bl i∗−1, has |Y | ≥ 2i

∗−1. Hence

it suffices to show that X ∩ Bl i∗−1 �= ∅. Assume by

contradiction that X ∩ Bl i∗−1 = ∅. Since H[X] is a bot-

tom SCC, no vertex in X can reach any vertex in Bl i∗−1,

i.e., X ⊆ S \ Reach(Bl i∗−1, Hi∗ [S]). As all edges in

Hi∗−1[S] are contained in Hi∗ [S], this implies X ⊆ S \
Reach(Bl i∗−1, Hi∗−1[S]). Since SmallestBSCC finds the

smallest bottom SCC in graph Hi for each i, the outer for-

loop would thus have terminated in an iteration i ≤ i∗ − 1.

Contradiction.

Lemma 9 (Runtime): Algorithm 4 can be implemented in

time O(n2 + b log n).
Proof: The preprocessing and initialization of the data

structure and the removal of bad vertices in the whole algorithm

take time O(m + k + b) using Lemma 7. Additionally we

maintain at each vertex a list of its incoming and a list of its

outgoing edges including pointers to the lists of its neighbors,

which we use to update the lists of its neighbors. Since each

vertex is deleted at most once, this data structure can be

constructed and maintained in total time O(m).
Consider the while loop where a set S is removed from Q.

The search in G[S] and RevG [S] only increases the running

time by a factor of two, thus we restrict the analysis of the

running time to G[S]. Let n′ ≤ n be the number of vertices

in S. The construction of Gi[S], Z, and G[X] can all be done

in time O(n′ ·2i) for each i, i.e., in total time O(n′ ·2i∗) up to

level i∗. If X = S, then the algorithm terminates and the time

for processing S can be bounded by O(n′ ·2logn′
) = O(n′2). If

the processing of S ends when some bottom SCC G[X] ⊂ G[S]
induced by some set of vertices X is found, let i∗ be the value

of i when G[X] is detected and inserted into Q, and let c be

some constant such that the time spent in this search for X
is bounded by c · n′ · 2i∗−1. By Lemma 8 the set X contains

at least 2i
∗−1 vertices. Let |X| = n1. The algorithm ensures

n1 ≤ n′/2. We claim that the total running time for processing

all sets S, except for the work in Remove and Construct , can

be bounded by f(n) = 2cn2. Whenever the algorithm does not

terminate, we have by induction, and in particular for n′ = n,

f(n′) ≤ f(n1) + f(n′ − n1) + cn′n1 ,

≤ 2cn2
1 + 2c(n′ − n1)

2 + cn′n1 ,

= 2cn2
1 + 2cn′2 − 4cn′n1 + 2cn2

1 + cn′n1 ,

= 2cn′2 + 4cn2
1 − 3cn′n1 ,

≤ 2cn′2 ,

where the last inequality follows from n1 ≤ n′/2.

The operations Remove and Construct are called once per

found bottom SCC G[X] with X �= S and take by Lemma 7

O(|X|+bits(X)) time. By n1 ≤ n′/2 we have that whenever a

vertex v is in X , the size of the set in Q containing v is halved;

this can happen at most �log n� times. Hence, by charging O(1)
to the vertices in X and, respectively, to bits(X), the total

running time for this part can be bounded by O((n+ b) log n),
as each vertex and bit will only be charged O(log n) times.

Combining all parts yields the claimed running time bound of

O(n2 + b log n).
To prove the correctness of Algorithm 4 we first show that all

candidates for good components are in Q before each iteration

of the algorithm.

Lemma 10: Before each iteration of the outer while-loop

every good component of the input graph is contained in one

of the subgraphs G[S] for which the data structure D(S) is

maintained in the list Q.

Proof: We will show that the algorithm never removes

edges or vertices that belong to a good component, which

together with a correct initialization of the list Q will imply

the lemma. At the beginning of the algorithm one data structure

for the whole strongly connected input graph is added to Q.

Thus every good component is contained in this data structure

in Q after the initialization. At the beginning of each iteration of

the outer while-loop the data structure of one of the subgraphs

G[S] is pulled from the list Q. In Lines 4–5 we remove vertices

from the subgraph that are in some set Lj but not strongly

connected to any vertex in Uj , i.e., bad vertices. In Line 6 we

remove trivial SCCs. Observe that a good component is non-

trivial and does not contain any bad vertices. Thus the removal

of bad vertices and trivial SCCs does not remove any vertices

of a good component, i.e., after the removal of these vertices

the updated subgraph G[S] still contains the good components

it contained before. If no good component is identified in

this iteration, i.e., the algorithm does not terminate, we find a

bottom or top SCC G[X], induced by some set of vertices X ,

which is by definition a maximal SCC. Since a good component

is strongly connected, every good component in G[S] either

is a subgraph of the newly identified SCC G[X] or does not

contain any vertex of X . Thus the removed edges between

G[X] and the remaining subgraph cannot belong to a good

component. Finally, we add the data structures for G[X] as

well as for G[S \X] to Q. Thus no vertex or edge of a good

component was removed and every good component continues

to be completely contained in a subgraph in Q.

As all candidates for good components are maintained in the

list Q, it remains to show that the algorithm makes progress

in each iteration and correctly outputs a good component if

and only if one exists. We use the following lemma to show

the first part and then conclude the correctness proof with

Lemma 12.

278

Lemma 11: In each iteration of the outer while-loop either

(a) the number of elements in Q decreases, (b) the algorithm

terminates, or (c) one of the subgraphs maintained in Q is

replaced by two smaller subgraphs.

Proof: Let S be the set of vertices for which D(S) is

pulled from Q at the beginning of the outer while-loop. Let

S′ ⊆ S be the set of vertices from the set S that are not

removed as bad vertices in Lines 4–5.

Case (a): If G[S′] does not contain any edge, then S′ is

either empty or induces only trivial SCCs. In this case S′ is

not considered further after the if-statement in Line 6, i.e., no

element is added to Q and thus the number of elements in Q
decreases by one.

For Cases (a) and (b) note that whenever in the algorithm

the set Z is non-empty (for some i ∈ {1, . . . , �log n�} and

some set of vertices S′) and a bottom SCC in Hi[Z] for H ∈
{G,RevG} induced by a set of vertices X is identified, then

Hi[X] = H[X] is a bottom SCC in H[S′] because X∩Bl i = ∅.
Case (b): If G[S′] is a non-trivial SCC, then the only bottom

SCC in G[S′] or RevG [S′] is induced by S′. Since we have

H�logn� = H and S′ is not empty, a set of vertices X that

induces a bottom SCC in Hi[Z] will be identified for some i.
As H[X] is a bottom SCC in H[S′], we have X = S′ and the

algorithm terminates.

Case (c): If G[S′] contains an edge but is not strongly

connected, then it contains a top SCC and a bottom SCC that

are disjoint and at least one of then contains at most half of

the vertices in S′. Thus for some i and one of G and RevG
a set of vertices X with |X| ≤ |S′|/2 that induces a bottom

SCC in Hi[Z] will be identified and the data structures of two

non-empty subsets of S′, namely X and V \X , are added to

Q in Lines 18–19.

Lemma 12 (Correctness): Algorithm 4 outputs a good

component if one exists, otherwise the algorithm reports that

no such component exists.

Proof: First we show that whenever Algorithm 4 outputs

a subgraph G[S] induced by some set of vertices S, then G[S]
is a good component. Line 6 ensures only non-trivial SCCs

are considered. After the removal of bad vertices from S in

Lines 4–5, we know that for all 1 ≤ j ≤ k and all vertices in

S∩Lj there exists a vertex in S∩Uj . Thus if G[S] is strongly

connected, then G[S] is a good SCC, and the only maximal

SCC in G[S] is G[S] itself. Only in this case G[S] is output

(in Line 16).

Algorithm 4 terminates if a good component is identified or

Q is empty. Lemma 10 shows that before every iteration of the

outer while-loop every good component is contained in one of

the subgraphs G[S] in Q. That is, if a good component exists

in G, the algorithm will not terminate until a good component

is identified. Lemma 11 shows that whenever the algorithm

does not terminate in an iteration of the outer while-loop, either

a subgraph is removed from Q or one of the subgraphs from

Q is split into two smaller subgraphs. Each case can happen

at most n times. This implies that the algorithm terminates

after a finite number of steps if no good component exists.

Next we show that if there exists a good component in G,

then the algorithm will output a good component. Let Y be a

maximal good component in G and let SY be the vertex set

maintained in Q that currently contains the vertices in Y . By

the arguments above after a finite number of steps either (1)

another good component is detected or (2) D(SY) is pulled

from Q. By Lemma 10 the component Y is never split by

the algorithm thus after Case (2) happened at most n times,

one of the following two cases occurs: either (2a) D(SY) is

pulled from Q with G[SY] ⊃ Y and after the removal of bad

vertices from SY , G[SY] without the bad vertices is equal to

Y or (2b) G[SY] = Y is pulled from Q. In both cases the

good component Y is output and the algorithm terminates:

Since Y is non-trivial, the condition in Line 6 is satisfied. The

algorithm searches for a top or bottom SCC in Y . Since Y
is strongly connected, the only top or bottom SCC in Y is Y
itself. Hence the algorithm outputs Y in Line 16.

Recall Algorithm STREETT that calls Algorithm 4 for each

maximal SCC in the input graph and then computes reachability

to the union of the identified good components. Lemmata 9

and 12 yield the following result.

Theorem 5: Algorithm STREETT correctly computes the

winning set in graphs with k-pair Streett objectives in O(n2 +
b log n) time. Given a vertex x in the winning set, a certificate

for x can be output in time O(m+ nmin(n, k)).
Remark 2 (Optimality.): We showed that in a graph with

k-pair Streett objectives the winning set and a certificate can be

computed and output in time O(n2+b log n). Example 2 shows

a lower bound of Ω(nmin(n, k)) for outputting a certificate.

Note that the size of the input is at least b. Hence the presented

algorithm is optimal up to a log factor when k = Ω(n) and a

certificate is required.

ACKNOWLEDGEMENT

We would like to thank Tom Henzinger for his useful comments.

V. L. would like to thank Lara Turner for her feedback on an

early version of the manuscript.

K. C. is supported by the Austrian Science Fund (FWF):

P23499-N23 and S11407-N23 (RiSE/SHiNE), an ERC Start

Grant (279307: Graph Games), and a Microsoft Faculty Fellows

Award. M. H. is supported by the Austrian Science Fund

(FWF): P23499-N23 and the Vienna Science and Technology

Fund (WWTF) grant ICT10-002. V. L. is supported by the

Vienna Science and Technology Fund (WWTF) grant ICT10-

002. Additionally, the research leading to these results has

received funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP/2007-

2013) / ERC Grant Agreement no. 340506.

REFERENCES

[1] R. Alur and T. A. Henzinger, “Computer-aided verification,” 2004,
unpublished, available at http://www.cis.upenn.edu/cis673/.

[2] R. Alur, T. Henzinger, and O. Kupferman, “Alternating-time temporal
logic,” Journal of the ACM, vol. 49, pp. 672–713, 2002.

[3] C. Beeri, “On the membership problem for functional and multivalued
dependencies in relational databases,” ACM Transactions on Database
Systems, pp. 241–259, 1980.

[4] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Jobstmann,
“Robustness in the presence of liveness,” in CAV, 2010, pp. 410–424.

279

[5] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis
of reactive(1) designs,” J. Comput. Syst. Sci., vol. 78, no. 3, pp. 911–938,
2012.

[6] K. Chatterjee, S. Chaubal, and P. Kamath, “Faster algorithms for
alternating refinement relations,” in CSL, ser. LIPIcs 16. Schloss
Dagstuhl, 2012, pp. 167–182.

[7] K. Chatterjee and M. Henzinger, “An O(n2) Time Algorithm for
Alternating Büchi Games,” in SODA, 2012, pp. 1386–1399.

[8] ——, “Efficient and Dynamic Algorithms for Alternating Büchi Games
and Maximal End-component Decomposition,” Journal of the ACM,
vol. 61, no. 3, p. 15, 2014.

[9] K. Chatterjee, T. A. Henzinger, and V. S. Prabhu, “Timed parity games:
Complexity and robustness,” Logical Methods in Computer Science,
vol. 7, no. 4, 2011.

[10] K. Chatterjee, M. Jurdziński, and T. Henzinger, “Simple stochastic parity
games,” in CSL’03, ser. LNCS, vol. 2803. Springer, 2003, pp. 100–113.

[11] K. Chatterjee and V. S. Prabhu, “Synthesis of memory-efficient, clock-
memory free, and non-zeno safety controllers for timed systems,” Inf.
Comput., vol. 228, pp. 83–119, 2013.

[12] A. Church, “Logic, arithmetic, and automata,” in Proceedings of the
International Congress of Mathematicians. Institut Mittag-Leffler, 1962,
pp. 23–35.

[13] L. de Alfaro and M. Faella, “An accelerated algorithm for 3-color parity
games with an application to timed games,” in CAV, 2007, pp. 108–120.

[14] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga,
“The element of surprise in timed games,” in CONCUR, 2003, pp. 142–
156.

[15] L. de Alfaro and T. Henzinger, “Interface automata,” in FSE’01. ACM
Press, 2001, pp. 109–120.

[16] D. Dill, Trace Theory for Automatic Hierarchical Verification of Speed-
independent Circuits. The MIT Press, 1989.

[17] A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur, “On-the-fly Emptiness
Check of Transition-Based Streett Automata,” in ATVA, 2009, pp. 213–
227.

[18] R. Ehlers, “Short Witnesses and Accepting Lassos in ω-Automata,” in
LATA, 2010, pp. 261–272.

[19] E. Emerson and C. Jutla, “The complexity of tree automata and logics
of programs,” in FOCS’88. IEEE, 1988, pp. 328–337.

[20] ——, “Tree automata, mu-calculus and determinacy,” in FOCS, 1991,
pp. 368–377.

[21] E. Emerson and C.-L. Lei, “Modalities for Model Checking: Branching
Time Logic Strikes Back,” Science of Computer Programming, vol. 8,
no. 3, pp. 275–306, 1987.

[22] N. Francez, Fairness. New York: Springer, 1986.
[23] Y. Godhal, K. Chatterjee, and T. A. Henzinger, “Synthesis of AMBA

AHB from formal specification: a case study,” STTT, vol. 15, no. 5-6,
pp. 585–601, 2013.

[24] M. Henzinger, V. King, and T. Warnow, “Constructing a Tree from Home-
omorphic Subtrees, with Applications to Computational Evolutionary
Biology,” Algorithmica, vol. 24, pp. 1–13, 1999.

[25] M. Henzinger and J. Telle, “Faster Algorithms for the Nonemptiness of
Streett Automata and for Communication Protocol Pruning,” in SWAT,
1996, pp. 16–27.

[26] T. A. Henzinger, O. Kupferman, and S. K. Rajamani, “Fair simulation,”
Inf. Comput., vol. 173, no. 1, pp. 64–81, 2002.

[27] N. Immerman, “Number of quantifiers is better than number of tape
cells,” Journal of Computer and System Sciences, pp. 384–406, 1981.

[28] M. Jurdziński, “Deciding the winner in parity games is in UP ∩ co-UP,”
Information Processing Letters, vol. 68, no. 3, pp. 119–124, 1998.

[29] ——, “Small Progress Measures for Solving Parity Games,” in STACS,
2000, pp. 290–301.

[30] M. Jurdziński, M. Paterson, and U. Zwick, “A Deterministic Subexponen-
tial Algorithm for Solving Parity Games,” SIAM Journal on Computing,
vol. 38, no. 4, pp. 1519–1532, 2008.

[31] T. Latvala and K. Heljanko, “Coping With Strong Fairness,” Fundamenta
Informaticae, vol. 43, no. 1-4, pp. 175–193, 2000.

[32] O. Lichtenstein and A. Pnueli, “Checking That Finite State Concurrent
Programs Satisfy Their Linear Specification,” in POPL, 1985, pp. 97–107.

[33] D. Martin, “Borel determinacy,” Annals of Mathematics, vol. 102(2), pp.
363–371, 1975.

[34] R. McNaughton, “Infinite games played on finite graphs,” Annals of Pure
and Applied Logic, vol. 65, no. 2, pp. 149–184, 1993.

[35] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”
in VMCAI, ser. LNCS 3855, Springer, 2006, pp. 364–380.

[36] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
POPL’89. ACM Press, 1989, pp. 179–190.

[37] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete-
event processes,” SIAM Journal of Control and Optimization, vol. 25,
no. 1, pp. 206–230, 1987.

[38] S. Safra, “On the complexity of ω-automata,” in Proceedings of the
29th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, 1988, pp. 319–327.

[39] S. Schewe, “Solving Parity Games in Big Steps,” in FSTTCS, 2007, pp.
449–460.

[40] ——, “Synthesis of Distributed Systems,” Ph.D. dissertation, Universität
des Saarlandes, 2008.

[41] R. E. Tarjan, “Depth First Search and Linear Graph Algorithms,” SIAM
Journal of Computing, vol. 1, no. 2, pp. 146–160, 1972.

[42] W. Thomas, “Languages, automata, and logic,” in Handbook of Formal
Languages, G. Rozenberg and A. Salomaa, Eds. Springer, 1997, vol. 3,
Beyond Words, ch. 7, pp. 389–455.

[43] J. Vöge and M. Jurdziński, “A discrete strategy improvement algorithm
for solving parity games,” in CAV’00. LNCS 1855, Springer, 2000, pp.
202–215.

[44] W. Zielonka, “Infinite games on finitely coloured graphs with applications
to automata on infinite trees,” Theoretical Computer Science, vol. 200,
no. 1–2, pp. 135–183, 1998.

280

