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Abstract. Developing provably correct programs is an incremental
process that often involves a series of interactions with a program veri-
fier. To increase the responsiveness of the program verifier during such
interactions, we designed a system for fine-grained caching of verification
results. The caching system uses the program’s call graph and control-
flow graph to focus the verification effort on just the parts of the pro-
gram that were affected by the user’s most recent modifications. The
novelty lies in how the original program is instrumented with cached
information to avoid unnecessary work for the verifier. The system has
been implemented in the Boogie verification engine, which allows it to
be used by different verification front ends that target the intermediate
verification language Boogie; we present one such application in the inte-
grated development environment for the Dafny programming language.
The paper describes the architecture and algorithms of the caching sys-
tem and reports on how much it improves the performance of the verifier
in practice.

1 Introduction

Making formal program verification useful in practice requires not only auto-
mated logical theories and formal programming-language semantics, but also—
inescapably—a human understanding of why the program under verification
might actually be correct. This understanding is often gained by trial and error,
debugging verification attempts to discover and correct errors in programs and
specifications and to figure out crucial inductive invariants. To support this
important trial and error process, it is essential that the integrated development
environment (IDE) provides rapid feedback to the user.

In this paper, we enhance the IDE for the specification-aware programming
language Dafny [20] by adding fine-grained caching of results from earlier runs
of the verifier. The effect of this caching is to reduce the time from user key-
strokes in the editor to the reporting of verification errors that are gathered in
the background. In some cases, this lag time can now be around a second for
examples where it previously may have taken tens of seconds for the verifier to
repeat the checking of proof obligations that were not affected by the change.
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These improvements rely on a basic caching technique that tracks dependencies
using the program’s call graph to avoid re-verification of methods that were not
affected by the most recent change to the program. Our fine-grained caching
takes this a step futher. It is motivated by the fact that when a proof obligation
is not automatically verified, a user tends to spend human focus and editing
in one small area of the program. Often, this area can be in one branch of a
method, so if the tool can rapidly re-verify just what has changed, the user can
make progress more quickly. Our fine-grained caching thus makes use of the
program’s control-flow graph.

Like other verifiers, the Dafny verifier generates proof obligations by translat-
ing Dafny to an intermediate verification language (IVL), namely Boogie [2,21].
We designed our fine-grained caching to operate at the level of the IVL, which
makes it possible for other Boogie front ends to make use of the new functionality.
Our novel caching approach compares the current snapshot of a Boogie program
with a previously verified snapshot. It then instruments the current snapshot
to adjust the proof obligations accordingly. Finally, it passes the instrumented
Boogie program to the underlying satisfiability-modulo-theories (SMT) solver in
the usual way. Our implementation is available as part of the Boogie and Dafny
open source projects.

In Sect. 2, we explain a motivating example in more detail. Sect. 3 gives back-
ground on the architecture of the Dafny verifier and describes the basic, coarse-
grained caching based on the program’s call graph. We describe our fine-grained
caching in Sect. 4 and evaluate how both techniques improve the performance
of the verifier in Sect. 5.

2 Motivating Example

Let us consider some typical steps in the interactive process of developing a
verifiably correct program, indicating where our caching improvements play a
role. Figure 1 shows an incomplete attempt at specifying and implementing the
Dutch Flag algorithm, which sorts an array of colors.

The program gives rise to several proof obligations, following the rules of
Hoare logic. The loop invariants are checked when control flow first reaches the
loop. The loop body with its three branches is checked to decrease a termination
metric (here provided by the tool: the absolute difference between w and b) and
to maintain the loop invariants. The postcondition of the method is checked to
follow from the loop invariants and the negation of the guard (without further
inspection of the loop body). For every call to method Sort in the rest of the
program, the method’s precondition is checked and its postcondition is assumed.

In addition, all statements and expressions, including those in specifications,
are verified to be well-formed. For example, for the assignment that swaps two
array elements in the loop body (line 18), the well-formedness checks ensure that
the array is not null , that the indices are within bounds of the array, that the
method is allowed to modify the heap at these locations, and that the parallel
assignment does not attempt to assign different values to the same heap location.
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Fig. 1. Incomplete attempt at implementing the Dutch Flag algorithm. As written, the
program contains a specification omission, a specification error, and two coding errors.
As the program is edited, our fine-grained caching of verification results enables a more
responsive user experience by avoiding re-verification of unaffected proof obligations.

To provide design-time feedback to the user, the Dafny IDE automatically
runs the verifier in the background as the program is being edited. This allows
the verifier to assist the user in ways that more closely resemble those of a
background spell checker. Given the program in Fig. 1, the Dafny verifier will
report three errors.

The first error message points out that the method body may not establish
the postcondition. Selecting this error in the Dafny IDE brings up the verification
debugger [18], which readily points out the possibility that the array contains
two White values. To fix the error, we add a disjunct c = d to the definition of
predicate Ordered . Instead of expecting the user to re-run the verifier manu-
ally, the Dafny IDE will do so automatically. To speed up this process, the basic
caching technique will already avoid some unnecessary work by using the call
graph: only methods that depend on the predicate Ordered will be re-verified,
which includes the body of Sort and, since the postcondition of Sort men-
tions the predicate, all callers of Sort . Caller dependencies get lower scheduling
priority, since they are likely to be further away from the user’s current focus of
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attention. However, we can hope for something even better: the maintenance of
the loop invariant in Sort need not be re-verified, but only the fact that the
loop invariant and the negation of the guard establish the postcondition. Our
fine-grained caching technique makes this possible.

The second error message points out that the loop may fail to terminate.
Selecting the error shows a trace through the Red branch of the match state-
ment, and we realize that this branch also needs to increment w. As we make that
change, the tool re-verifies only the loop body, whereas it would have re-verified
the entire method with just the basic caching technique.

The third error message points out that the last loop invariant is not main-
tained by the Blue branch. It is fixed by swapping a[w] and a[b] after the
update to b. After doing so, the re-verification proceeds as for the second error.

Finally, it may become necessary to strengthen Sort ’s postcondition while
verifying some caller—it omits the fact that the final array’s elements are a
permutation of the initial array’s. If only the basic caching was used, the addition
of such a postcondition would cause both Sort and all of its callers to be re-
verified. By using the fine-grained caching, the body of Sort is re-verified to
check only the new postcondition (which in this case will require adding the
postcondition also as a loop invariant). For callers, the situation is even better:
since the change of Sort ’s specification only strengthens the postcondition,
proof obligations in callers that succeeded before the change are not re-verified.

The performance improvements that we just gave a taste of have the effect
of focusing the verifier’s attention on those parts of the program that the user is
currently, perhaps by trial and error, editing. The result is a user experience with
significantly improved response times. In our simple example program, the time
to re-verify the entire program is about 0.25 seconds, so caching is not crucial.
However, when programs have more methods, contain more control paths, and
involve more complicated predicates, verification times can easily reach tens of
seconds. In such cases, our fine-grained caching can let the user gain insight
from the verification tool instead of just becoming increasingly frustrated and
eventually giving up all hopes of ever applying formal verification techniques.

3 Verification Architecture and Basic Caching

In this section, we describe the role of the intermediate verification language
Boogie and the basic caching technique that the fine-grained caching builds on.
We have presented an informal overview of the basic caching technique in a
workshop paper describing different novel features of the Dafny IDE [22].

3.1 Architecture

Like many other verifiers, such as Spec# [3] and VCC [8], Dafny uses the Boogie [2]
intermediate verification language to express proof obligations to be discharged by
the Boogie verification engine using an SMT solver, such as Z3 [10]. The language
constructs of the source language are translated into more primitive constructs of
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Boogie, including variables, axioms, and procedures. For example, a Dafnymethod
is translated to several Boogie constructs: (1) a procedure (declaration) that cap-
tures the specification of the method, (2) a procedure implementation that captures
the method body and checks that it adheres to the method specification, and (3) a
secondprocedure implementation that captures thewell-formedness conditions for
the method specification [19]. As another example, a Dafny function is translated
to a corresponding Boogie function and a procedure implementation that captures
the function’s well-formedness conditions. Boogie functions are given meaning by
axioms, but to simplify our presentation, we omit some details of the translation
of Dafny functions.

Boogie supports a modular verification approach by verifying procedure imple-
mentations individually. More precisely, calls in procedure implementations are
reasoned about only in terms of their specification (i.e., the corresponding
procedure declaration). Consequently, a change to a program often does not inval-
idate verification results obtained for independent program entities. In particu-
lar, a change in a given procedure implementation does not invalidate verification
results of other procedure implementations, and a change in a procedure’s specifi-
cation may invalidate verification results only of its callees and of the correspond-
ing procedure implementation.

3.2 Basic Caching

While the Boogie pipeline accepts a single program, obtains verification results,
and then reports them, the basic caching mechanism turns Boogie into more of
a verification service: it accepts a stream of programs, each of which we refer to
as a snapshot.

The basic caching approach exploits the modular structure of Boogie pro-
grams by determining which program entities have been changed directly in the
latest program snapshot and which other program entities are indirectly affected
by those changes. To determine direct changes, Boogie relies on the client front
end (Dafny in our case) to provide an entity checksum for each function, proce-
dure, and procedure implementation. For example, the Boogie program in Fig. 2
shows entity checksums provided by a front end to Boogie via the : checksum
custom attribute. In our implementation, Dafny computes them as a hash of
those parts of the Dafny abstract syntax tree that are used to generate the cor-
responding Boogie program entities. This makes checksums insensitive to certain
textual changes, such as ones that concern comments or whitespace.

To determine indirect changes, Boogie computes dependency checksums for
all functions, procedures, and procedure implementations based on their own
entity checksum and the dependency checksums of entities they depend on
directly (e.g., callees). These checksums allow the basic caching to reuse ver-
ification results for an entity if its dependency checksum is unchanged in the
latest snapshot.

For example, when computing dependency checksums from entity checksums
in Fig. 2, Boogie takes into account that both implementations depend on the
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Fig. 2. Boogie program that shows how a front end uses custom attributes on decla-
rations to assign entity checksums, which can be computed in front-end specific ways.

procedure declaration of abs (implementation abs needs to adhere to its pro-
cedure declaration and main contains a call to abs). Consequently, a change
that only affects the entity checksum of procedure abs (e.g., to strengthen the
postcondition) will prevent Boogie from returning cached verification results for
both implementations. However, a change that only affects the entity check-
sum of implementation abs (e.g., to return the actual absolute value) will allow
Boogie to return cached verification results for implementation main.

Figure 3 gives an architectural overview of the caching system. In terms of it,
the basic caching works as follows. First, Boogie computes dependency check-
sums for all entities in a given program snapshot. Then, for each procedure
implementation P , the cache is consulted. If the cache contains the dependency
checksum for P , branch (0) is taken and the cached verification results are
reported immediately. Otherwise, branch (1) is taken and the procedure imple-
mentation is verified as usual by the Boogie pipeline. Our fine-grained caching
may also choose branch (2), as we explain in Sect. 4.

3.3 Prioritizing Procedure Implementations Using Checksums

Besides using them for determining which procedure implementations do not
need to be re-verified, we use the checksums for determining the order in which
the others should be verified. Ideally, procedure implementations that are more
directly related to the user’s latest changes are given higher priority, since these
most likely correspond to the ones the user cares about most and wants feedback
on most quickly. The checksums provide a metric for achieving this by defining
four priority levels for procedure implementations:

– low (unlike the entity checksum, the dependency checksum in the cache is differ-
ent from the current one): Only dependencies of the implementation changed.

– medium (entity checksum in the cache is different from the current one): The
implementation itself changed.

– high (no cache entry was found): The implementation was added recently.
– highest (both the entity and the dependency checksum is the same as the one

in the cache): The implementation was not affected by the change and a cache
lookup is sufficient for reporting verification results to the user immediately,
instead of waiting for other implementations to be verified.
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Fig. 3. Overview of the verification process for procedure implementations. Boxes cor-
respond to components and arrows illustrate data flow. The caching component pro-
duces three possible outputs: 0) cached errors in case the entity and dependency check-
sums are unchanged, 1) the implementation P in case it is not contained in the cache,
or 2) the implementation P and the cached snapshot in case either the entity or the
dependency checksum have changed. Cached snapshots are used to inject verification
results into the implementation and to identify errors that can be recycled.

4 Fine-Grained Caching

Basic caching can determine which procedure implementations in a new snapshot
do not need to be re-verified at all, but it does not track enough information
to allow us to reuse verification results for parts of an implementation. In this
section, we present an extension of the basic caching that reuses verification
results in fine-grained ways. In particular, our extension avoids re-verification of
checks that were not affected by the most recent change and it recycles errors
that are still present in the current snapshot.

Before giving our full algorithm, we sketch how it works in two common sce-
narios we want to address: when an isolated part of a procedure implementation
(e.g., one of two branches or a loop body) has been changed, and when the
specification of a procedure has been changed. We proceed by example, start-
ing from the program in Fig. 4. Running Boogie on this program results in two
errors: a failure to establish the postcondition on line 2 and an assertion viola-
tion on line 7. To fix the postcondition error in the program in Fig. 4, the user
might add an explicit else branch on line 10 and insert statement r := x. This
is an instance of the common change-in-isolated-part scenario. In particular,
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Fig. 4. Incomplete attempt at implementing a Boogie procedure for computing the
greatest common denominator. Boogie reports a postcondition violation for the imple-
mentation and an assertion violation on line 7.

the change has no effect on the assertion on line 7, and thus we would hope to
be able to cache and recycle the error.

4.1 Fine-Grained Dependency Tracking Using
Statement Checksums

To cache and reuse verification results at this fine granularity, we need to know
what each statement depends on. To determine this, we compute a statement
checksum for every statement from a hash of its pretty-printed representation
and—to keep the overhead small—the statement checksums of all statements
that precede it in the control flow (as opposed to ones that actually affect it).
If a statement contains a function call in some subexpression, then the state-
ment depends on the callee’s definition and we include the callee’s dependency
checksum when computing the statement checksum.

The computation of statement checksums occurs after the Boogie program
has undergone some simplifying transformations. For example, loops have been
transformed using loop invariants and back-edges of loops have been cut [4];
thus, the computation of statement checksums does not involve any fixpoint
computation. As another example, the checks for postconditions have been made
explicit as assert statements at the end of the implementation body and the
preconditions of procedure implementations have been transformed into assume
statements at the beginning of the implementation body; thus, these statements
are taken into account for computing the statement checksums. In contrast to
an assert statement, which instructs the verifier to check if a condition holds at
the given program point, an assume statement instructs the verifier to blindly
assume a condition to hold at the given program point.

After the simplifications from above, there are only two kinds of statements
that lead to checks: assertions and calls (precondition of callee). We will refer
to them as checked statements. We introduce a cache that associates statement
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checksums of such statements in a given implementation with verification results.
Before verifying a new snapshot, we compute statement checksums for the new
snapshot and then instrument the snapshot by consulting this cache.

Let us describe this in more detail using our example. We will refer to the
program in Fig. 4 as Snapshot 0 and the program resulting from adding the else
branch and assignment on line 10 as Snapshot 1. After verifying Snapshot 0,
the cache will have entries for the statement checksums of the following checked
statements: the failing assertion on line 7, the succeeding precondition checks
for the calls on lines 6 and 9, the succeeding assertion on line 11, and the failing
check of the postcondition from line 2. The statement checksums for the first
three checked statements (on lines 6, 7, and 9) in Snapshot 1 are the same
as in Snapshot 0. Since the cache tells us the verification results for these, we
report the cached error immediately and we add assume statements for the
checked condition before these checked statements in Snapshot 1. The statement
checksums of the fourth and fifth checked statement are different in Snapshot 1,
since they are affected by the modification of line 10. Since the new checksums
are not found in the cache, the statements are not rewritten. As a result, Boogie
needs to only verify those checks. Indeed, Boogie is now able to prove both and
it updates the cache accordingly. With reference to Fig. 3, what we have just
described takes place along branch (2) after the basic cache has been consulted.

4.2 Injecting Explicit Assumptions and Partially Verified Checks

To fix the failing assertion on line 7 in Fig. 4, the user might now decide to
strengthen the postcondition of the procedure by changing it to 1 ≤ r. This is
an instance of the common change-in-specification scenario. In particular, since
the change involves a strengthened postcondition, we would hope to avoid re-
verifying any previously succeeding checks downstream of call sites.

We will refer to the program resulting from the user’s change as Snapshot 2.
After Boogie computes the statement checksums, only the statement checksum
for the assertion of the postcondition will be different from the ones in the cached
snapshot. However, since the dependency checksums of the callee changed for
both calls, we introduce an explicit assumption [7] after each call to capture the
condition assumed at this point in the cached snapshot. We do so by introducing
an assumption variable for each such call that is initialized to true and is only
assigned to once (here, after the corresponding call) using a statement of the form
a := a ∧ P , where a is the assumption variable and P is a boolean condition.
The variable allows us to later refer to an assumption that was made at a specific
program point; e.g., to mark a check that was not failing in the corresponding
cached snapshot as partially verified under a conjunction of assumption variables.

To illustrate, consider the rewrite of Snapshot 2 in Fig. 5. At this stage, the
precondition is assumed explicitly on line 2 and the postcondition is asserted
explicitly on line 15 as described earlier. On line 0, we introduce one assumption
variable for each call to a procedure with a different dependency checksum, and
these are initialized to true on line 1. The call on line 5 gets to assume the
new postcondition of gcd. If that call happens to return in a state that was
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allowed by the previous postcondition (0 ≤ r), then assumption variable a0
will remain true after the update on line 6. But if the call returns in a state
that does not satisfy the previously assumed postcondition, then a0 will be set
to false. In our example, since the postcondition of the callee is strengthened,
the explicit assumption 0 ≤ r will always evaluate to true. Indeed, this works
particularly well when postconditions are not weakened, but, depending on the
calling context, it may also simplify the verification otherwise. For instance, it
would work for a call where the state is constrained such that for this particular
call site the previous postcondition holds after the call, even though the new
postcondition is indeed weaker.

Next, we inject assumptions into the program about checked statements that
are found to be non-failing in the cached snapshot based on their statement
checksum. More precisely, for each statement with checked condition P whose
statement checksum is in the cache and that was non-failing in the cached snap-
shot, we inject an assumption A =⇒ P , where A is the conjunction of all assump-
tion variables. Intuitively, this tells the verifier to skip this check if all assumption
variables are true. Otherwise, the verifier will perform the check since a state
was reached for which it has not already been verified in the cached snapshot.
We say that the check has been marked as partially verified. As an optimiza-
tion, we include in A only those assumption variables whose update statement
definition can reach this use; we refer to these as relevant assumption variables.
Figure 5 shows the assumptions being introduced on lines 4, 9, and 13, preceding
the precondition checks and the assert statement, thus marking these checks as
partially verified. Note that the assertion on line 7 is not marked as partially ver-
ified, since it is a failing assertion in Snapshot 1. Since the assumption variables
remain true, the partially verified checks in effect become fully verified in this
example. Note that the verifier may discover that only some partially verified
checks are in effect fully verified depending on the state at those checks. For
instance, this may happen if the state after some call was not always allowed
by the callee’s previous postcondition, but some partially verified checks after
that call are in a conditional branch where the branching condition constrains
the state such that all states are allowed by the previous postcondition there.

4.3 Algorithm for Injecting Cached Verification Results

In this subsection, we present our algorithm for injecting cached verification
results in procedure implementations of medium or low priority, for which no
limit on the number of reported errors was hit when verifying the cached imple-
mentation. At this point, most existing Boogie transformations have been applied
to the implementation as described earlier (e.g., eliminating loops using loop
invariants and adding explicit assertions for procedure postconditions).

As a first step, we compute statement checksums for all statements in an
implementation as defined earlier. As a second step, we insert explicit assump-
tions for calls if the dependency checksum of the callee has changed in the current
snapshot. More precisely, for each call, we distinguish between three different
cases, in order:
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Fig. 5. Body of the procedure implementation for Snapshot 2 after injecting cached ver-
ification results (underlined). The instrumented program contains two explicit assump-
tions [7] on lines 6 and 11 derived from the postcondition of the cached callee procedure.
Also, all checks that did not result in errors in the cached snapshot have been marked
as partially verified by introducing assume statements on lines 7, 9, and 13.

1. Dependency checksum of callee is the same as in the cached snapshot: We
do not need to do anything since the asserted precondition and the assumed
postcondition are the same as in the cached snapshot.

2. All functions that the callee transitively depended on in the cached snapshot
are still defined and unchanged in the current snapshot: Before the call, we
add the statement assume ? =⇒ P, where ? is a placeholder that will be
filled in during the final step of the algorithm and P is the precondition of
the callee in the cached snapshot. This may allow us to reuse the fact that the
precondition of a call has been verified in the cached snapshot. To simplify
the presentation, we will only later determine if the precondition has indeed
been verified and under which condition. Since the dependency checksum of
the callee is different from the one in the cached snapshot, we additionally
introduce an explicit assumption to capture the condition that was assumed
after the call in the cached snapshot. This condition depends on the callee’s
modifies clause (which lists the global variables that the callee is allowed
to modify) and its postcondition. To capture the former, let V be the set
of global variables that were added to the callee’s modifies clause since the
cached snapshot. We now add ov := v for each global variable v in this set V
before the call, where ov is a fresh, local variable. This allows us to express the
explicit assumption by adding the statement a := a ∧ (Q ∧ M ) after the
call, where a is a fresh assumption variable, Q is the postcondition of the callee
in the cached snapshot and M contains a conjunct ov == v for each global
variable v in the set V . Note that M does not depend on global variables that
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were removed from the callee’s modifies clause since the cached snapshot; the
statements after the call have already been verified for all possible values of
such variables.

3. Otherwise: Since we cannot easily express the pre- and postcondition of the
callee in the cached snapshot, we need to be conservative. We therefore do
not add any assumption about the precondition and we add the statement
a := a ∧ false after the call, where a is a fresh assumption variable.

As a third step, we transform each checked statements with the checked
condition P to express cached verification results. We distinguish four cases, in
order:

1. Some relevant assumption variable is definitely false when performing con-
stant propagation: We do not do anything, since we cannot determine under
which condition the check may have been verified.

2. There was an error for this check in the cached implementation and there are
no relevant assumption variables: Since it has previously resulted in an error
under identical conditions, we add the statement assume P before and report
the error immediately to avoid unnecessary work.

3. There was no error for this check in the cached implementation: Since it
has been verified previously, we add the statement assume A =⇒ P before,
where A is the conjunction of all relevant assumption variables. If there are
any such assumption variables, we say that the check has been marked as
partially verified; otherwise, we say that it has been marked as fully verified.

4. Otherwise: We do not do anything. For instance, this may happen if we cannot
determine that we have seen the same check in the cached snapshot.

As a last step, we replace the placeholder ? in each statement
assume ? =⇒ P with the conjunction of all relevant assumption variables,
if none of the relevant assumption variables are definitely false and there was
no error for the corresponding call in the cached implementation. Otherwise, we
drop the statement.

Optimization for Explicit Assumptions Within Loops. By default, loop
bodies are verified modularly in Boogie. That is, on entry to a loop body, all
variables that are modified within the body are “havocked” by assigning a non-
deterministic value and the invariant is assumed. After the loop body, only the
invariant remains to be checked. For this reason, an assumption (e.g., as a result
of a procedure call) that was made in the loop body when verifying the cached
snapshot was neither used for verifying statements after the loop (provided there
is no break statement in the loop) nor for verifying statements within the loop
that precede the assignment to the corresponding assumption variable. To repro-
duce this behavior for the current snapshot, it is safe not to havoc assumption
variables that would usually be havocked in this case. By doing so, such assump-
tion variables usually remain true at that point unless the corresponding loop
has previously been unrolled a number of times.



392 K.R.M. Leino and V. Wüstholz

5 Evaluation

To evaluate the effectiveness of our caching techniques in practice, we recorded
eight verification sessions during expert use of the Dafny IDE for regular develop-
ment tasks. Those sessions were not scripted and therefore cover real workloads
that such a tool faces when it is being used by a user to develop provably cor-
rect software. The sessions span a wide range of activities (including extension,
maintenance, and refactoring) that are encountered when developing programs of
several hundred lines. Sessions consist of up to 255 individual program snapshots
(see Fig. 6) since the Dafny IDE automatically verifies the program as the user
is editing it. To make this a pleasant experience for the user, the responsiveness
of the tool is of paramount importance.

Figure 6 clearly shows that this user experience could not be achieved with-
out caching. The basic caching alone decreases the running times of the verifier
tremendously (more than an order of magnitude for many sessions) and comple-
menting it with fine-grained caching decreases them even more. This confirms
the positive feedback that we received from users of the Dafny IDE, including
members of the Ironclad project at Microsoft Research, whose codebase includes
more than 30’000 lines of Dafny code [15]. Interestingly, caching turned out to
have a more significant effect on the responsiveness of the tool than paralleliza-
tion of verification tasks in Boogie using multiple SMT solver instances.

Figure 7 sheds more light on why the basic caching is so effective by showing
the priorities of the procedure implementations that are sent to the verifier for
each snapshot in session 5: most of the procedure implementations do not need
to be re-verified at all and only two implementations (originating from a single
Dafny method) need to be verified for most snapshots. This data looks very
similar for the other sessions and demonstrates that the basic caching benefits
significantly from the modular verification approach in Dafny. Besides this, we
can see that there are occasional spikes with procedure implementations of low
priority. For example, snapshot 2 consists of a change to a function that may
affect all callers. In fact, due to the way that functions are handled, all transitive
callers are affected, which is not the case for procedures. While in this case
the basic caching needs to re-verify 11 procedure implementations from scratch,
the fine-grained caching is able to mark 400 out of 971 checked statements in
Boogie as fully verified. This reduces the running time from 28 s to 14 s and at
the same time avoids a timeout (by default, 10 s per procedure implementation)
for one of those procedure implementations.

Overall, Fig. 6 shows that the fine-grained caching performs even better than
the basic caching for all sessions (42 % faster for session 3 and on average 17 %
faster compared to the basic caching). For session 7, there is no significant
speedup even though the fine-grained caching is able to mark a large number of
checks as verified. It seems that, in this case, most of the time is spent on verify-
ing a single check (e.g., the postcondition of the edited method) that could not
be marked as verified. Such cases can come up occasionally since the times that
are needed for verifying different checks are usually not distributed uniformly.
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Fig. 6. Comparison of three configurations for verifying eight recorded IDE sessions:
no caching (NC), basic caching (BC) and fine-grained caching (FGC). The second
column shows the number of program snapshots per session. The next three columns
show the running times for each configuration and the rightmost three columns show
the number of timed-out procedure implementations for each configuration.

Besides increasing responsiveness, caching helps in reducing the number of
procedure implementations that fail to verify due to timeouts (see Fig. 6). Again,
the basic caching avoids the majority of timeouts and the fine-grained caching
avoids even more of them (between 17 % and 100 % less), which is not obvious
given our program transformations. This additional reduction over the basic
caching is due to the fact that Boogie is able to focus on fewer unverified or
partially verified checks.

To provide a better indication of how much the fine-grained caching is able
to reduce the verification effort, Fig. 8 shows the number of checked statements
for each snapshot in session 5 that were transformed when injecting cached
verification results. This demonstrates that for many snapshots, more than half
of the checks can be marked as fully verified or errors from the cached snapshot
can be recycled (two errors each for snapshots 5 and 6 and one error each for
snapshots 7 and 8). At an early development stage, fewer checks were marked
as verified since statement checksums changed more often. It turned out that
small changes in a Dafny program could result in significant changes to the

Fig. 7. Priorities of procedure implementations for session 5. The bars show the num-
ber of procedure implementations of a given priority for each snapshot version. Most
implementations are assigned the highest priority and do not need to be re-verified.
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Fig. 8. Transformed checked statements in session 5. The bars show the number of
checked statements for each snapshot version that are marked as fully verified, partially
verified, or not transformed at all. Additionally, a number of errors are recycled: two
errors each for snapshots 5 and 6 and one error each for snapshots 7 and 8.

corresponding Boogie program due to the way in which names (e.g., of auxiliary
variables) were generated. After taking this into account during the translation
of Dafny into Boogie, performance improved significantly.

6 Related Work

Caching is a widely used technique for reusing information that was computed
in the past. More specifically, there are several existing approaches for reusing
results from previous runs of static analyzers, model checkers, program veri-
fiers, and automatic test-case generation tools. Clousot [12], a static analyzer
for .Net, uses caching to retrieve the results of previous runs of its cloud-based
analysis service [1]. Unlike our fine-grained caching, it only reuses such results if
a method itself did not change and if the specifications of all its callees did not
change. Clousot also supports “verification modulo versions” [23], which uses
conditions inferred for a previous version of a program to only report new errors
for the current version. The Why3 verification platform uses checksums to main-
tain program proofs in the form of proof sessions as the platform evolves (e.g., by
generating different proof obligations). In particular, it matches goals from the
existing proof with new goals using both checksums and goal shapes, a heuristic
similarity measure. Maintenance of proofs is particularly important for interac-
tive proof assistants since proofs are largely constructed by users and, ideally, do
not need to be changed once they are completed. Such work has been done for
the KIV [24] and KeY [17] tools. Grigore and Moskal [14] have worked on such
techniques for proofs that were generated by SMT solvers to verify programs
using ESC/Java2.

There are several approaches for reusing information that was computed
when running a non-modular tool on an earlier revision of a program. In the
area of model checking, such information can consist of summaries computed
using Craig interpolation [25], derivation graphs that record analysis progress [9],
or parts of the reachable, abstract state space [16]; even the precision of the



Fine-Grained Caching of Verification Results 395

analysis that was sufficient for analyzing an earlier program revision may be
used later [5]. Work on incremental compositional dynamic test generation [13]
presents techniques for determining if function summaries that were obtained for
an earlier version of a program can be safely reused when performing symbolic
execution on the current version of the program.

Regression verification [26] is another area that developed techniques for
reusing information that was collected during runs of a tool on earlier versions
of a program. Unlike in our approach, the goal is to check if the behavior of the
latest version of a program is equivalent to the one of an earlier version, much
like in regression testing.

In spirit, our caching scheme is an instance of a truth maintenance sys-
tem [11]. However, the mechanisms used are quite different. For example, a truth
maintenance system records justifications for each fact, whereas our caching
scheme tracks snapshots of the programs that give rise to proof obligations, not
the proofs of the proof obligations themselves.

7 Conclusions and Future Work

We have presented two effective techniques for using cached verification results to
improve the responsiveness and performance of the Dafny IDE. Both techniques
are crucial for providing design-time feedback at every keystroke to users of the
IDE, much like background spell checkers. The key novelties of our technique are
its use of checksums for determining which parts of a program are affected by a
change and how a program is instrumented with cached information to focus the
verification effort. In particular, we use explicit assumptions to express the con-
ditions under which we can reuse cached verification results. We have designed
our technique to work on the level of an intermediate verification language. This
makes it immediately usable for other verifiers that use the Boogie verification
engine (e.g., VCC [8] or AutoProof [27]) and should make possible to adopt by
other intermediate verification languages, such as Why3 [6].

As future work, we would like to make the existing caching more fine-grained
in cases where assumptions in the program (e.g., resulting from user-provided
assume statements, preconditions, and user-provided or inferred loop invariants)
are affected by a change. We believe that—much like for procedure calls—we can
use explicit assumptions to capture assumptions that were made in the cached
snapshot, and thereby mark more checks as partially verified. We would also like
to look into techniques, such as slicing, for determining if certain partially verified
checks could be marked as fully verified by identifying the explicit assumptions
they depend on more precisely.

Acknowledgments. We are grateful to the users of the Dafny IDE—notably, Nada
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