IA168 — Problem set 3

For an extensive-form game G, let SPE(G) denote the set of subgame-perfect equilibria of G.

Problem 1 [10 points]

Consider the following two-player strategic-form game G:

$$\begin{array}{c|ccc} X & Y \\ \hline A & (4,4) & (-1,5) \\ B & (5,-1) & (1,1) \\ \end{array}$$

a) In dependence on the parameter $t \in \mathbb{N}^+$, calculate the number of strategy profiles in G_{t-rep} . Try to express the result as explicitly as possible.

b) In $G_{\text{irep}}^{\text{avg}}$, find a subgame-perfect equilibrium whose outcome is (3.2, 3.5).

c) Calculate $\sup_{s \in SPE(G_{irep}^{avg})} u_1(s)$.

Justify your reasoning.

Problem 2 [10 points]

Let G be a two-player strategic-form game. Prove or disprove the following three propositions:

a) if $0 < \delta < \delta' < 1$, then $SPE(G_{irep}^{\delta}) \supseteq SPE(G_{irep}^{\delta'})$;

b) if $0 < \delta < \delta' < 1$, then $SPE(G_{irep}^{\delta}) \subseteq SPE(G_{irep}^{\delta'})$; **c)** $\sup_{s \in SPE(G_{irep}^{\delta})} u_1(s) + u_2(s)$ is a continuous function of $\delta \in (0; 1)$ (here u_1 and u_2 correspond to the given δ);