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Organization of This Course

Sources:
I Lectures (slides, notes)

I based on several sources
I slides are prepared for lectures, some stuff on greenboard

(⇒ attend the lectures)
I Books:

I Nisan/Roughgarden/Tardos/Vazirani, Algorithmic Game
Theory, Cambridge University, 2007.
Available online for free:

http://www.cambridge.org/journals/nisan/downloads/Nisan_Non-printable.pdf

I Tadelis, Game Theory: An Introduction, Princeton
University Press, 2013

(I use various resources, so please, attend the lectures)
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Evaluation

I Oral exam
I Homework
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What is Algorithmic Game Theory?
First, what is the game theory?

According to the Oxford dictionary it is "the branch of mathematics
concerned with the analysis of strategies for dealing with competitive
situations where the outcome of a participant’s choice of action
depends critically on the actions of other participants"

According to Myerson it is "the study of
mathematical models of conflict and cooperation
between intelligent rational decision-makers"

What does the "algorithmic" mean?
I It means that we are "concerned with the computational

questions that arise in game theory, and that enlighten game
theory. In particular, questions about finding efficient algorithms
to ‘solve’ games.”

Let’s have a look at some examples ....
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Prisoner’s Dilemma

I Two suspects of a serious crime are
arrested and imprisoned.

I Police has enough evidence of only
petty theft, and to nail the suspects for
the serious crime they need testimony
from at least one of them.

I The suspects are interrogated
separately without any possibility of
communication.

I Each of the suspects is offered a deal:
If he confesses (C) to the crime, he is
free to go. The alternative is not to
confess, that is remain silent (S).

Sentence depends on the behavior of both suspects.
The problem: What would the suspects do?
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Prisoner’s Dilemma – Solution(?)

C S
C −5,−5 0,−20
S −20,0 −1,−1

Rational "row" suspect (or his adviser) may reason as follows:

I If my colleague chooses C, then playing C gives me −5 and
playing S gives −20.

I If my colleague chooses S, then playing C gives me 0 and
playing S gives −1.

In both cases C is clearly better (it strictly dominates the other
strategy). If the other suspect’s reasoning is the same, both choose C
and get 5 years sentence.

Where is the dilemma? There is a solution (S ,S) which is better for
both players but needs some “central” authority to control the players.

Are there always “dominant” strategies?
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Nash equilibria – Battle of Sexes

I A couple agreed to meet this evening, but cannot
recall if they will be attending the opera or a football
match.

I The husband would like to go to the football game.
The wife would like to go to the opera. Both would
prefer to go to the same place rather than different
ones.

If they cannot communicate, where should they go?
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Nash equilibria – Battle of Sexes

Battle of Sexes can be modeled as a game of two players (Wife,
Husband) with the following payoffs:

O F
O 2,1 0,0
F 0,0 1,2

Apparently, no strategy of any player is dominant. A “solution”?

Note that whenever both players play O , then neither of them wants
to unilaterally deviate from his strategy!

(O ,O) is an example of a Nash equilibrium (as is (F ,F))
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Mixed Equilibria – Rock-Paper-Scissors

R P S
R 0,0 −1,1 1,−1
P 1,−1 0,0 −1,1
S −1,1 1,−1 0,0

I This is an example of zero-sum games: whatever one of the
players wins, the other one looses.

I What is an optimal behavior here? Is there a Nash equilibrium?

Use mixed strategies: Each player plays each pure strategy with
probability 1/3. The expected payoff of each player is 0 (even if
one of the players changes his strategy, he still gets 0!).

How to algorithmically solve games in mixed strategies? (we
shall use probability theory and linear programming)
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Philosophical Issues in Games
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Dynamic Games

So far we have seen games in strategic form that are unable to
capture games that unfold over time (such as chess).

For such purpose we need to use extensive form games:

P1

P2

(1,2)

C

(1,−1)

D

(0,2)

E

A
P2

(2,2)

F

(1,3)

G

B

How to "solve" such games?

What is their relationship to the strategic form games?
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Chance and Imperfect Information
Some decisions in the game tree may be by chance and controlled by
neither player (e.g. Poker, Backgammon, etc.)

Sometimes a player may not be able to distinguish between several
“positions” because he does not know all the information in them
(Think a card game with opponent’s cards hidden).

F G

D 1
2

F G

E1
2

A

H I J

B

P1

P1

Nature

P2

(a,b) (c,d) (e, f) (g,h) (i, j) (k , `) (m,n)

Again, how to solve such games? 12



Games of Incomplete Information

In all previous games the players knew all details of the game
they played, and this fact was a “common knowledge”. This is
not always the case.

Example: Sealed Bid Auction
I Two bidders are trying to purchase the same item.
I The bidders simultaneously submit bids b1 and b2 and the item

is sold to the highest bidder at his bid price (first price auction)
I The payoff of the player 1 (and similarly for player 2) is

calculated by

u1(b1,b2) =


v1 − b1 b1 > b2
1
2 (v1 − b1) b1 = b2

0 b1 < b2

Here v1 is the private value that player 1 assigns to the item and
so the player 2 does not know u1.

How to deal with such a game? Assume the “worst” private value?
What if we have a partial knowledge about the private values?
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Inefficiency of Equilibria

In Prisoner’s Dilemma, the selfish behavior
of suspects (the Nash equilibrium) results in
somewhat worse than ideal situation.

C S
C −5,−5 0,−20
S −20,0 −1,−1

Defining a welfare function W which to every pair of strategies
assigns the sum of payoffs, we get W(C ,C) = −10 but
W(S ,S) = −2.

The ratio W(C ,C)
W(S ,S) = 5 measures the inefficiency of "selfish-behavior"

(C ,C) w.r.t. the optimal “centralized” solution.

Price of Anarchy is the maximum ratio between values of equilibria
and the value of an optimal solution.
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Inefficiency of Equilibria – Selfish Routing

Consider a transportation system where many
agents are trying to get from some initial location to
a destination. Consider the welfare to be the
average time for an agent to reach the destination.
There are two versions:

I “Centralized”: A central authority tells each agent where to go.

I “Decentralized”: Each agent selfishly minimizes his travel time.

Price of Anarchy measure the ratio between average travel time in
these two cases.

Problem: Bound the price of anarchy over all routing games?
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Games in Computer Science

Game theory is a core foundation of mathematical economics. But
what does it have to do with CS?

I Games in AI: modeling of “rational” agents and their interactions.

I Games in Algorithms: several game theoretic problems have
a very interesting algorithmic status and are solved by
interesting algorithms

I Games in modeling and analysis of reactive systems: program
inputs viewed “adversarially”, bisimulation games, etc.

I Games in computational complexity: Many complexity classes
are definable in terms of games: PSPACE, polynomial hierarchy,
etc.

I Games in Logic: modal and temporal logics,
Ehrenfeucht-Fraisse games, etc.
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Games in Computer Science

Games, the Internet and E-commerce: An extremely active
research area at the intersection of CS and Economics

Basic idea: “The internet is a HUGE experiment in interaction
between agents (both human and automated)”

How do we set up the rules of this game to harness “socially
optimal” results?
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Summary and Brief Overview

This is a theoretical course aimed at some fundamental results of
game theory, often related to computer science

I We start with strategic form games (such as the Prisoner’s
dilemma), investigate several solution concepts (dominance,
equilibria) and related algorithms (in particular, Lemke-Howson
algorithm for computing Nash Eq.)

I Then we consider repeated games which allow players to learn
from history and/or to react to deviations of the other players.

I Subsequently, we move on to incomplete information games and
auctions

I Finally, we consider (in)efficiency of equilibria (such as the Price
of Anarchy) and its properties on important classes of routing
and network formation games.

I Remaining time will be devoted to selected topics from extensive
form games, games on graphs etc.
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Static Games of Complete Information
Strategic-Form Games

Solution concepts
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Static Games of Complete Information – Intuition
Proceed in two steps:

1. Each player simultaneously and independently chooses
a strategy. This means that players play without observing
strategies chosen by other players.

2. Conditional on the players’ strategies, payoffs are distributed to
all players.

Complete information means that the following is common knowledge
among players:

I all possible strategies of all players,

I what payoff is assigned to each combination of strategies.

Definition 1
A fact E is a common knowledge among players {1, . . . ,n} if for every
sequence i1, . . . , ik ∈ {1, . . . ,n} we have that i1 knows that i2 knows
that ... ik−1 knows that ik knows E.

The goal of each player is to maximize his payoff (and this fact is
common knowledge).
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Strategic-Form Games
To formally represent static games of complete information we define
strategic-form games.

Definition 2
A game in strategic-form (or normal-form) is an ordered triple
G = (N, (Si)i∈N , (ui)i∈N), in which:

I N = {1,2, . . . ,n} is a finite set of players.

I Si is a set of (pure) strategies of player i, for every i ∈ N.

A strategy profile is a vector of strategies of all players
(s1, . . . , sn) ∈ S1 × · · · × Sn.
We denote the set of all strategy profiles by S = S1 × · · · × Sn.

I ui : S → R is a function associating each strategy profile
s = (s1, . . . , sn) ∈ S with the payoff ui(s) to player i, for every
player i ∈ N.

Definition 3
A zero-sum game G is one in which for all s = (s1, . . . , sn) ∈ S we
have u1(s) + u2(s) + · · ·+ un(s) = 0. 21



Example: Prisoner’s Dilemma

I N = {1,2}
I S1 = S2 = {S ,C}
I u1,u2 are defined as follows:

I u1(C ,C) = −5, u1(C ,S) = 0, u1(S ,C) = −20,
u1(S ,S) = −1

I u2(C ,C) = −5, u2(C ,S) = −20, u2(S ,C) = 0,
u2(S ,S) = −1

(Is it zero sum?)

We usually write payoffs in the following form:

C S
C −5,−5 0,−20
S −20,0 −1,−1

or as two matrices:

C S
C −5 0
S −20 −1

C S
C −5 −20
S 0 −1
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Example: Cournot Duopoly

I Two identical firms, players 1 and 2, produce some good.
Denote by q1 and q2 quantities produced by firms 1 and 2, resp.

I The total quantity of products in the market is q1 + q2.

I The price of each item is κ − q1 − q2 (here κ is a positive
constant)

I Firms 1 and 2 have per item production costs c1 and c2, resp.

Question: How these firms are going to behave?

We may model the situation using a strategic-form game.

Strategic-form game model (N, (Si)i∈N , (ui)i∈N)

I N = {1,2}

I Si = [0,∞)

I u1(q1,q2) = q1(κ − q1 − q2) − q1c1
u2(q1,q2) = q2(κ − q1 − q2) − q2c2
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Solution Concepts

A solution concept is a method of analyzing games with the objective
of restricting the set of all possible outcomes to those that are more
reasonable than others.

We will use term equilibrium for any one of the strategy profiles that
emerges as one of the solution concepts’ predictions.
(I follow the approach of Steven Tadelis here, it is not completely standard)

Example 4
Nash equilibrium is a solution concept. That is, we “solve” games by
finding Nash equilibria and declare them to be reasonable outcomes.
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Assumptions

Throughout the lecture we assume that:

1. Players are rational: a rational player is one who chooses his
strategy to maximize his payoff.

2. Players are intelligent: An intelligent player knows everything
about the game (actions and payoffs) and can make any
inferences about the situation that we can make

3. Common knowledge: The fact that players are rational and
intelligent is a common knowledge among them.

4. Self-enforcement: Any prediction (or equilibrium) of a solution
concept must be self-enforcing.

Here 4. implies non-cooperative game theory: Each player is in
control of his actions, and he will stick to an action only if he finds it to
be in his best interest.

25



Evaluating Solution Concepts
In order to evaluate our theory as a methodological tool we use the
following criteria:

1. Existence (i.e. How often does it apply?): Solution concept
should apply to a wide variety of games.
E.g. We prove that mixed Nash equilibria exist in all two player finite
strategic-form games.

2. Uniqueness (How much does it restrict behavior?): We demand
our solution concept to restrict the behavior as much as possible.
E.g. So called strictly dominant strategy equilibria are always unique as
opposed to Nash eq.

The basic notion for evaluating "social outcome" is the following

Definition 5
A strategy profile s ∈ S Pareto dominates a strategy profile s′ ∈ S if
ui(s) ≥ ui(s′) for all i ∈ N, and ui(s) > ui(s′) for at least one i ∈ N.
A strategy profile s ∈ S is Pareto optimal if it is not Pareto dominated
by any other strategy profile.

We will see more measures of social outcome later.
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Solution Concepts – Pure Strategies

We will consider the following solution concepts:
I strict dominant strategy equilibrium
I iterated elimination of strictly dominated strategies (IESDS)
I rationalizability
I Nash equilibria

For now, let us concentrate on

pure strategies only!

I.e., no mixed strategies are allowed. We will generalize to
mixed setting later.
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Notation

I Let N = {1, . . . ,n} be a finite set and for each i ∈ N let Xi be
a set. Let X :=

∏
i∈N Xi = {(x1, . . . , xn) | xj ∈ Xj , j ∈ N}.

I For i ∈ N we define X−i :=
∏

j,i Xj , i.e.,

X−i = {(x1, . . . , xi−1, xi+1, . . . , xn) | xj ∈ Xj ,∀j , i}

I An element of X−i will be denoted by

x−i = (x1, . . . , xi−1, xi+1, . . . , xn)

We slightly abuse notation and write (xi , x−i) to denote
(x1, . . . , xi , . . . , xn) ∈ X .
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Strict Dominance in Pure Strategies

Definition 6
Let si , s′i ∈ Si be strategies of player i. Then s′i is strictly
dominated by si (write si � s′i ) if for any possible combination of
the other players’ strategies, s−i ∈ S−i , we have

ui(si , s−i) > ui(s′i , s−i) for all s−i ∈ S−i

Claim 1
An intelligent and rational player will never play a strictly
dominated strategy.
Clearly, intelligence implies that the player should recognize dominated
strategies, rationality implies that the player will avoid playing them.
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Strictly Dominant Strategy Equilibrium in Pure Str.

Definition 7
si ∈ Si is strictly dominant if every other pure strategy of player i is
strictly dominated by si .
Observe that every player has at most one strictly dominant strategy,
and that strictly dominant strategies do not have to exist.

Claim 2
Any rational player will play the strictly dominant strategy (if it exists).

Definition 8
A strategy profile s ∈ S is a strictly dominant strategy equilibrium if
si ∈ Si is strictly dominant for all i ∈ N.

Corollary 9
If the strictly dominant strategy equilibrium exists, it is unique and
rational players will play it.

Is the strictly dominant strategy equilibrium always Pareto optimal?
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Examples

In the Prisoner’s dilemma:

C S
C −5,−5 0,−20
S −20,0 −1,−1

(C ,C) is the strictly dominant strategy equilibrium (the only
profile that is not Pareto optimal!).

In the Battle of Sexes:

O F
O 2,1 0,0
F 0,0 1,2

no strictly dominant strategies exist.
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Indiana Jones and the Last Crusade
(Taken from Dixit & Nalebuff’s "The Art of Strategy" and a lecture of Robert
Marks)

Indiana Jones, his father, and the Nazis have all converged at the site
of the Holy Grail. The two Joneses refuse to help the Nazis reach the
last step. So the Nazis shoot Indiana’s dad. Only the healing power of
the Holy Grail can save the senior Dr. Jones from his mortal wound.
Suitably motivated, Indiana leads the way to the Holy Grail. But there
is one final challenge. He must choose between literally scores of
chalices, only one of which is the cup of Christ. While the right cup
brings eternal life, the wrong choice is fatal. The Nazi leader
impatiently chooses a beautiful gold chalice, drinks the holy water,
and dies from the sudden death that follows from the wrong choice.
Indiana picks a wooden chalice, the cup of a carpenter. Exclaiming
"There’s only one way to find out" he dips the chalice into the font and
drinks what he hopes is the cup of life. Upon discovering that he has
chosen wisely, Indiana brings the cup to his father and the water
heals the mortal wound.
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Indiana Jones and the Last Crusade (cont.)

Indy Goofed

I Although this scene adds excitement, it is somewhat
embarrassing that such a distinguished professor as Dr. Indiana
Jones would overlook his dominant strategy.

I He should have given the water to his father without testing it
first.

I If Indiana has chosen the right cup, his father is still saved.
I If Indiana has chosen the wrong cup, then his father dies

but Indiana is spared.

I Testing the cup before giving it to his father doesn’t help, since if
Indiana has made the wrong choice, there is no second chance
– Indiana dies from the water and his father dies from the wound.
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Iterated Strict Dominance in Pure Strategies

We know that no rational player ever plays strictly dominated
strategies.

As each player knows that each player is rational, each player knows
that his opponents will not play strictly dominated strategies and thus
all opponents know that effectively they are facing a "smaller" game.

As rationality is a common knowledge, everyone knows that everyone
knows that the game is effectively smaller.
Thus everyone knows, that nobody will play strictly dominated
strategies in the smaller game (and such strategies may indeed
exist).

Because it is a common knowledge that all players will perform this
kind of reasoning again, the process can continue until no more
strictly dominated strategies can be eliminated.
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IESDS
The previous reasoning yields the Iterated Elimination of Strictly
Dominated Strategies (IESDS):

Define a sequence D0
i ,D

1
i ,D

2
i , . . . of strategy sets of player i.

(Denote by Gk
DS the game obtained from G by restricting to Dk

i , i ∈ N.)

1. Initialize k = 0 and D0
i = Si for each i ∈ N.

2. For all players i ∈ N: Let Dk+1
i be the set of all pure strategies of

Dk
i that are not strictly dominated in Gk

DS .

3. Let k := k + 1 and go to 2.

We say that si ∈ Si survives IESDS if si ∈ Dk
i for all k = 0,1,2, . . .

Definition 10
A strategy profile s = (s1, . . . , sn) ∈ S is an IESDS equilibrium if each
si survives IESDS.
A game is IESDS solvable if it has a unique IESDS equilibrium.

Remark: If all Si are finite, then in 2. we may remove only some of the strictly
dominated strategies (not necessarily all). The result is not affected by the
order of elimination since strictly dominated strategies remain strictly
dominated even after removing some other strictly dominated strategies. 35



IESDS Examples

In the Prisoner’s dilemma:

C S
C −5,−5 0,−20
S −20,0 −1,−1

(C ,C) is the only one surviving the first round of IESDS.

In the Battle of Sexes:

O F
O 2,1 0,0
F 0,0 1,2

all strategies survive all rounds (i.e. IESDS ≡ anything may
happen, sorry)
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A Bit More Interesting Example

L C R
L 4,3 5,1 6,2
C 2,1 8,4 3,6
R 3,0 9,6 2,8

IESDS on greenboard!
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Political Science Example: Median Voter Theorem

Hotelling (1929) and Downs (1957)

I N = {1,2}

I Si = {1,2,3,4,5,6,7,8,9,10} (political and ideological spectrum)

I 10 voters belong to each position
(Here 10 means ten percent in the real-world)

I Voters vote for the closest candidate. If there is a tie, then 1
2 got

to each candidate

I Payoff: The number of voters for the candidate, each candidate
(selfishly) strives to maximize this number
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Political Science Example: Median Voter Theorem

I 1 and 10 are the (only) strictly dominated strategies⇒
D1

1 = D1
2 = {2, . . . ,9}

I in G1
DS , 2 and 9 are the (only) strictly dominated strategies⇒

D2
1 = D2

2 = {3, . . . ,8}
I . . .
I only 5,6 survive IESDS 39



Belief & Best Response

IESDS eliminated apparently unreasonable behavior (leaving
"reasonable" behavior implicitly untouched).

What if we rather want to actively preserve reasonable behavior?
What is reasonable? .... what we believe is reasonable :-).

Intuition:

I Imagine that your colleague did something stupid

I What would you ask him? Usually something like "What were
you thinking?"

I The colleague may respond with a reasonable description of his
belief in which his action was (one of) the best he could do
(You may of course question reasonableness of the belief)

Let us formalize this type of reasoning ....
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Belief & Best Response

Definition 11
A belief of player i is a pure strategy profile s−i ∈ S−i of his opponents.

Definition 12
A strategy si ∈ Si of player i is a best response to a belief s−i ∈ S−i if

ui(si , s−i) ≥ ui(s′i , s−i) for all s′i ∈ Si

Claim 3
A rational player who believes that his opponents will play s−i ∈ S−i
always chooses a best response to s−i ∈ S−i .

Definition 13
A strategy si ∈ Si is never best response if it is not a best response to
any belief s−i ∈ S−i .

A rational player never plays any strategy that is never best response.
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Best Response vs Strict Dominance

Proposition 1
If si is strictly dominated for player i, then it is never best
response.

The opposite does not have to be true in pure strategies:

X Y
A 1,1 1,1
B 2,1 0,1
C 0,1 2,1

Here A is never best response but is strictly dominated neither
by B, nor by C.
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Elimination of Stupid Strategies = Rationalizability
Using similar iterated reasoning as for IESDS, strategies that are
never best response can be iteratively eliminated.

Define a sequence R0
i ,R

1
i ,R

2
i , . . . of strategy sets of player i.

(Denote by Gk
Rat the game obtained from G by restricting to Rk

i , i ∈ N.)

1. Initialize k = 0 and R0
i = Si for each i ∈ N.

2. For all players i ∈ N: Let Rk+1
i be the set of all strategies of Rk

i
that are best responses to some beliefs in Gk

Rat .

3. Let k := k + 1 and go to 2.

We say that si ∈ Si is rationalizable if si ∈ Rk
i for all k = 0,1,2, . . .

Definition 14
A strategy profile s = (s1, . . . , sn) ∈ S is a rationalizable equilibrium if
each si is rationalizable.
We say that a game is solvable by rationalizability if it has a unique
rationalizable equilibrium.

(Warning: For some reasons, rationalizable strategies are almost always
defined using mixed strategies!)
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Rationalizability Examples

In the Prisoner’s dilemma:

C S
C −5,−5 0,−20
S −20,0 −1,−1

(C ,C) is the only rationalizable equilibrium.

In the Battle of Sexes:

O F
O 2,1 0,0
F 0,0 1,2

all strategies are rationalizable.
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Cournot Duopoly

G = (N, (Si)i∈N , (ui)i∈N)

I N = {1,2}

I Si = [0,∞)

I u1(q1,q2) = q1(κ − q1 − q2) − q1c1 = (κ − c1)q1 − q2
1 − q1q2

u2(q1,q2) = q2(κ − q2 − q1) − q2c2 = (κ − c2)q2 − q2
2 − q2q1

Assume for simplicity that c1 = c2 = c and denote θ = κ − c.

What is a best response of player 1 to a given q2 ?

Solve δu1
δq1

= θ − 2q1 − q2 = 0, which gives that q1 = (θ − q2)/2 is
the only best response of player 1 to q2.
Similarly, q2 = (θ − q1)/2 is the only best response of player 2 to q1.

Since q2 ≥ 0, we obtain that q1 is never best response iff q1 > θ/2.
Similarly q2 is never best response iff q2 > θ/2.

Thus R1
1 = R1

2 = [0, θ/2].

45



Cournot Duopoly

G = (N, (Si)i∈N , (ui)i∈N)

I N = {1,2}

I Si = [0,∞)

I u1(q1,q2) = q1(κ − q1 − q2) − q1c1 = (κ − c1)q1 − q2
1 − q1q2

u2(q1,q2) = q2(κ − q2 − q1) − q2c2 = (κ − c2)q2 − q2
2 − q2q1

Assume for simplicity that c1 = c2 = c and denote θ = κ − c.

Now, in G1
Rat , we still have that q1 = (θ− q2)/2 is the best response to

q2, and q2 = (θ − q1)/2 the best resp. to q1

Since q2 ∈ R1
2 = [0, θ/2], we obtain that q1 is never best response iff

q1 ∈ [0, θ/4)
Similarly q2 is never best response iff q2 ∈ [0, θ/4)

Thus R2
1 = R2

2 = [θ/4, θ/2].

....

46



Cournot Duopoly (cont.)
G = (N, (Si)i∈N , (ui)i∈N)

I N = {1,2}
I Si = [0,∞)

I u1(q1,q2) = q1(κ − q1 − q2) − q1c1 = (κ − c1)q1 − q2
1 − q1q2

u2(q1,q2) = q2(κ − q2 − q1) − q2c2 = (κ − c2)q2 − q2
2 − q2q1

Assume for simplicity that c1 = c2 = c and denote θ = κ − c.

In general, after 2k iterations we have R2k
i = R2k

i = [`k , rk ] where
I rk = (θ − `k−1)/2 for k ≥ 1
I `k = (θ − rk )/2 for k ≥ 1 and `0 = 0

Solving the recurrence we obtain

I `k = θ/3 −
(

1
4

)k
θ/3

I rk = θ/3 +
(

1
4

)k−1
θ/6

Hence, limk→∞ `k = limk→∞ rk = θ/3 and thus (θ/3, θ/3) is the only
rationalizable equilibrium. 47



Cournot Duopoly (cont.)

G = (N, (Si)i∈N , (ui)i∈N)

I N = {1,2}

I Si = [0,∞)

I u1(q1,q2) = q1(κ − q1 − q2) − q1c1 = (κ − c1)q1 − q2
1 − q1q2

u2(q1,q2) = q2(κ − q2 − q1) − q2c2 = (κ − c2)q2 − q2
2 − q2q1

Assume for simplicity that c1 = c2 = c and denote θ = κ − c.

Are qi = θ/3 Pareto optimal? NO!

u1(θ/3, θ/3) = u2(θ/3, θ/3) = θ2/9

but

u1(θ/4, θ/4) = u2(θ/4, θ/4) = θ2/8
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IESDS vs Rationalizability in Pure Strategies

Theorem 15
Assume that S is finite. Then for all k we have that Rk

i ⊆ Dk
i . That is,

in particular, all rationalizable strategies survive IESDS.
The opposite inclusion does not have to be true in pure strategies:

X Y
A 1,1 1,1
B 2,1 0,1
C 0,1 2,1

Recall that A is never best response but is strictly dominated by
neither B, nor C. That is, A survives IESDS but is not rationalizable.
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Proof of Theorem 15
By induction on k . For k = 0 we have that R0

i = Si = D0
i by definition.

Now assume that Rk
i ⊆ Dk

i for some k ≥ 0.

We prove that Rk+1
i ⊆ Dk+1

i by showing the following:

For all s∗i ∈ Rk
i ⊆ Dk

i : If s∗i < Dk+1
i , then s∗i < Rk+1

i

Let us fix s∗i ∈ Rk
i such that s∗i < Dk+1

i . By definition, it suffices to
prove that for every sk

−i ∈ Rk
−i there exists sk

i ∈ Ri such that

ui(sk
i , s

k
−i) > ui(s∗i , s

k
−i) (1)

(In words, for every possible behavior of opponents of player i in Gk
Rat , player i

has a strictly better strategy than s∗i in Gk
Rat )

As s∗i < Dk+1
i , the strategy s∗i must be strictly dominated in Gk

DS by
a strategy s̄i . That is for all sk

−i ∈ Dk
−i ⊇ Rk

−i we have

ui(s̄i , sk
−i) > ui(s∗i , s

k
−i) (2)

(Now note that if s̄i ∈ Rk
i ⊆ Dk

i , then we are done. Indeed, it suffices to put
sk

i := s̄i and the equation (1) will be satisfied for all sk
−i ∈ Dk

−i ⊇ Rk
−i . However,

it does not have to be the case that s̄i ∈ Rk
i ) 50



Proof of Theorem 15 (cont.)

Clearly, there is ` ≤ k such that s̄i ∈ R`
i .

(Note that s̄i does not have to strictly dominate s∗i in G`
Rat since R`

−i may be
larger than Dk

−i)

Recall that we need to find sk
i ∈ Rk

i for every given sk
−i ∈ Rk

−i so that
the inequality (1) holds.
(That is, sk

i may be different for different sk
−i ’s)

Let us fix sk
−i ∈ Rk

−i ⊆ Dk
−i .

Let sk
i ∈ R`

i be a strategy maximizing ui(si , sk
−i) over all si ∈ R`

i .
In particular, we obtain the inequality (1):

ui(sk
i , s

k
−i) ≥ ui(s̄i , sk

−i) > ui(s∗i , s
k
−i)

Finally, note that sk
i ∈ Rk

i follows immediately from the fact that sk
i is a

best response to sk
−i in all games G`

Rat , . . . ,G
k
Rat

(Indeed, even after removing some strategies (other than sk
i and sk

−i), sk
i

remains a best resp. to sk
−i)
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Pinning Down Beliefs – Nash Equilibria

Criticism of previous approaches:

I Strictly dominant strategy equilibria often do not exist

I IESDS and rationalizability may not remove any strategies

Typical example is Battle of Sexes:

O F
O 2,1 0,0
F 0,0 1,2

Here all strategies are equally reasonable according to the above
concepts.

But are all strategy profiles really equally reasonable?
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Pinning Down Beliefs – Nash Equilibria

O F
O 2,1 0,0
F 0,0 1,2

Assume that each player has a belief about strategies of other
players.

By Claim 3, each player plays a best response to his beliefs.

Is (O ,F) as reasonable as (O ,O) in this respect?

Note that if player 1 believes that player 2 plays O , then playing O is
reasonable, and if player 2 believes that player 1 plays F , then playing
F is reasonable. But such beliefs cannot be correct together!

(O ,O) can be obtained as a profile where each player plays the best
response to his belief and the beliefs are correct.
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Nash Equilibrium

Nash equilibrium can be defined as a set of beliefs (one for each
player) and a strategy profile in which every player plays a best
response to his belief and each strategy of each player is consistent
with beliefs of his opponents.

A usual definition is following:

Definition 16
A pure-strategy profile s∗ = (s∗1, . . . , s

∗
n) ∈ S is a (pure) Nash

equilibrium if s∗i is a best response to s∗
−i for each i ∈ N, that is

ui(s∗i , s
∗

−i) ≥ ui(si , s∗−i) for all si ∈ Si and all i ∈ N

Note that this definition is equivalent to the previous one in the sense that s∗
−i

may be considered as the (consistent) belief of player i to which he plays a
best response s∗i
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Nash Equilibria Examples

In the Prisoner’s dilemma:

C S
C −5,−5 0,−20
S −20,0 −1,−1

(C ,C) is the only Nash equilibrium.

In the Battle of Sexes:

O F
O 2,1 0,0
F 0,0 1,2

only (O ,O) and (F ,F) are Nash equilibria.

In Cournot Duopoly, (θ/3, θ/3) is the only Nash equilibrium.
(Best response relations: q1 = (θ − q2)/2 and q2 = (θ − q1)/2 are both
satisfied only by q1 = q2 = θ/3)
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Example: Stag Hunt
Story:
I Two (in some versions more than two) hunters, players 1 and 2,

can each choose to hunt

I stag (S) = a large tasty meal

I hare (H) = also tasty but small

I Hunting stag is much more demanding and forces of both
players need to be joined (hare can be hunted individually)

Strategy-form game model: N = {1,2}, S1 = S2 = {S ,H}, the payoff:

S H
S 5,5 0,3
H 3,0 3,3

Two NE: (S ,S), and (H,H), where the former Pareto dominates the
latter! Which one is more reasonable?

56



Example: Stag Hunt
Strategy-form game model: N = {1,2}, S1 = S2 = {S ,H}, the payoff:

S H
S 5,5 0,3
H 3,0 3,3

Two NE: (S ,S), and (H,H), where the former Pareto dominates the
latter! Which one is more reasonable?

If each player believes that the other one will go for hare, then (H,H)
is a reasonable outcome⇒ a society of individualists who do not
cooperate at all.

If each player believes that the other will cooperate, then this
anticipation is self-fulfilling and results in what can be called
a cooperative society.

This is supposed to explain that in real world there are societies that have
similar endowments, access to technology and physical environment but
have very different achievements, all because of self-fulfilling beliefs (or
norms of behavior).

57



Example: Stag Hunt

Strategy-form game model: N = {1,2}, S1 = S2 = {S ,H}, the payoff:

S H
S 5,5 0,3
H 3,0 3,3

Two NE: (S ,S), and (H,H), where the former Pareto dominates the
latter! Which one is more reasonable?

Another point of view: (H,H) is less risky

Minimum secured by playing S is 0 as opposed to 3 by playing H
(We will get to this minimax principle later)

So it seems to be rational to expect (H,H) (?)
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Nash Equilibria vs Previous Concepts

Theorem 17

1. If s∗ is a strictly dominant strategy equilibrium, then it is the
unique Nash equilibrium.

2. Each Nash equilibrium is rationalizable and survives IESDS.

3. If S is finite, neither rationalizability, nor IESDS creates new
Nash equilibria.

Proof: Homework!

Corollary 18
Assume that S is finite. If rationalizability or IESDS result in a unique
strategy profile, then this profile is a Nash equilibrium.

59



Interpretations of Nash Equilibria

Except the two definitions, usual interpretations are following:
I When the goal is to give advice to all of the players in a

game (i.e., to advise each player what strategy to choose),
any advice that was not an equilibrium would have the
unsettling property that there would always be some player
for whom the advice was bad, in the sense that, if all other
players followed the parts of the advice directed to them, it
would be better for some player to do differently than he
was advised. If the advice is an equilibrium, however, this
will not be the case, because the advice to each player is
the best response to the advice given to the other players.

I When the goal is prediction rather than prescription, a
Nash equilibrium can also be interpreted as a potential
stable point of a dynamic adjustment process in which
individuals adjust their behavior to that of the other players
in the game, searching for strategy choices that will give
them better results.
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Static Games of Complete Information Mixed Strategies
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Let’s Mix It
As pointed out before, neither of the solution concepts has to exist in
pure strategies

Example: Rock-Paper-sCissors

R P C
R 0,0 −1,1 1,−1
P 1,−1 0,0 −1,1
C −1,1 1,−1 0,0

There are no strictly dominant pure strategies

No strategy is strictly dominated (IESDS removes nothing)

Each strategy is a best response to some strategy of the opponent
(rationalizability removes nothing)

No pure Nash equilibria: No pure strategy profile allows each player
to play a best response to the strategy of the other player

How to solve this?
Let the players randomize their choice of pure strategies ....
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Probability Distributions

Definition 19
Let A be a finite set. A probability distribution over A is a function
σ : A → [0,1] such that

∑
a∈A σ(a) = 1.

We denote by ∆(A) the set of all probability distributions over A .

We denote by supp(σ) the support of σ, that is the set of all a ∈ A
satisfying σ(a) > 0.

Example 20
Consider A = {a,b , c} and a function σ : A → [0,1] such that
σ(a) = 1

4 , σ(b) = 3
4 , and σ(c) = 0. Then σ ∈ ∆(A) and

supp(σ) = {a,b}.
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Mixed Strategies
Let us fix a strategic-form game G = (N, (Si)i∈N , (ui)i∈N).

From now on, assume that all Si are finite!

Definition 21
A mixed strategy of player i is a probability distribution σ ∈ ∆(Si) over
Si . We denote by Σi = ∆(Si) the set of all mixed strategies of player i.
We define Σ := Σ1 × · · · × Σn, the set of all mixed strategy profiles.

Recall that by Σ−i we denote the set Σ1 × · · ·Σi−1 × Σi+1 × · · · × Σn

Elements of Σ−i are denoted by σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn).

We identify each si ∈ Si with a mixed strategy σ that assigns
probability one to si (and zero to other pure strategies).

For example, in rock-paper-scissors, the pure strategy R corresponds

to σi which satisfies σi(X) =

1 X = R
0 otherwise
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Mixed Strategies

Sometimes we assume Si = {1, . . . ,mi}, here mi ∈ {1,2, . . .}, for
all i ∈ N.

Then every mixed strategy σi is a vector
σi = (σi(1), . . . , σi(mi))> ∈ [0,1]mi so that

σi(1) + · · ·+ σi(mi) = 1
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Mixed Strategy Profiles
Let σ = (σ1, . . . , σn) be a mixed strategy profile.

Intuitively, we assume that each player i randomly chooses his pure
strategy according to σi and independently of his opponents.

Thus for s = (s1, . . . , sn) ∈ S = S1 × · · · × Sn we have that

σ(s) :=

n∏
i=1

σi(si)

is the probability that the players choose the pure strategy profile s
according to the mixed strategy profile σ, and

σ−i(s−i) :=

n∏
k,i

σk (sk )

is the probability that the opponents of player i choose s−i ∈ S−i when
they play according to the mixed strategy profile σ−i ∈ Σ−i .

(We abuse notation a bit here: σ denotes two things, a vector of mixed
strategies as well as a probability distribution on S (the same for σ−i)
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Mixed Strategies – Example

R P C
R 0,0 −1,1 1,−1
P 1,−1 0,0 −1,1
C −1,1 1,−1 0,0

An example of a mixed strategy σ1: σ1(R) = 1
2 , σ1(P) = 1

3 , σ1(C) = 1
6 .

Sometimes we write σ1 as ( 1
2 (R), 1

3 (P), 1
6 (C)), or only ( 1

2 ,
1
3 ,

1
6 ) if the

order of pure strategies is fixed.

Consider a mixed strategy profile (σ1, σ2) where
σ1 = ( 1

2 (R), 1
3 (P), 1

6 (C)) and σ2 = ( 1
3 (R), 2

3 (P),0(C)).
Then the probability σ(R ,P) that the pure strategy profile (R ,P) will
be chosen by players playing the mixed profile (σ1, σ2) is

σ1(R) · σ2(P) =
1
2
·

2
3

=
1
3
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Expected Payoff

... but now what is the suitable notion of payoff?

Definition 22
The expected payoff of player i under a mixed strategy profile σ ∈ Σ is

ui(σ) :=
∑
s∈S

σ(s)ui(s)

=
∑
s∈S

n∏
k=1

σk (sk )ui(s)


I.e., it is the "weighted average" of what player i wins under each pure
strategy profile s, weighted by the probability of that profile.

Assumption: Every rational player strives to maximize his own
expected payoff.
(This assumption is not always completely convincing ...)
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Expected Payoff – Example
Matching Pennies:

H T
H 1,−1 −1,1
T −1,1 1,−1

Each player secretly turns a penny to heads or tails, and then they reveal
their choices simultaneously. If the pennies match, player 1 (row) wins, if they
do not match, player 2 (column) wins.

Consider σ1 = ( 1
3 (H), 2

3 (T)) and σ2 = ( 1
4 (H), 3

4 (T))

u1(σ1, σ2) =
∑

(X ,Y)∈{H,T }2
σ1(X)σ2(Y)u1(X ,Y)

=
1
3

1
4

1 +
1
3

3
4

(−1) +
2
3

1
4

(−1) +
2
3

3
4

1 =
1
6

u2(σ1, σ2) =
∑

(X ,Y)∈{H,T }2
σ1(X)σ2(Y)u2(X ,Y)

=
1
3

1
4

(−1) +
1
3

3
4

1 +
2
3

1
4

1 +
2
3

3
4

(−1) = −
1
6 69



"Decomposition" of Expected Payoff

Consider the matching pennies example from the previous slide:

H T
H 1,−1 −1,1
T −1,1 1,−1

together with some mixed
strategies σ1 and σ2.

We prove the following important property of the expected payoff:

u1(σ1, σ2) =
∑

X∈{H,T }

σ1(X)u1(X , σ2)

An intuition behind this equality is following:
I u1(σ1, σ2) is the expected payoff of player 1 in the following experiment:

Both players simultaneously and independently choose their pure
strategies X ,Y according to σ1, σ2, resp., and then player 1 collects his
payoff u1(X ,Y).

I
∑

X∈{H,T } σ1(X)u1(X , σ2) is the expected payoff of player 1 in the
following: Player 1 chooses his pure strategy X and then uses it against
the mixed strategy σ2 of player 2. Then player 2 chooses Y according to
σ2 independently of X , and player 1 collects the payoff u1(X ,Y).

As Y does not depend on X in neither experiment, we obtain the above
equality of expected payoffs. 70



"Decomposition" of Expected Payoff

Consider the matching pennies example from the previous slide:

H T
H 1,−1 −1,1
T −1,1 1,−1

together with some mixed
strategies σ1 and σ2.

A formal proof is straightforward:

u1(σ1, σ2) =
∑

(X ,Y)∈{H,T }2
σ1(X)σ2(Y)u1(X ,Y)

=
∑

X∈{H,T }

∑
Y∈{H,T }

σ1(X)σ2(Y)u1(X ,Y)

=
∑

X∈{H,T }

σ1(X)
∑

Y∈{H,T }

σ2(Y)u1(X ,Y)

=
∑

X∈{H,T }

σ1(X)u1(X , σ2)

(In the last equality we used the fact that X is identified with a mixed strategy
assigning one to X .)
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"Decomposition" of Expected Payoff

Consider the matching pennies example from the previous slide:

H T
H 1,−1 −1,1
T −1,1 1,−1

together with some mixed
strategies σ1 and σ2.

Similarly,

u1(σ1, σ2) =
∑

(X ,Y)∈{H,T }2
σ1(X)σ2(Y)u1(X ,Y)

=
∑

X∈{H,T }

∑
Y∈{H,T }

σ1(X)σ2(Y)u1(X ,Y)

=
∑

Y∈{H,T }

∑
X∈{H,T }

σ1(X)σ2(Y)u1(X ,Y)

=
∑

Y∈{H,T }

σ2(Y)
∑

X∈{H,T }

σ1(X)u1(X ,Y)

=
∑

Y∈{H,T }

σ2(Y)u1(σ1,Y)
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Expected Payoff – "Decomposition" in General

Lemma 23
For every mixed strategy profile σ ∈ Σ and every k ∈ N we have

ui(σ) =
∑

sk∈Sk

σk (sk ) · ui(sk , σ−k ) =
∑

s−k∈S−k

σ−k (s−k ) · ui(σk , s−k )

Lemma 23 immediately implies that

I each ui(σ) is affine in each σk (sk ),

I Also, ui(σ) = ui(σ1, . . . , σn) is linear in each σk .
Indeed, assuming w.l.o.g. that Sk = {1, . . . ,mk },

ui(σ) =
∑

sk ∈Sk

σk (sk ) · ui(sk , σ−k ) =

mk∑
`=1

σk (`) · ui(`, σ−k )

is the scalar product of the vector σk = (σk (1), . . . , σk (mk )) with
the vector (ui(1, σ−k ), . . . ,ui(mk , σ−k )).
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Expected Payoff – Pure Strategy Bounds
Before proving Lemma 23, we prove the following simple corollary.

Corollary 24
For all i, k ∈ N and σ ∈ Σ we have that

I minsk∈Sk ui(sk , σ−k ) ≤ ui(σ) ≤ maxsk∈Sk ui(sk , σ−k )

I mins−k∈S−k ui(σk , s−k ) ≤ ui(σ) ≤ maxs−k∈S−k ui(σk , s−k )

Proof.
We prove ui(σ) ≤ maxsk∈Sk ui(sk , σ−k ) the rest is similar. Define
B := maxsk∈Sk ui(sk , σ−k ). Then

ui(σ) =
∑

sk∈Sk

σk (sk ) · ui(sk , σ−k )

=
∑

sk∈Sk

σk (sk ) · (B − (B − ui(sk , σ−k )))

≤

∑
sk∈Sk

σk (sk ) · B

= B

�
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Proof of Lemma 23

ui(σ) =
∑
s∈S

σ(s)ui(s) =
∑
s∈S

n∏
`=1

σ`(s`)ui(s)

=
∑
s∈S

σk (sk )

n∏
`,k

σ`(s`)ui(s)

=
∑

sk∈Sk

∑
s−k∈S−k

σk (sk )

n∏
`,k

σ`(s`)ui(sk , s−k )

=
∑

sk∈Sk

∑
s−k∈S−k

σk (sk )σ−k (s−k )ui(sk , s−k )
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Proof of Lemma 23 (cont.)

The first equality:

ui(σ) =
∑

sk∈Sk

∑
s−k∈S−k

σk (sk )σ−k (s−k )ui(sk , s−k )

=
∑

sk∈Sk

σk (sk )
∑

s−k∈S−k

σ−k (s−k )ui(sk , s−k )

=
∑

s−k∈S−k

σk (sk )ui(sk , σ−k )
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Proof of Lemma 23 (cont.)

The second equality:

ui(σ) =
∑

sk∈Sk

∑
s−k∈S−k

σk (sk )σ−k (s−k )ui(sk , s−k )

=
∑

s−k∈S−k

∑
sk∈Sk

σk (sk )σ−k (s−k )ui(sk , s−k )

=
∑

s−k∈S−k

σ−k (s−k )
∑

sk∈Sk

σk (sk )ui(sk , s−k )

=
∑

s−k∈S−k

σ−k (s−k )ui(σk , s−k )
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Solution Concepts

We revisit the following solution concepts in mixed strategies:
I strict dominant strategy equilibrium
I IESDS equilibrium
I rationalizable equilibria
I Nash equilibria

From now on, when I say a strategy I implicitly mean a

mixed strategy.

In order to deal with efficiency issues we assume that the size of the game G
is defined by |G| := |N|+

∑
i∈N |Si |+

∑
i∈N |ui | where |ui | =

∑
s∈S |ui(s)| and

|ui(s)| is the length of a binary encoding of ui(s) (we assume that rational
numbers are encoded as quotients of two binary integers)
Note that, in particular, |G| > |S |.

78



Strict Dominance in Mixed Strategies

Definition 25
Let σi , σ′i ∈ Σi be (mixed) strategies of player i. Then σ′i is
strictly dominated by σi (write σ′i ≺ σi) if

ui(σi , σ−i) > ui(σ
′

i , σ−i) for all σ−i ∈ Σ−i

Example 26

X Y
A 3 0
B 0 3
C 1 1

Is there a strictly dominated strategy?
Question: Is there a game with at least one strictly dominated
strategy but without strictly dominated pure strategies?

79



Strictly Dominant Strategy Equilibrium

Definition 27
σi ∈ Σi is strictly dominant if every other mixed strategy of player i is
strictly dominated by σi .

Definition 28
A strategy profile σ ∈ Σ is a strictly dominant strategy equilibrium if
σi ∈ Σi is strictly dominant for all i ∈ N.

Proposition 2
If the strictly dominant strategy equilibrium exists, it is unique, all its
strategies are pure, and rational players will play it.

Proof.
Let σ∗ = (σ∗1, . . . , σ

∗
n) ∈ Σi be the strictly dominant strategy equilibrium.

By Corollary 24, for every i ∈ N and σ−i ∈ Σ−i , there must exist si ∈ Si
such that ui(σ∗i , σ−i) ≤ ui(si , σ−i).

But then σ∗i = si since σ∗i is strictly dominant.
�
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Computing Strictly Dominant Strategy Equilibrium
How to decide whether there is a strictly dominant strategy
equilibrium s = (s1, . . . , sn) ∈ S ?

I.e. whether for a given si ∈ Si , all σi ∈ Σi r {si} and all σ−i ∈ Σ−i :

ui(si , σ−i) > ui(σi , σ−i)

There are some serious issues here:
I Obviously there are uncountably many possible σi and σ−i .
I ui(σi , σ−i) is nonlinear, and for more that two players even

ui(si , σ−i) is nonlinear in probabilities assigned to pure strategies.

First, we prove the following useful proposition using Lemma 23:

Lemma 29
σi strictly dominates σ′i iff for all pure strategy profiles s−i ∈ S−i :

ui(σi , s−i) > ui(σ
′

i , s−i)

Proof: Simple application of the second equality from Lemma 23.
In other words, it suffices to check the strict dominance only with
respect to all pure profiles of opponents. 81



Computing Strictly Dominant Strategy Equilibrium

How to decide whether for a given si ∈ Si , all σi ∈ Σi r {si} and all
s−i ∈ S−i we have

ui(si , s−i) > ui(σi , s−i)

Lemma 30
ui(si , s−i) > ui(σi , s−i) for all σi ∈ Σi r {si} and all s−i ∈ S−i

iff

ui(si , s−i) > ui(s′i , s−i) for all s′i ∈ Si r {si} and all s−i ∈ S−i .
Proof: Simple application of the first equality from Lemma 23.

Thus it suffices to check whether ui(si , s−i) > ui(s′i , s−i) for all s′i ∈ Si
and all s−i ∈ S−i .

This can easily be done in time polynomial w.r.t. |G|.
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IESDS in Mixed Strategies

Define a sequence D0
i ,D

1
i ,D

2
i , . . . of strategy sets of player i.

(Denote by Gk
DS the game obtained from G by restricting the pure strategy

sets to Dk
i , i ∈ N.)

1. Initialize k = 0 and D0
i = Si for each i ∈ N.

2. For all players i ∈ N: Let Dk+1
i be the set of all pure strategies of

Dk
i that are not strictly dominated in Gk

DS by mixed strategies.

3. Let k := k + 1 and go to 2.

We say that si ∈ Si survives IESDS if si ∈ Dk
i for all k = 0,1,2, . . .

Definition 31
A strategy profile s = (s1, . . . , sn) ∈ S is an IESDS equilibrium if each
si survives IESDS.
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IESDS – Algorithm

Note that in step 2 it is not sufficient to consider pure strategies.
Consider the following zero sum game:

X Y
A 3 0
B 0 3
C 1 1

C is strictly dominated by (σ1(A), σ1(B), σ1(C)) = ( 1
2 ,

1
2 ,0) but no

strategy is strictly dominated in pure strategies.

However, there are uncountably many mixed strategies that may
dominate a given pure strategy ...

Recall ui(σi , σ−i) is linear in σi . So to decide strict dominance, we use
linear programming ...
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Intermezzo: Linear Programming

Linear programming is a technique for optimization of a linear
objective function, subject to linear (non-strict) inequality constraints.

Formally, a linear program in so called canonical form looks like this:

maximize
m∑

j=1

cjxj

subject to
m∑

j=1

aijxj ≤ bi 1 ≤ i ≤ n

xj ≥ 0 1 ≤ j ≤ m

(objective function)

(constraints)

Here aij , bk and cj are real numbers and xj ’s are real variables.

A feasible solution is an assignment of real numbers to the variables
xj ,1 ≤ j ≤ m, so that the constraints are satisfied.

An optimal solution is a feasible solution which maximizes
the objective function

∑m
j=1 cjxj .
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Intermezzo: Complexity of Linear Programming

We assume that coefficients aij , bk and cj are encoded in binary
(more precisely, as fractions of two integers encoded in binary).

Theorem 32 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)
There is an algorithm which for any linear program computes an
optimal solution in polynomial time.
The algorithm uses so called ellipsoid method.

In practice, the Khachiyan’s is not used. Usually simplex algorithm
is used even though its theoretical complexity is exponential.
There is also a polynomial time algorithm (by Karmarkar) which has
better complexity upper bounds than the Khachiyan’s and sometimes
works even better than the simplex.

There exist several advanced linear programming solvers (usually
parts of larger optimization packages) implementing various
heuristics for solving large scale problems, sensitivity analysis, etc.

For more info see
http://en.wikipedia.org/wiki/Linear_programming#Solvers_and_scripting_.28programming.29_languages
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IESDS Algorithm – Strict Dominance Step

So how do we use linear programming to decide strict dominance in
step 2 of IESDS procedure?
I.e. whether for a given si there exists σi such that for all σ−i we have

ui(σi , σ−i) > ui(si , σ−i)

Recall that by Lemma 29 we have that σi is strictly dominates σ′i iff for
all pure strategy profiles s−i ∈ S−i :

ui(σi , s−i) > ui(σ
′

i , s−i)

In other words, it suffices to check the strict dominance only with
respect to all pure profiles of opponents.
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IESDS Algorithm – Strict Dominance Step

Recall that ui(σi , s−i) =
∑

s′i ∈Si
σi(s′i )ui(s′i , s−i).

So to decide whether si ∈ Si is strictly dominated by some mixed
strategy σi , it suffices to solve the following system:∑
s′i ∈Si

xs′i · ui(s′i , s−i) > ui(si , s−i) s−i ∈ S−i

xs′i ≥ 0 s′i ∈ Si∑
s′i ∈Si

xs′i = 1

(Here each variable xs′i corresponds to the probability σi(s′i ) assigned
by the strictly dominant strategy σi to s′i )

Unfortunately, this is a "strict linear program" ... How to deal with
the strict inequality?

88



IESDS Algorithm – Complexity

Introduce a new variable y to be maximized under the following
constraints:∑
s′i ∈Si

xs′i · ui(s′i , s−i) ≥ ui(si , s−i) + y s−i ∈ S−i

xs′i ≥ 0 s′i ∈ Si∑
s′i ∈Si

xs′i = 1

y ≥ 0

Now si is strictly dominated iff a solution maximizing y satisfies y > 0

The size of the above program is polynomial in |G|.

So the step 2 of IESDS can be executed in polynomial time.

As every iteration of IESDS removes at least one pure strategy,
IESDS runs in time polynomial in |G|.
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IESDS in Mixed Strategie – Example

X Y
A 3 0
B 0 3
C 1 1

Let us have a look at the first iteration of IESDS.

Observe that A ,B are not strictly dominated by any mixed strategy.

Let us construct the linear program for deciding whether C is strictly
dominated: The program maximizes y under the following constraints:

3xA + 0xB + xC ≥ 1 + y

0xA + 3xB + xC ≥ 1 + y

xA , xB , xC ≥ 0

xA + xB + xC = 1

y ≥ 0

The maximum y = 1
2 is attained at xA = 1

2 and xB = 1
2 .
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Best Response

Definition 33
A strategy σi ∈ Σi of player i is a best response to a strategy profile
σ−i ∈ Σ−i of his opponents if

ui(σi , σ−i) ≥ ui(σ
′

i , σ−i) for all σ′i ∈ Σi

We denote by BR i(σ−i) ⊆ Σi the set of all best responses of player i to
the strategy profile of opponents σ−i ∈ Σ−i .
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Best Response – Example

Consider a game with the following payoffs of player 1:

X Y
A 2 0
B 0 2
C 1 1

I Player 1 (row) plays σ1 = (a(A),b(B), c(C)).

I Player 2 (column) plays (q(X), (1 − q)(Y)) (we write just q).

Compute BR1(q).
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Rationalizability in Mixed Strategies (Two Players)

For simplicity, we temporarily switch to two-player setting N = {1,2}.

Definition 34
A (mixed) belief of player i ∈ {1,2} is a mixed strategy σ−i of his
opponent.
(A general definition works with so called correlated beliefs that are arbitrary
distributions on S−i , the notion of the expected payoff needs to be adjusted,
we are not going in this direction ....)

Assumption: Any rational player with a belief σ−i always plays a best
response to σ−i .

Definition 35
A strategy σi ∈ Σi of player i ∈ {1,2} is never best response if it is not
a best response to any belief σ−i .

No rational player plays a strategy that is never best response.
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Rationalizability in Mixed Strategies (Two Players)

Define a sequence R0
i ,R

1
i ,R

2
i , . . . of strategy sets of player i.

(Denote by Gk
Rat the game obtained from G by restricting the pure strategy

sets to Rk
i , i ∈ N.)

1. Initialize k = 0 and R0
i = Si for each i ∈ N.

2. For all players i ∈ N: Let Rk+1
i be the set of all strategies of Rk

i
that are best responses to some (mixed) beliefs in Gk

Rat .

3. Let k := k + 1 and go to 2.

We say that si ∈ Si is rationalizable if si ∈ Rk
i for all k = 0,1,2, . . .

Definition 36
A strategy profile s = (s1, . . . , sn) ∈ S is a rationalizable equilibrium if
each si is rationalizable.
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Rationalizability vs IESDS (Two Players)

X Y
A 3 0
B 0 3
C 1 1

I Player 1 (row) plays
σ1 = (a(A),b(B), c(C))

I player 2 (column) plays
(q(X), (1 − q)(Y)) (we write just q)

What strategies of player 1 are never best responses?

What strategies of player 1 are strictly dominated?

Observation: The set of strictly dominated strategies coincides with
the set of never best responses!

... and this holds in general for two player games:

Theorem 37
Assume N = {1,2}. A pure strategy si is never best response to any
belief σ−i ∈ Σ−i iff si is strictly dominated by a strategy σi ∈ Σi .
It follows that a strategy of Si survives IESDS iff it is rationalizable.
(The theorem is true also for an arbitrary number of players but correlated
beliefs need to be used.)
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Mixed Nash Equilibrium

Definition 38
A mixed-strategy profile σ∗ = (σ∗1, . . . , σ

∗
n) ∈ Σ is a (mixed) Nash

equilibrium if σ∗i is a best response to σ∗
−i for each i ∈ N, that is

ui(σ
∗

i , σ
∗

−i) ≥ ui(σi , σ
∗

−i) for all σi ∈ Σi and all i ∈ N

An interpretation: each σ∗
−i can be seen as a belief of player i against which

he plays a best response σ∗i .

Given a mixed strategy profile of opponents σ−i ∈ Σ−i , we denote by
BR i(σ−i) the set of all σi ∈ Σi that are best responses to σ−i .

Then σ∗ is a Nash equilibrium iff σ∗i ∈ BR i(σ∗−i) for all i ∈ N.

Theorem 39 (Nash 1950)
Every finite game in strategic form has a Nash equilibrium.
This is THE fundamental theorem of game theory.
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Example: Matching Pennies

H T
H 1,−1 −1,1
T −1,1 1,−1

Player 1 (row) plays (p(H), (1 − p)(T)) (we write just p) and player 2
(column) plays (q(H), (1 − q)(T)) (we write q).

Compute all Nash equilibria.

What are the expected payoffs of playing pure strategies for player 1?

v1(H,q) = 2q − 1 and v1(T ,q) = 1 − 2q

Then
v1(p,q) = pv1(H,q) + (1 − p)v1(T ,q) = p(2q − 1) + (1 − p)(1 − 2q).

We obtain the best-response correspondence BR1:

BR1(q) =


p = 0 if q < 1

2

p ∈ [0,1] if q = 1
2

p = 1 if q > 1
2
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Example: Matching Pennies

H T
H 1,−1 −1,1
T −1,1 1,−1

Player 1 (row) plays (p(H), (1 − p)(T)) (we write just p) and player 2
(column) plays (q(H), (1 − q)(T)) (we write q).

Compute all Nash equilibria.

Similarly for player 2 :

v2(p,H) = 1 − 2p and v1(p,T) = 2p − 1

We obtain best-response relation BR2:

BR2(p) =


q = 1 if p < 1

2

q ∈ [0,1] if p = 1
2

q = 0 if p > 1
2

The only "intersection" of BR1 and BR2 is the only Nash equilibrium
σ1 = σ2 = ( 1

2 ,
1
2 ).
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Computing Mixed Nash Equilibria

Lemma 40
σ∗ = (σ∗1, . . . , σ

∗
n) ∈ Σ is a Nash equilibrium iff there exist

w1, . . . ,wn ∈ R such that the following holds:

I For all i ∈ N and all si ∈ supp(σ∗i ) we have ui(si , σ∗−i) = wi .

I For all i ∈ N and all si < supp(σ∗i ) we have ui(si , σ∗−i) ≤ wi .

Here, the right hand side implies ui(σ∗) = wi .

Proof.
The fact that the right hand side implies ui(σ∗) = wi follows
immediately from Lemma 23:

ui(σ
∗) =

∑
si∈Si

σ∗(si)ui(si , σ
∗

−i) =
∑

si∈supp(σ∗i )

σ∗(si)ui(si , σ
∗

−i)

=
∑

si∈supp(σ∗i )

σ∗(si)wi = wi

∑
si∈supp(σ∗i )

σ∗(si) = wi
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Computing Mixed Nash Equilibria

Lemma 41
σ∗ = (σ∗1, . . . , σ

∗
n) ∈ Σ is a Nash equilibrium iff there exist

w1, . . . ,wn ∈ R such that the following holds:

I For all i ∈ N and all si ∈ supp(σ∗i ) we have ui(si , σ∗−i) = wi .

I For all i ∈ N and all si < supp(σ∗i ) we have ui(si , σ∗−i) ≤ wi .

Here, the right hand side implies ui(σ∗) = wi .

Proof. (Cont.)
"⇐": Use the first equality of Lemma 23 to obtain for every i ∈ N and
every σ′i ∈ Σi

ui(σ
′

i , σ
∗

−i) =
∑
si∈Si

σ′i (si)ui(si , σ
∗

−i) ≤
∑
si∈Si

σ′i (si)ui(σ
∗) = ui(σ

∗)

Thus σ∗ is a Nash equilibrium.
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Computing Mixed Nash Equilibria

Lemma 42
σ∗ = (σ∗1, . . . , σ

∗
n) ∈ Σ is a Nash equilibrium iff there exist

w1, . . . ,wn ∈ R such that the following holds:

I For all i ∈ N and all si ∈ supp(σ∗i ) we have ui(si , σ∗−i) = wi .

I For all i ∈ N and all si < supp(σ∗i ) we have ui(si , σ∗−i) ≤ wi .

Here, the right hand side implies ui(σ∗) = wi .

Proof (Cont.)
Idea for "⇒": Let wi := ui(σ∗).
Clearly, every i ∈ N and si ∈ Si satisfy ui(si , σ∗−i) ≤ ui(σ∗) = wi .
By Corollary 24, there is at least one si ∈ supp(σ∗i ) satisfying
ui(si , σ∗−i) = ui(σ∗) = wi .

Now if there is s′i ∈ supp(σ∗i ) such that

ui(s′i , σ
∗

−i) < ui(σ
∗) (= ui(si , σ

∗

−i))

then increasing the probability σ∗i (si) and decreasing (in proportion)
σ∗i (s

′

i ) strictly increases of ui(σ∗), a contradiction with σ∗ being NE.
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Example: Matching Pennies

H T
H 1,−1 −1,1
T −1,1 1,−1

Player 1 (row) plays (p(H), (1 − p)(T)) (we write just p) and player 2
(column) plays (q(H), (1 − q)(T)) (we write q).

Compute all Nash equilibria.

There are no pure strategy equilibria.

There are no equilibria where only player 1 randomizes:
Indeed, assume that (p,H) is such an equilibrium. Then by
Lemma 42,

1 = u1(H,H) = u1(T ,H) = −1

a contradiction. Also, (p,T) cannot be an equilibrium.

Similarly, there is no NE where only player 2 randomizes.

102



Example: Matching Pennies

H T
H 1,−1 −1,1
T −1,1 1,−1

Player 1 (row) plays (p(H), (1 − p)(T)) (we write just p) and player 2
(column) plays (q(H), (1 − q)(T)) (we write q).

Compute all Nash equilibria.

Assume that both players randomize, i.e., p,q ∈ (0,1).

The expected payoffs of playing pure strategies for player 1:

v1(H,q) = 2q − 1 and v1(T ,q) = 1 − 2q

Similarly for player 2 :

v2(p,H) = 1 − 2p and v1(p,T) = 2p − 1

By Lemma 42, Nash equilibria must satisfy:

2q − 1 = 1 − 2q and 1 − 2p = 2p − 1

That is p = q = 1
2 is the only Nash equilibrium.
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Example: Battle of Sexes

O F
O 2,1 0,0
F 0,0 1,2

Player 1 (row) plays (p(O), (1 − p)(F)) (we write just p) and player 2
(column) plays (q(O), (1 − q)(F)) (we write q).

Compute all Nash equilibria.

There are two pure strategy equilibria (2,1) and (1,2), no Nash
equilibrium where only one player randomizes.

Now assume that
I player 1 (row) plays (p(H), (1 − p)(T)) (we write just p) and
I player 2 (column) plays (q(H), (1 − q)(T)) (we write q)

where p,q ∈ (0,1).

By Lemma 42, any Nash equilibrium must satisfy:

2q = 1 − q and p = 2(1 − p)

This holds only for q = 1
3 and p = 2

3 .
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An Algorithm?

What did we do in the previous examples?

We went through all support combinations for both players.
(pure, one player mixing, both mixing)

For each pair of supports we tried to find equilibria in strategies
with these supports.
(in Battle of Sexes: two pure, no equilibrium with just one player
mixing, one equilibrium when both mixing)

Whenever one of the supports was non-singleton, we reduced
computation of Nash equilibria to linear equations.
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Support Enumeration (Idea)

Recall Lemma 42: σ∗ = (σ∗1, . . . , σ
∗
n) ∈ Σ is a Nash equilibrium iff there

exist w1, . . . ,wn ∈ R such that the following holds:

I For all i ∈ N and all si ∈ supp(σ∗i ) we have ui(si , σ∗−i) = wi .

I For all i ∈ N and all si < supp(σ∗i ) we have ui(si , σ∗−i) ≤ wi .

Suppose that we somehow know the supports supp(σ∗1), . . . , supp(σ∗n)
for some Nash equilibrium σ∗1, . . . , σ

∗
n (which itself is unknown to us).

Now we may consider all σ∗i (si)’s and all wi ’s as variables and use the
above conditions to design a system of inequalities capturing Nash
equilibria with the given support sets supp(σ∗1), . . . , supp(σ∗n).
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Support Enumeration
To simplify notation, assume that for every i we have Si = {1, . . . ,mi}.
Then σi(j) is the probability of the pure strategy j in the mixed strategy σi .

Fix supports supp i ⊆ Si for every i ∈ N and consider the following
system of constraints with variables
σ1(1), . . . , σ1(m1), . . . , σn(1), . . . , σn(mn),w1, . . . ,wn:

1. For all i ∈ N and all k ∈ supp i we have

(ui(k , σ−i) = )
∑

s∈S∧si=k

∏
j,i

σj(sj)

ui(s) = wi

2. For all i ∈ N and all k < supp i we have

(ui(k , σ−i) = )
∑

s∈S∧si=k

∏
j,i

σj(sj)

ui(s) ≤ wi

3. For all i ∈ N: σi(1) + · · ·+ σi(mi) = 1.

4. For all i ∈ N and all k ∈ supp i : σi(k ) ≥ 0.

5. For all i ∈ N and all k < supp i : σi(k ) = 0.
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Support Enumeration

Consider the system of constraints from the previous slide.

The following lemma follows immediately from Lemma 42.

Lemma 43
Let σ∗ ∈ Σ be a strategy profile.

I If σ∗ is a Nash equilibrium and supp(σ∗i ) = supp i for all i ∈ N,
then assigning σi(k ) := σ∗i (k ) and wi := ui(σ∗) solves the system.

I If σi(k ) := σ∗i (k ) and wi := ui(σ∗) solves the system, then σ∗ is
a Nash equilibrium with supp(σ∗i ) ⊆ supp i for all i ∈ N.
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Support Enumeration (Two Players)
The constraints are non-linear in general, but linear for two player
games! Let us stick to two players.
How to find supp1 and supp2? ... Just guess!

Input: A two-player strategic-form game G with strategy sets
S1 = {1, . . . ,m1} and S2 = {1, . . . ,m2} and rational payoffs u1,u2.

Output: A Nash equilibrium σ∗.

Algorithm: For all possible supp1 ⊆ S1 and supp2 ⊆ S2:
I Check if the corresponding system of linear constraints (from

the previous slide) has a feasible solution σ∗,w∗1, . . . ,w
∗
n.

I If so, STOP: the feasible solution σ∗ is a Nash equilibrium
satisfying ui(σ∗) = w∗i .

Question: How many possible subsets supp1, supp2 are there to try?
Answer: 2(m1+m2)

So, unfortunately, the algorithm requires worst-case exponential time.
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Remarks on Support Enumeration

I The algorithm combined with Theorem 39 and properties of
linear programming imply that every finite two-player game has
a rational Nash equilibrium (furthermore, the rational numbers
have polynomial representation in binary).

I The algorithm can be used to compute all Nash equilibria.
(There are algorithms for computing (a finite representation of) a set of
all feasible solutions of a given linear constraint system.)

I The algorithm can be used to compute "good" equilibria.

For example, to find a Nash equilibrium maximizing the sum of
all expected payoffs (the "social welfare") it suffices to solve the
system of constraints while maximizing w1 + · · ·+ wn. More
precisely, the algorithm can be modified as follows:
I Initialize W := −∞ (W stores the current maximum welfare)
I For all possible supp1 ⊆ S1 and supp2 ⊆ S2:

I Find the maximum value max(
∑

wi) of w1 + · · ·+ wn so that
the constraints are satisfiable (using linear programming).

I Put W := max{W ,max(
∑

wi)}.
I Return W .
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Remarks on Support Enumeration (Cont.)

Similar trick works for any notion of "good" NE that can be expressed
using a linear objective function and (additional) linear constraints in
variables σi(j) and wi .
(e.g., maximize payoff of player 1, minimize payoff of player 2 and keep
probability of playing the strategy 1 below 1/2, etc.)
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Complexity Results – (Two Players)

Theorem 44
All the following problems are NP-complete: Given a two-player game
in strategic form, does it have

1. a NE in which player 1 has utility at least a given amount v ?

2. a NE in which the sum of expected payoffs of the two players is
at least a given amount v ?

3. a NE with a support of size greater than a given number?

4. a NE whose support contains a given strategy s ?

5. a NE whose support does not contain a given strategy s ?

6. ....

Membership to NP follows from the support enumeration:
For example, for 1., it suffices to guess supports supp1, supp2 and
add w1 ≥ v to the constraints; the resulting NE σ∗ satisfies u1(σ∗) ≥ v.
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Complexity Results (Two Players)

Theorem 45
All the following problems are NP-complete: Given a two-player game
in strategic form, does it have

1. a NE in which player 1 has utility at least a given amount v ?

2. a NE in which the sum of expected payoffs of the two players is
at least a given amount v ?

3. a NE with a support of size greater than a given number?

4. a NE whose support contains a given strategy s ?

5. a NE whose support does not contain a given strategy s ?

6. ....

NP-hardness can be proved using reduction from SAT
(The reduction is not difficult but we are not going into it.
It is presented in "New Complexity Results about Nash Equilibria" by
V. Conitzer and T. Sandholm (pages 6–8) )
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The Reduction (It’s Short and Sweet)
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... But What is The Exact Complexity of Computing
Nash Equilibria in Two Player Games?

Let us concentrate on the problem of computing one Nash equilibrium
(sometimes called the sample equilibrium problem).

As the class NP consists of decision problems, it cannot be directly
used to characterize complexity of the sample equilibrium problem.

We use complexity classes of function problems such as FP, FNP, etc.

The support enumeration gives a deterministic algorithm which runs
in exponential time. Can we do better?

In what follows we show that
I the sample equilibrium problem can be solved in polynomial time

for zero-sum two-player games,
(Using a beautiful characterization of all Nash equilibria)

I the sample equilibrium problem belongs to the complexity class
PPAD (which is a subclass of FNP) for two-player games.
(... to be defined later)
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MaxMin

Is there a better characterization of Nash equilibria than Lemma 42 ?

Definition 46
σ∗i ∈ Σi is a maxmin strategy of player i if

σ∗i ∈ argmax
σi∈Σi

min
σ−i∈Σ−i

ui(σi , σ−i)

(Intuitively, a maxmin strategy σ∗1 maximizes player 1’s worst-case payoff in
the situation where player 2 strives to cause the greatest harm to player 1.)

(Since ui is continuous and Σ−i compact, minσ−i∈Σ−i ui(σi , σ−i) is well
defined and continuous on Σi , which implies that there is at least one
maxmin strategy.)
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MaxMin

Lemma 47
σ∗i is maxmin iff

σ∗i ∈ argmax
σi∈Σi

min
s−i∈S−i

ui(σi , s−i)

Proof.
By Corollary 24, for every σ ∈ Σ we have ui(σi , σ−i) ≥ ui(σi , s−i) for
some s−i ∈ S−i .

Thus minσ−i∈Σ−i ui(σi , σ−i) = mins−i∈S−i ui(σi , s−i). Hence,

argmax
σi∈Σi

min
σ−i∈Σ−i

ui(σi , σ−i) = argmax
σi∈Σi

min
s−i∈S−i

ui(σi , s−i)

�

Question: Assume a strategy profile where both players play their
maxmin strategies? Does it have to be a Nash equilibrium?
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Zero-Sum Games: von Neumann’s Theorem

Assume that G is zero sum, i.e., u1 = −u2.

Then σ∗2 ∈ Σ2 is maxmin of player 2 iff

σ∗2 ∈ argmin
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2) (= argmin
σ2∈Σ2

max
s1∈S1

u1(s1, σ2))

(Intuitively, maxmin of player 2 minimizes the payoff of player 1 when player 1
plays his best responses. Such strategy of player 2 is often called minmax.)

Theorem 48 (von Neumann)
Assume a two-player zero-sum game. Then

max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2)

Morever, σ∗ = (σ∗1, σ
∗

2) ∈ Σ is a Nash equilibrium iff both σ∗1 and σ∗2 are
maxmin.

So to compute a Nash equilibrium it suffices to compute (arbitrary)
maxmin strategies for both players.
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Proof of Theorem 48 (Homework)

Homework: Prove von Neumann’s Theorem in 4 easy steps:
1. Prove this inequality:

max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) ≤ min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2)

2. Prove that (σ∗1, σ
∗

2) is a Nash equilibrium iff

min
σ2∈Σ2

u1(σ∗1, σ2) ≥ u1(σ∗1, σ
∗

2) ≥ max
σ1∈Σ1

u1(σ1, σ
∗

2)

Hint: One of the inequalities is trivial and the other one almost.

3. Use 1. and 2. together with Theorem 39 to prove

max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) ≥ min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2)

4. Use the above to prove the rest of the theorem.
Hint: Use the characterization of NE from 2., do not forget that you
already have maxσ1∈Σ1 minσ2∈Σ2 u1(σ1, σ2) = minσ2∈Σ2 maxσ1∈Σ1 u1(σ1, σ2)

You may already have proved one of the implications when proving 3.
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Zero-Sum Two-Player Games – Computing NE
Assume S1 = {1, . . . ,m1} and S2 = {1, . . . ,m2}.

We want to compute

σ∗1 ∈ argmax
σ1∈Σ1

min
`∈S2

u1(σ1, `)

Consider a linear program with variables σ1(1), . . . , σ1(m1), v:

maximize: v

subject to:
m1∑

k=1

σ1(k ) · u1(k , `) ≥ v ` = 1, . . . ,m2

m1∑
k=1

σ1(k ) = 1

σ1(k ) ≥ 0 k = 1, . . . ,m1

Lemma 49
σ∗1 ∈ argmaxσ1∈Σ1

min`∈S2 u1(σ1, `) iff assigning σ1(k ) := σ∗1(k ) and
v := min`∈S2 u1(σ∗1, `) gives an optimal solution.
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Zero-Sum Two-Player Games – Computing NE

Summary:
I We have reduced computation of NE to computation of

maxmin strategies for both players.
I Maxmin strategies can be computed using linear

programming in polynomial time.
I That is, Nash equilibria in zero-sum two-player games can

be computed in polynomial time.
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IESDS vs Rationalizability Revisited

We get Theorem 37 as a simple corollary of Theorem 48.

Let s∗1 be a strategy of player 1. Consider a zero-sum game
G′ = ({1,2}, (S′1,S

′

2), (u′1,u
′

2)) where

I S′1 = S1 r {s∗1} and S′2 = S2,

I u′1(s1, s2) = u1(s1, s2) − u1(s∗1, s2) and
u′2(s1, s2) = u1(s∗1, s2) − u1(s1, s2).

Now s∗1 is never best resp. in G iff
for every σ2 ∈ Σ2 exists σ1 ∈ Σ1 : u1(σ1, σ2) − u1(s∗1, σ2) > 0 iff
for every σ2 ∈ Σ2 exists s1 ∈ S1 : u1(s1, σ2) − u1(s∗1, σ2) > 0 iff
minσ2∈Σ2 maxs1∈S1 u′1(s1, σ2) > 0 iff
minσ2∈Σ2maxσ1∈Σ1u

′

1(σ1, σ2) > 0 iff
maxσ1∈Σ1minσ2∈Σ2u

′

1(σ1, σ2) > 0 iff
there is σ1 ∈ Σ1 such that for all σ2 ∈ Σ2 we have
0 < u′1(σ1, σ2) = u1(σ1, σ2) − u1(s∗1, σ2) iff
s∗1 is strictly dominated (by σ1) in G.
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Lemke-Howson Algorithm – Notation
Fix a strategic-form two-player game G = ({1,2}, (S1,S2) , (u1,u2)).

Assume that

I S1 = {1, . . . ,m}

I S2 = {m + 1, . . . ,m + n}

(I.e., player 1 has m pure strategies 1, . . . ,m and player 2 has n pure
strategies m + 1, . . . ,m + n. In particular, each pure strategy determines
the player who can play it.)

Assume that u1,u2 are positive, i.e., u1(k , `) > 0 and u2(k , `) > 0 for
all (k , `) ∈ S1 × S2.
This assumption is w.l.o.g. since any positive constant can be added to
payoffs without altering the set of (mixed) Nash equilibria.

Mixed strategies of player 1 : σ1 = (σ(1), . . . , σ(m)) ∈ [0,1]m

Mixed strategies of player 2 : σ2 = (σ(m + 1), . . . , σ(m + n)) ∈ [0,1]n

I.e. we omit the lower index of σ whenever it is determined by the argument.
A strategy profile σ = (σ1, σ2) can be seen as a vector
σ = (σ1, σ2) = (σ(1), . . . , σ(m + n)) ∈ [0,1]m+n.
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Running Example

3 4
1 3,1 2,2
2 2,3 3,1

I Player 1 (row) plays σ1 = (σ(1), σ(2)) ∈ [0,1]2

I Player 2 (column) plays σ2 = (σ(3), σ(4)) ∈ [0,1]2

I A typical mixed strategy profile is (σ(1), σ(2), σ(3), σ(4))

For example: σ1 = (0.2,0.8) and σ2 = (0.4,0.6) give the profile
(0.2,0.8,0.4,0.6).

124



Characterizing Nash Equilibria
Recall that by Lemma 42 the following holds:

(σ1, σ2) = (σ(1), . . . , σ(m + n)) ∈ Σ is a Nash equilibrium iff
I For all ` = m + 1, . . . ,m + n we have that

u2(σ1, `) ≤ u2(σ1, σ2)

and either σ(`) = 0, or u2(σ1, `) = u2(σ1, σ2)

I For all k = 1, . . . ,m we have that

u1(k , σ2) ≤ u1(σ1, σ2)

and either σ(k ) = 0, or u1(k , σ2) = u1(σ1, σ2)

This is equivalent to the following: (σ1, σ2) = (σ(1), . . . , σ(m + n)) ∈ Σ
is a Nash equilibrium iff
I For all ` = m + 1, . . . ,m + n we have that either σ(`) = 0, or ` is

a best response to σ1.
I For all k = 1, . . . ,m we have that either σ(k ) = 0, or k is a best

response to σ2.
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Characterizing Nash Equilibria

Given a mixed strategy σ1 = (σ(1), . . . , σ(m)) of player 1 we define
L(σ1) ⊆ {1,2, . . . ,m + n} to consist of

I all k ∈ {1, . . . ,m} satisfying σ(k ) = 0

I all ` ∈ {m + 1, . . . ,m + n} that are best responses to σ1

Given a mixed strategy σ2 = (σ(m + 1), . . . , σ(m + n)) of player 2 we
define L(σ2) ⊆ {1,2, . . . ,m + n} to consist of

I all k ∈ {1, . . . ,m} that are best responses to σ2

I all ` ∈ {m + 1, . . . ,m + n} satisfying σ(`) = 0

Proposition 3
σ = (σ1, σ2) is a Nash equilibrium iff L(σ1) ∪ L(σ2) = {1, . . . ,m + n}.

We also label the vector 0m := (0, . . . ,0) ∈ Rm with {1, . . . ,m} and
0n := (0, . . . ,0) ∈ Rn with {m + 1, . . . ,m + n}.
We consider (0m,0n) as a special mixed strategy profile.

How many labels could possibly be assigned to one strategy?
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Running Example

3 4
1 3,1 2,2
2 2,3 3,1

A strategy σ1 = (2/3,1/3) of player 1 is labeled by 3,4 since both
pure strategies 3,4 of player 2 are best responses to σ1 (they result in
the same payoff to player 2)

A strategy σ2 = (1/2,1/2) of player 2 is labeled by 1,2 since both
pure strategies 1,2 of player 1 are best responses to σ2 (they result in
the same payoff to player 1)

A strategy σ1 = (0,1) of player 1 is labeled by 1,3 since the strategy 1
is played with zero probability in σ1 and 3 is the best response to σ1

A strategy σ1 = (1/10,9/10) of player 1 is labeled by 3 since no pure
strategy of player 1 is played with zero probability (and hence neither
1, nor 2 labels σ1) and 3 is the best response to σ1.
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Non-degenerate Games
Definition: G is non-degenerate if for every σ1 ∈ Σ1 we have that |supp(σ1)| is
at least the number of pure best responses to σ1, and for every σ2 ∈ Σ2 we
have that |supp(σ2)| is at least the number of pure best responses to σ2.
"Most" games are non-degenerate, or can be made non-degenerate by
a slight perturbation of payoffs

We assume that the game G is non-degenerate.

Non-degeneracy implies that L(σ1) ≤ m for every σ1 ∈ Σ1 and
L(σ2) ≤ n for every σ2 ∈ Σ2.
We say that a strategy σ1 of player 1 (or σ2 of player 2) is fully labeled
if |L(σ1)| = m (or |L(σ2)| = n, respectively).

Lemma 50
Non-degeneracy of G implies the following:

I If σi , σ′i ∈ Σi are fully labeled, then L(σi) , L(σ′i ). There are at
most (m+n

m ) fully labeled strategies of player 1, (m+n
n ) of player 2.

I For every fully labeled σi ∈ Σi and a label k ∈ L(σi) there is
exactly one fully labeled σ′i ∈ Σi such that
L(σi) ∩ L(σ′i ) = L(σi) r {k }.
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Examples

An example of a degenerate game:

3 4
1 1,1 1,1
2 3,3 4,4

Note that there are two pure best responses to the strategy 1.

Are there fully labeled strategies in the following game?

3 4
1 3,1 2,2
2 2,3 3,1

Yes, the strategy (2/3,1/3) of player 1 is labeled by 3,4 and the
strategy (1/2,1/2) of player 2 is labeled by 1,2.

Exercise: Find all fully labeled strategies in the above example.
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Lemke-Howson (Idea)

Define a graph H1 = (V1,E1) where

V1 = {σ1 ∈ Σ1 | |L(σ1)| = m} ∪ {0m
}

and {σ1, σ′1} ∈ E1 iff L(σ1) ∩ L(σ′1) = L(σ1) r {k } for some label k .
Note that σ′1 is determined by σ1 and k , we say that σ′1 is obtained from σ1 by
dropping k .

Define a graph H2 = (V2,E2) where

V2 = {σ2 ∈ Σ2 | |L(σ2)| = n} ∪ {0n
}

and {σ2, σ′2} ∈ E2 iff L(σ2) ∩ L(σ′2) = L(σ2) r {`} for some label `.
Note that σ′2 is determined by σ2 and `, we say that σ′2 is obtained from σ2 by
dropping `.

Given σi , σ′i ∈ Vi and k , ` ∈ {1, . . . ,m + n}, we write σi
k ,`
←→ σ′i if

L(σi) ∩ L(σ′i ) = L(σi) r {k } and L(σi) ∩ L(σ′i ) = L(σ′i ) r {`}
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Running Example

3 4
1 3,1 2,2
2 2,3 3,1

H1:
(0,0)

[1,2]

(1,0)

[2,4]

(0,1)

[1,3]

(2/3,1/3)

[3,4]

H2:
(0,0)

[3,4]

(1,0)

[1,4]

(0,1)

[2,3]

(1/2,1/2)

[1,2]

(Here, the red labels of nodes are not parts of the graphs.)

For example, (0,0) 2,3
←→ (0,1) and (0,1) 1,4

←→ (2/3,1/3) in H1.
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Lemke-Howson (Idea)

The algorithm basically searches through H1 × H2 = (V1 × V2,E)

where
{
(σ1, σ2), (σ′1, σ

′

2)
}
∈ E iff either

{
σ1, σ′1

}
∈ E1, or

{
σ2, σ′2

}
∈ E2.

Given i ∈ N, we write

(σ1, σ2)
k ,`
−→ i (σ′1, σ

′

2)

and say that k was dropped from L(σi) and ` added to L(σi) if

σi
k ,`
←→ σ′i and σ−i = σ′

−i .

Observe that by Lemma 50, whenever a label k is dropped from
L(σi), the resulting vertex of H1 × H2 is uniquely determined.

Also, |V | = |V1||V2| ≤ (m+n
m )(m+n

n ).
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Running Example

3 4
1 3,1 2,2
2 2,3 3,1

The graph H1 × H2 has 16 nodes.

Let us follow a path in H1 × H2 starting in ((0,0), (0,0)):

((0,0), (0,0))
2,3
−→ 1 ((0,1), (0,0))
3,1
−→ 2 ((0,1), (1,0))
1,4
−→ 1 ((2/3,1/3), (1,0))
4,2
−→ 2 ((2/3,1/3), (1/2,1/2))

This is one of the paths followed by Lemke-Howson:
I First, choose which label to drop from L(σ1) (here we drop 2

from L(0,0)), which adds exactly one new label (here 3)
I Then always drop the duplicit label, i.e. the one labeling both

nodes, until no duplicit label is present (then we have a Nash
equilibrium)
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Lemke-Howson (Idea)
Lemke-Howson algorithm works as follows:
I Start in (σ1, σ2) = (0m,0n).
I Pick a label k ∈ {1, . . . ,m} and drop it from L(σ1).

This adds a label, which then is the only element of L(σ1) ∩ L(σ2).

I loop
I If L(σ1) ∩ L(σ2) = ∅, then stop and return (σ1, σ2).
I Let {`} = L(σ1) ∩ L(σ2), drop ` from L(σ2).

This adds exactly one label to L(σ2).
I If L(σ1) ∩ L(σ2) = ∅, then stop and return (σ1, σ2).
I Let {k } = L(σ1) ∩ L(σ2), drop k from L(σ1).

This adds exactly one label to L(σ1).

Lemma 51
The algorithm proceeds through every vertex of H1 ×H2 at most once.
Indeed, if (σ1, σ2) is visited twice (with distinct predecessors), then either σ1,
or σ2 would have (at least) two neighbors reachable by dropping the label
k ∈ L(σ1) ∩ L(σ2), a contradiction with non-degeneracy.

Hence the algorithm stops after at most (m+n
m )(m+n

n ) iterations.
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Lemke-Howson Algorithm – Detailed Treatment

The previous description of the LH algorithm does not specify how to
compute the graphs H1 and H2 and how to implement the dropping of
labels.

In particular, it is not clear how to identify fully labeled strategies and
"transitions" between them.

The complete algorithm relies on a reformulation which allows us to
unify fully labeled strategies (i.e. vertices of H1 and H2) with vertices
of certain convex polytopes.

The edges of H1 and H2 will correspond to edges of the polytopes.

This also gives a fully algebraic procedure for dropping labels.
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Convex Polytopes
I A convex combination of points o1, . . . ,oi ∈ Rk is a point
λ1o1 + · · ·+ λioi where λi ≥ 0 for each i and

∑i
j=1 λj = 1.

I A convex polytope determined by a set of points o1, . . . ,oi is
a set of all convex combinations of o1, . . . ,oi .

I A hyperplane h is a supporting hyperplane of a polytope P if it
has a non-empty intersection with P and one of the closed
half-spaces determined by h contains P.

I A face of a polytope P is an intersection of P with one of its
supporting hyperplanes.

I A vertex is a 0-dimensional face, an edge is a 1-dim. face.
I Two vertices are neighbors if they lie on the same edge (they are

endpoints of the edge).

I A polyhedron is an intersection of finitely many closed
half-spaces
It is a set of solutions of a system of finitely many linear inequalities

I Fact: Each bounded polyhedron is a polytope, each polytope is
a bounded polyhedron. 136



Characterizing Nash Equilibria
Let us return back to Lemma 42:

(σ1, σ2) = (σ(1), . . . , σ(m + n)) is a Nash equilibrium iff

I For all ` = m + 1, . . . ,m + n : u2(σ1, `) ≤ u2(σ1, σ2) and either
σ(`) = 0, or u2(σ1, `) = u2(σ1, σ2)

I For all k = 1, . . . ,m : u1(k , σ2) ≤ u1(σ1, σ2) and either σ(k ) = 0,
or u1(k , σ2) = u1(σ1, σ2)

Now using the fact that

u2(σ1, `) =

m∑
k=1

σ(k )u2(k , `)

and

u1(k , σ2) =

m+n∑
`=m+1

σ(`)u1(k , `)

we obtain ...
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Reformulation

(σ1, σ2) = (σ(1), . . . , σ(m + n)) is a Nash equilibrium iff

I For all ` = m + 1, . . . ,m + n,

m∑
k=1

σ(k ) · u2(k , `) ≤ u2(σ1, σ2) (3)

and either σ(`) = 0, or the ineq. (3) holds with equality.

I For all k = 1, . . . ,m,

m+n∑
`=m+1

σ(`) · u1(k , `) ≤ u1(σ1, σ2) (4)

and either σ(k ) = 0, or the ineq. (4) holds with equality.

Dividing (3) by u2(σ1, σ2) and (4) by u1(σ1, σ2) we get ...
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Reformulation

(σ1, σ2) = (σ(1), . . . , σ(m + n)) is a Nash equilibrium iff

I For all ` = m + 1, . . . ,m + n,

m∑
k=1

σ(k )

u2(σ1, σ2)
u2(k , `) ≤ 1 (5)

and either σ(`) = 0, or the ineq. (7) holds with equality.

I For all k = 1, . . . ,m,

m+n∑
`=m+1

σ(`)

u1(σ1, σ2)
u1(k , `) ≤ 1 (6)

and either σ(k ) = 0, or the ineq. (8) holds with equality.

Considering each σ(k )/u2(σ1, σ2) as an unknown value x(k ), and
each σ(`)/u1(σ1, σ2) as an unknown value y(`), we obtain ...
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Reformulation
... constraints in variables x(1), . . . , x(m) and y(m + 1), . . . , y(m + n) :
I For all ` = m + 1, . . . ,m + n,

m∑
k=1

x(k ) · u2(k , `) ≤ 1 (7)

and either y(`) = 0, or the ineq. (7) holds with equality.
I For all k = 1, . . . ,m,

m+n∑
`=m+1

y(`) · u1(k , `) ≤ 1 (8)

and either x(k ) = 0, or the ineq. (8) holds with equality.

For all non-negative vectors x ≥ 0m and y ≥ 0n that satisfy the above
contraints we have that (x̄ , ȳ) is a Nash equilibrium.
Here the strategy x̄ is defined by x̄(k ) := x(k )/

∑m
i=1 x(i), the strategy

ȳ is defined by ȳ(`) := y(`)/
∑m+n

j=m+1 y(j)
Given a Nash equilibrium (σ1, σ2) = (σ(1), . . . , σ(m + n)), assigning
x(k ) := σ(k )/u1(σ1, σ2) for k ∈ S1, and y(`) := σ(`)/u1(σ1, σ2) for
` ∈ S2 satisfies the above constraints. 140



Reformulation
Let us extend the notion of expected payoff a bit.

Given ` = m + 1, . . . ,m + n and x = (x(1), . . . , x(m)) ∈ [0,∞)m we
define

u2(x , `) =

m∑
k=1

x(k ) · u2(k , `)

Given k = 1, . . . ,m and y = (y(m + 1), . . . , y(m + n)) ∈ [0,∞)n we
define

u1(k , y) =

m+n∑
`=m+1

y(`) · u1(k , `)

So the previous system of constraints can be rewritten succinctly:
I For all ` = m + 1, . . . ,m + n we have that u2(x , `) ≤ 1 and either

y(`) = 0, or u2(x , `) = 1.
I For all k = 1, . . . ,m we have that u1(k , y) ≤ 1, and either

x(k ) = 0, or u1(k , y) = 1
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Geometric Formulation
Define

P :=
{
x ∈ Rm

| (∀k ∈ S1 : x(k ) ≥ 0) ∧ (∀` ∈ S2 : u2(x , `) ≤ 1)
}

Q :=
{
y ∈ Rn

| (∀k ∈ S1 : u1(k , y) ≤ 1) ∧ (∀` ∈ S2 : y(`) ≥ 0)
}

P and Q are convex polytopes.
As payoffs are positive and linear in their arguments, P and Q are bounded
polyhedra, which means that they are convex hulls of "corners", i.e., they are
polytopes.

We label points of P and Q as follows:

I L(x) = {k ∈ S1 | x(k ) = 0} ∪ {` ∈ S2 | u2(x , `) = 1}

I L(y) = {k ∈ S1 | u1(k , y) = 1} ∪ {` ∈ S2 | y(`) = 0}

Proposition 4
For each point (x , y) ∈ P ×Q r {(0,0)} such that
L(x) ∪ L(y) = {1, . . . ,m + n} we have that the corresponding strategy
profile (x̄ , ȳ) is a Nash equilibrium. Each Nash equilibrium is obtained
this way.
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Geometric Formulation
Without proof: Non-degeneracy of G implies that

I For all x ∈ P we have L(x) ≤ m.
I x is a vertex of P iff |L(x)| = m

(That is, vertices of P are exactly points incident on exactly m faces)

I For two distinct vertices x , x′ we have L(x) , L(x′).
I Every vertex of P is incident on exactly m edges; in particular,

for each k ∈ L(x) there is a unique (neighboring) vertex x′ such
that L(x) ∩ L(x′) = L(x) r {k }.

Similar claims are true for Q (just substitute m with n and P with Q).

Define a graph H1 = (V1,E1) where V1 is the set of all vertices x of P
and {x , x′} ∈ E1 iff L(x) ∩ L(x′) = L(x) r k .

Define a graph H2 = (V2,E2) where V2 is the set of all vertices y of Q
and {y , y′} ∈ E2 iff L(y) ∩ L(y′) = L(y) r k .

The notions of dropping and adding labels from and to, resp., remain
the same as before.
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Lemke-Howson (Algorithm)

Lemke-Howson algorithm works as follows:

I Start in (x , y) := (0m,0n) ∈ P ×Q .

I Pick a label k ∈ {1, . . . ,m} and drop it from L(x).
This adds a label, which then is the only element of L(x) ∩ L(y).

I loop

I If L(x) ∩ L(y) = ∅, then stop and return (x , y).
I Let {`} = L(x) ∩ L(y), drop ` from L(y).

This adds exactly one label to L(σ2).
I If L(x) ∩ L(y) = ∅, then stop and return (x , y).
I Let {k } = L(x) ∩ L(y), drop k from L(x).

This adds exactly one label to L(x).

Lemma 52
The algorithm proceeds through every vertex of H1 ×H2 at most once.

Hence the algorithm stops after at most (m+n
m )(m+n

n ) iterations.

144



The Algebraic Procedure

How to effectively move between vertices of H1 × H2 ?

That is how to compute the result of dropping a label?

We employ so called tableau method with an appropriate
pivoting.
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Slack Variables Formulation
Recall our succinct characterization of Nash equilibria:

I For all ` = m + 1, . . . ,m + n we have that u2(x , `) ≤ 1 and either
y(`) = 0, or u2(x , `) = 1.

I For all k = 1, . . . ,m we have that u1(k , y) ≤ 1, and either
x(k ) = 0, or u1(k , y) = 1

We turn this into a system o equations in variables x(1), . . . , x(m),
y(m + 1), . . . , y(m + n) and slack variables r(1), . . . , r(m),
z(m + 1), . . . , z(m + n) :

u2(x , `) + z(`) = 1 ` ∈ S2

u1(k , y) + r(k ) = 1 k ∈ S1

x(k ) ≥ 0 y(`) ≥ 0 k ∈ S1, ` ∈ S2

r(k ) ≥ 0 z(`) ≥ 0 k ∈ S1, ` ∈ S2

x(k ) · r(k ) = 0 y(`) · z(`) = 0 k ∈ S1, ` ∈ S2

Solving this is called linear complementary problem (LCP).
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Tableaux
The LM algorithm represents the current vertex of H1 × H2 using
a tableau defined as follows.

Define two sets of variables:
M := {x(1), . . . , x(m), z(m + 1), . . . , z(m + n)}
N := {r(1), . . . , r(m), y(m + 1), . . . , y(m + n)}

A basis is a pair of sets of variables M ⊆ M and N ⊆ N where |M| = n
and |N| = m.
Intuition: Labels correspond to variables that are not in the basis

A tableau T for a given basis (M,N):

P : v = cv −
∑

v ′∈MrM

av ′ · v ′ v ∈ M

Q : w = cw −
∑

w′∈NrN

aw′ · w′ w ∈ N

Here each cv , cw ≥ 0 and av ′ ,aw′ ∈ R.

Note that the first part of the tableau corresponds to the polytope P,
the second one to the polytope Q .
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Tableaux implementation of Lemke-Howson
A basic solution of a tableau T is obtained by assigning zero to
non-basic variables and computing the rest.
During a computation of the LM algorithm, the basic solutions will correspond
to vertices of the two polytopes P and Q .

Initial tableau:
M = {z(m + 1), . . . , z(m + n)} and N = {r(1), . . . , r(m)}

P : z(`) = 1 −
m∑

k=1

x(k ) · u2(k , `) ` ∈ S2

Q : r(k ) = 1 −
m+n∑
`=m+1

y(`) · u1(k , `) k ∈ S1

Note that assigning 0 to all non-basic variables we obtain x(k ) = 0 for
k = 1, . . . ,m and y(`) = 0 for ` = m + 1, . . . ,m + n.

So this particular tableau corresponds to (0m,0n).

Note that non-basic variables correspond precisely to labels of (0m,0n).
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Lemke-Howson – Pivoting
Given a tableau T during a computation:

P : v = cv −
∑

v ′∈MrM

av ′ · v ′ v ∈ M

Q : w = cw −
∑

w′∈NrN

aw′ · w′ w ∈ N

Dropping a label corresponding to a variable v̄ ∈ MrM (i.e. dropping
a label in P) is done by adding v̄ to the basis as follows:
I Find an equation v = cv −

∑
v ′∈MrM av ′ · v ′ , with minimum cv/av̄ .

Here cv , 0, and we assume that if av̄ = 0, then cv/av̄ = ∞

I M := (M r {v}) ∪ {v̄}
I Reorganize the equation so that v̄ is on the left-hand side:

v̄ =
cv

av̄
−

∑
v ′∈MrM,v ′,v

av ′

av̄
· v ′ −

v
av̄

I Substitute the new expression for v to all other equations.

Dropping labels in Q works similarly.
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Lemke-Howson – Tableaux

The previous slide gives a procedure for computing one step of
the LH algorithm.

The computation ends when:
I For each complementary pair (x(k ), r(k )) one of the

variables is in the basis and the other one is not
I For each complementary pair (y(`), z(`)) one of the

variables is in the basis and the other one is not
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Lemke-Howson – Example
Initial tableau (M = {z(3), z(4)}, N = {r(1), r(2)}):

z(3) = 1 − x(1) · 1 − x(2) · 3 (9)
z(4) = 1 − x(1) · 2 − x(2) · 1 (10)

r(1) = 1 − y(3) · 3 − y(4) · 2 (11)
r(2) = 1 − y(3) · 2 − y(4) · 3 (12)

Drop the label 2 from P: The minimum ratio 1/3 is in (9).

x(2) = 1/3 − (1/3) · x(1) − (1/3) · z(3) (13)
z(4) = 2/3 − (5/3) · x(1) − (1/3) · z(3) (14)

r(1) = 1 − y(3) · 3 − y(4) · 2 (15)
r(2) = 1 − y(3) · 2 − y(4) · 3 (16)

Here M = {x(2), z(4)}, N = {r(1), r(2)}.

Drop the label 3 from Q : The minimum ratio 1/3 is in (15).
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Lemke-Howson – Example (Cont.)

x(2) = 1/3 − (1/3) · x(1) − (1/3) · z(3) (17)
z(4) = 2/3 − (5/3) · x(1) − (1/3) · z(3) (18)

y(3) = 1/3 − (2/3) · y(4) − (1/3) · r(1) (19)
r(2) = 1/3 − (5/3) · y(4) − (1/3) · r(1) (20)

Here M = {x(2), z(4)}, N = {y(3), r(2)}.

Drop the label 1: The minimum ratio (2/3)/(5/3) = 2/5 is in (18).

x(2) = 1/5 − (4/15) · z(3) − (1/5) · z(4) (21)
x(1) = 2/5 − (1/5) · z(3) − (3/5) · z(4) (22)
y(3) = 1/3 − (2/3) · y(4) − (1/3) · r(1) (23)
r(2) = 1/3 − (5/3) · y(4) − (1/3) · r(1) (24)

Here M = {x(2), x(1)}, N = {y(3), r(2)}.

Drop the label 4: The minimum ratio 1/5 is in (24).
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Lemke-Howson – Example (Cont.)

x(2) = 1/5 − (4/15) · z(3) − (1/5) · z(4) (25)
x(1) = 2/5 − (1/5) · z(3) − (3/5) · z(4) (26)

y(3) = 1/5 − (1/5) · r(1) − (6/15) · r(2) (27)
y(4) = 1/5 − (1/5) · r(1) − (3/5) · r(2) (28)

Here M = {x(2), x(1)}, N = {y(3), y(4)} and thus
I x(1) ∈ M but r(1) < N
I x(2) ∈ M but r(2) < N
I y(3) ∈ N but z(3) < M
I y(4) ∈ N but z(4) < M

So the algorithm stops.

Assign z(3) = z(4) = r(1) = r(2) = 0 and obtain the following Nash
equilibrium:

x(1) = 2/5, x(2) = 1/5, y(3) = 1/5, y(4) = 1/5
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Strategic-Form Games – Conclusion

We have considered static games of complete information, i.e.,
"one-shot" games where the players know exactly what game they
are playing.
We modeled such games using strategic-form games.

We have considered both pure strategy setting and mixed strategy
setting.

In both cases, we considered four solution concepts:

I Strictly dominant strategies

I Iterative elimination of strictly dominated strategies

I Rationalizability (i.e., iterative elimination of strategies that are
never best responses)

I Nash equilibria
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Strategic-Form Games – Conclusion

In pure strategy setting:

1. Strictly dominant strategy equilibrium survives IESDS,
rationalizability and is the unique Nash equilibrium (if it exists)

2. In finite games, rationalizable equilibria survive IESDS, IESDS
preserves the set of Nash equilibria

3. In finite games, rationalizability preserves Nash equilibria

In mixed setting:

1. In finite two player games, IESDS and rationalizability coincide.

2. Strictly dominant strategy equilibrium survives IESDS
(rationalizability) and is the unique Nash equilibrium (if it exists)

3. In finite games, IESDS (rationalizability) preserves Nash
equilibria

The proofs for 2. and 3. in the mixed setting are similar to corresponding
proofs in the pure setting.
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Algorithms

I Strictly dominant strategy equilibria coincide in pure and mixed
settings, and can be computed in polynomial time.

I IESDS and rationalizability can be implemented in polynomial
time in the pure setting as well as in the mixed setting
In the mixed setting, linear programming is needed to implement one
step of IESDS (rationalizability).

I Nash equilibria can be computed for two-player games

I in polynomial time for zero-sum games
(using von Neumann’s theorem and linear programming)

I in exponential time using support enumeration
I in PPAD using Lemke-Howson
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Complexity of Nash Eq. – FNP (Roughly)
Let R be a binary relation on words (over some alphabet) that is
polynomial-time computable and polynomially balanced.
I.e., membership to R is decidable in polynomial time, and (x , y) ∈ R implies
|y | ≤ |x |k where k is independent of x , y.

A search problem associated with R is this: Given an input x, return
a y such that (x , y) ∈ R if such y exists, and return "NO" otherwise.
Note that the problem of computing NE can be seen as a search problem R
where (x , y) ∈ R means that x is a strategic-form game and y is a Nash
equilibrium of polynomial size. (We already know from support enumeration
that there is a NE of polynomial size.)

The class of all search problems is called FNP. A class FP ⊆ FNP
contains all search problem that can be solved in polynomial time.
A search problem determined by R is polynomially reducible to
a search problem R ′ iff there exist polynomially computable functions
f ,g such that
I if (x , y) ∈ R for some y, then (f(x), y′) ∈ R ′ for some y′

I if (f(x), y) ∈ R ′, then (x ,g(y)) ∈ R
I if (f(x), y) < R ′ for all y, then (x , y) < R for all y
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Complexity of Nash Eq. – PPAD (Roughly)
The class PPAD is defined by specifying one of its complete problems
(w.r.t. the polynomial time reduction) known as End-Of-The-Line:

I Input: Two Boolean circuits (with basis ∧,∨,¬) S and P, each
with m input bits and m output bits, such that
P(0m) = 0m , S(0m).

I Problem: Find an input x ∈ {0,1}m such that P(S(x)) , x or
S(P(x)) , x , 0m.

Intuition: End-Of-The-Line creates a directed graph HS ,P with vertex set
{0,1}m and an edge from x to y whenever both y = S(x) ("successor") and
x = P(y) ("predecessor").
All vertices of HS ,P have indegree and outdegree at most one. There is at
least one source (i.e., x satisfying P(x) = x, namely 0m), so there is at least
one sink (i.e., x satisfying S(x) = x).
The goal is to find either a source or a sink different from 0m.

Theorem 53
The problem of computing Nash equilibria is complete for PPAD.
That is, Nash belongs to PPAD and End-Of-The-Line is polynomially
reducible to Nash.
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Loose Ends – Modes of Dominance

Let σi , σ′i ∈ Σi . Then σ′i is strictly dominated by σi if
ui(σi , σ−i) > ui(σ′i , σ−i) for all σ−i ∈ Σ−i .

Let σi , σ′i ∈ Σi . Then σ′i is weakly dominated by σi if
ui(σi , σ−i) ≥ ui(σ′i , σ−i) for all σ−i ∈ Σ−i and there is σ′

−i ∈ Σ−i
such that ui(σi , σ′−i) > ui(σ′i , σ

′

−i).

Let σi , σ′i ∈ Σi . Then σ′i is very weakly dominated by σi if
ui(σi , σ−i) ≥ ui(σ′i , σ−i) for all σ−i ∈ Σ−i .

A strategy is (strictly, weakly, very weakly) dominant in mixed
strategies if it (strictly, weakly, very weakly) dominates any other
mixed strategy.

Claim 4
Any mixed strategy profile σ ∈ Σ such that each σi is very weakly
dominant in mixed strategies is a mixed Nash equilibrium.
The same claim can be proved in pure strategy setting.
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Dynamic Games of Complete Information
Extensive-Form Games

Definition
Sub-Game Perfect Equilibria
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Dynamic Games of Perfect Information
(Motivation)

Static games (modeled using strategic-form games) cannot capture
games that unfold over time.

In particular, as all players move simultaneously, there is no way how
to model situations in which order of moves is important.

Imagine e.g. chess where players take turns, in every round a player
knows all turns of the opponent before making his own turn.

There are many examples of dynamic games: markets that change
over time, political negotiations, models of computer systems, etc.

We model dynamic games using extensive-form games, a tree like
model that allows to express sequential nature of games.
We start with perfect information games, where each player always
knows results of all previous moves.
Then generalize to imperfect information, where players may have
only partial knowledge of these results (e.g. most card games).
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Perfect-Info. Extensive-Form Games (Example)

1

h0

2

h1

(3,1)

K

(1,3)

U

L

2

h2

(2,1)

K

(0,0)

U

R

Here h0,h1,h2 are non-terminal nodes, leaves are terminal nodes.
Each non-terminal node is owned by a player who chooses an action.
E.g. h1 is owned by player 2 who chooses either K or U
Every action results in a transition to a new node.
Choosing L in h0 results in a move to h1

When a play reaches a terminal node, players collect payoffs.
E.g. the left most terminal node gives 3 to player 1 and 1 to player 2.
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Perfect-Information Extensive-Form Games
A perfect-information extensive-form game is a tuple
G = (N,A ,H,Z , χ, ρ, π,h0,u) where
I N = {1, . . . ,n} is a set of n players, A is a (single) set of actions,
I H is a set of non-terminal (choice) nodes, Z is a set of terminal

nodes (assume Z ∩ H = ∅), denote H = H ∪ Z ,

I χ : H →
(
2A r {∅}

)
is the action function, which assigns to each

choice node a non-empty set of enabled actions,
I ρ : H → N is the player function, which assigns to each

non-terminal node a player i ∈ N who chooses an action there,
we define Hi := {h ∈ H | ρ(h) = i},

I π : H × A →H is the successor function, which maps
a non-terminal node and an action to a new node, such that
I h0 is the only node that is not in the image of π (the root)
I for all h1,h2 ∈ H and for all a1 ∈ χ(h1) and all a2 ∈ χ(h2),

if π(h1,a1) = π(h2,a2), then h1 = h2 and a1 = a2,
I u = (u1, . . . ,un), where each ui : Z → R is a payoff function for

player i in the terminal nodes of Z .
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Some Notation
A path from h ∈ H to h′ ∈ H is a sequence h1a2h2a3h3 · · · hk−1ak hk
where h1 = h, hk = h′ and π(hj−1,aj) = hj for every 1 < j ≤ k .
Note that, in particular, h is a path from h to h.

Assumption: For every h ∈ H there is a unique path from h0 to h
and there is no infinite path (i.e., a sequence h1a2h2a3h3 · · · such that
π(hj−1,aj) = hj for every j > 1).
Note that the assumption is satisfied when H is finite.
Indeed, uniqueness follows immediately from the definition of π. Now let X
be the set of all h′ from which there is a path to h. If h0 ∈ X we are done.
Otherwise, let h′ be a node of X with the longest path to h. As h′ , h0, there
is h′′ and a ∈ χ(h′′) such that h′ = π(h′′,a). But then there is a path from h′′

to h that is longer than the path from h′, a contradiction.

The above claim implies that every perfect-information extensive-form
game can be seen as a game on a rooted tree (H ,E,h0) where
I H ∪ Z is a set of nodes,
I E ⊆ H ×H is a set of edges defined by (h,h′) ∈ E iff h ∈ H and

there is a ∈ χ(h) such that π(h,a) = h′,
I h0 is the root. 164



Some More Notation

h′ is a child of h, and h is a parent of h′ if there is a ∈ χ(h) such
that h′ = π(h,a).

h′ ∈ H is reachable from h ∈ H if there is a path from h to h′.
If h′ is reachable from h we say that h′ is a descendant of h and h is
an ancestor of h′ (note that, by definition, h is both a descendant and
an ancestor of itself).
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Example: Trust Game

1

h0

(5,5)

z1

D

h1

2

(0,20)

z2

K

(7.5,12.5)

z3

S

T

I Two players, both start with 5$
I Player 1 either distrusts (D) player 2 and keeps the money

(payoffs (5,5)), or trusts (T) player 2 and passes 5$ to player 2
I If player 1 chooses to trust player 2, the money is tripled by the

experimenter and sent to player 2.
I Player 2 may either keep (K) the additional 15$ (resulting in

(0,20)), or share (S) it with player 1 (resulting in (7.5,12.5)) 166



Example: Trust Game (Cont.)

1

h0

(5,5)

z1

D

h1

2

(0,20)

z2

K

(7.5,12.5)

z3

S

T

I N = {1,2}, A = {D,T ,K ,S}
I H = {h0,h1}, Z = {z1, z2, z3}

I χ(h0) = {D,T }, χ(h1) = {K ,S}
I ρ(h0) = 1, ρ(h1) = 2
I π(h0,D) = z1, π(h0,T) = h1, π(h1,K) = z2, π(h1,S) = z3

I u1(z1) = 5, u1(z2) = 0, u1(z3) = 7.5, u2(z1) = 5, u2(z2) = 20,
u2(z3) = 12.5
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Stackelberg Competition

Very similar to Cournot duopoly ...

I Two identical firms, players 1 and 2, produce some good.
Denote by q1 and q2 quantities produced by firms 1 and 2, resp.

I The total quantity of products in the market is q1 + q2.

I The price of each item is κ − q1 − q2 where κ > 0 is fixed.

I Firms have a common per item production cost c.

Except that ...

I As opposed to Cournot duopoly, the firm 1 moves first, and
chooses the quantity q1 ∈ [0,∞).

I Afterwards, the firm 2 chooses q2 ∈ [0,∞) (knowing q1) and then
the firms get their payoffs.
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Stackelberg Competition – Extensive-Form Model

An extensive-form game model:
I N = {1,2}
I A = [0,∞)

I H = {h0,h
q1
1 | q1 ∈ [0,∞)}

I Z = {zq1,q2 | q1,q2 ∈ [0,∞)

I χ(h0) = [0,∞), χ(hq1
1 ) = [0,∞)

I ρ(h0) = 1, ρ(hq1
1 ) = 2

I π(h0,q1) = hq1
1 , π(hq1

1 ,q2) = zq1,q2

I The payoffs are
I u1(zq1,q2 ) = q1(κ − q1 − q2) − q1c
I u2(zq1,q2 ) = q2(κ − q1 − q2) − q2c
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Example: Chess (a bit simplified)
There are infinitely many representations of chess, this one is different from
the one presented at the lecture.

I N = {1,2}
I Denoting Boards the set of all (appropriately encoded) board

positions, we define H = B × {1,2} where

B = {w ∈ Boards+
| no board repeats ≥ 3 times in w}

(Here Boards+ is the set of all non-empty sequences of boards)

I Z consists of all nodes (wb , i) (here b ∈ Boards) where either b
is checkmate for player i, or i does not have a move in b, or
every move of i in b leads to a board with two occurrences in w

I χ(wb , i) is the set of all legal moves of player i in b
I ρ(wb , i) = i
I π is defined by π((wb , i),a) = (wbb ′,2 − i + 1) where b ′ is

obtained from b according to the move a
I h0 = (b0,1) where b0 is the initial board
I uj(wb , i) ∈ {1,0,−1}, here 1 means "win", 0 means "draw", and
−1 means "loss" for player j 170



Pure Strategies

Let G = (N,A ,H,Z , χ, ρ, π,h0,u) be a perfect-information
extensive-form game.

Definition 54
A pure strategy of player i in G is a function si : Hi → A such
that for every h ∈ Hi we have that si(h) ∈ χ(h).
We denote by Si the set of all pure strategies of player i in G.
Denote by S = S1 × · · · × Sn the set of all pure strategy profiles.

Note that each pure strategy profile s ∈ S determines a unique
path ws = h0a1h1 · · · hk−1ak hk from h0 to a terminal node hk by

aj = sρ(hj−1)(hj−1) ∀0 < j ≤ k

Denote by O(s) the terminal node reached by ws .

Abusing notation a bit, we denote by ui(s) the value ui(O(s)) of
the payoff for player i when the terminal node O(s) is reached
using strategies of s.
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Example: Trust Game

1

h0

(5,5)

z1

D

h1

2

(0,20)

z2

K

(7.5,12.5)

z3

S

T

A pure strategy profile (s1, s2) where

s1(h0) = T and s2(h1) = K

is usually written as TK (BFS & left to right traversal) determines the
path h0T h1K z2

The resulting payoffs: u1(s1, s2) = 0 and u2(s1, s2) = 20.
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Extensive-Form vs Strategic-Form

The extensive-form game G determines the corresponding
strategic-form game Ḡ = (N, (Si)i∈N , (ui)i∈N)

Here note that the set of players N and the sets of pure strategies Si are the
same in G and in the corresponding game.

The payoff functions ui in Ḡ are understood as functions on the pure strategy
profiles of S = S1 × · · · × Sn.

With this definition, we may apply all solution concepts and algorithms
developed for strategic-form games to the extensive form games.
We often consider the extensive-form to be only a different way of
representing the corresponding strategic-form game and do not distuinguish
between them.

There are some issues, namely whether all notions from
strategic-form area make sense in the extensive-form. Also, naive
application of algorithms may result in unnecessarily high complexity.

For now, let us consider pure strategies only!
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Example: Trust Game

1

h0

(5,5)

z1

D

h1

2

(0,20)

z2

K

(7.5,12.5)

z3

S

T

Is any strategy strictly (weakly, very weakly) dominant?

Is any strategy never best response?

Is there a Nash equilibrium in pure strategies ?
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Example

1

h0

2

h1

(3,1)

K

(1,3)

U

L

2

h2

(2,1)

K ′

(0,0)

U′

R

Find all pure strategies of both players.

Is any strategy (strictly, weakly, very weakly) dominant?

Is any strategy (strictly, weakly, very weakly) dominated?

Is any strategy never best response?

Are there Nash equilibria in pure strategies ?
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Example

1

h0

2

h1

(3,1)

K

(1,3)

U

L

2

h2

(2,1)

K ′

(0,0)

U′

R
KK ′ KU′ UK ′ UU′

L 3,1 3,1 1,3 1,3
R 2,1 0,0 2,1 0,0

Find all pure strategies of both players.

Is any strategy (strictly, weakly, very weakly) dominant?

Is any strategy (strictly, weakly, very weakly) dominated?

Is any strategy never best response?

Are there Nash equilibria in pure strategies ?
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Criticism of Nash Equilibria

1

h0

2

h1

(3,1)

K

(1,3)

U

L

2

h2

(2,1)

K ′

(0,0)

U′

R

KK ′ KU′ UK ′ UU′

L 3,1 3,1 1,3 1,3
R 2,1 0,0 2,1 0,0

Two Nash equilibria in pure strategies: (L ,UU′) and (R ,UK ′)

Examine (L ,UU′):
I Player 2 threats to play U′ in h2,
I as a result, player 1 plays L ,
I player 2 reacts to L by playing the best response, i.e., U.

However, the threat is not credible, once a play reaches h2, a rational
player 2 chooses K ′. 177



Criticism of Nash Equilibria

1

h0

2

h1

(3,1)

K

(1,3)

U

L

2

h2

(2,1)

K ′

(0,0)

U′

R

KK ′ KU′ UK ′ UU′

L 3,1 3,1 1,3 1,3
R 2,1 0,0 2,1 0,0

Two Nash equilibria in pure strategies: (L ,UU′) and (R ,UK ′)

Examine (R ,UK ′): This equilibrium is sensible in the following sense:
I Player 2 plays the best response in both h1 and h2

I Player 1 plays the "best response" in h0 assuming that player 2
will play his best responses in the future.

This equilibrium is called subgame perfect.
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Subgame Perfect Equilibria
Given h ∈ H , we denote by Hh the set of all nodes reachable from h.

Definition 55 (Subgame)
A subgame Gh of G rooted in h ∈ H is the restriction of G to nodes
reachable from h in the game tree. More precisely,
Gh = (N,A ,Hh ,Zh , χh , ρh , πh ,h,uh) where Hh = H ∩Hh ,
Zh = Z ∩Hh , χh and ρh are restrictions of χ and ρ to Hh , resp.,
(Given a function f : A → B and C ⊆ A , a restriction of f to C is a function
g : C → B such that g(x) = f(x) for all x ∈ C.)

I πh is defined for h′ ∈ Hh and a ∈ χh(h′) by πh(h′,a) = π(h′,a)

I each uh
i is a restriction of ui to Zh

Definition 56
A subgame perfect equilibrium (SPE) in pure strategies is a pure
strategy profile s ∈ S such that for any subgame Gh of G,
the restriction of s to Hh is a Nash equilibrium in pure strategies in Gh .

A restriction of s = (s1, . . . , sn) ∈ S to Hh is a strategy profile sh = (sh
1 , . . . , s

h
n )

where sh
i (h′) = si(h′) for all i ∈ N and all h′ ∈ Hi ∩ Hh .
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Stackelberg Competition – SPE

I N = {1,2}, A = [0,∞)

I H = {h0,h
q1
1 | q1 ∈ [0,∞)}, Z = {zq1,q2 | q1,q2 ∈ [0,∞)

I χ(h0) = [0,∞), χ(hq1
1 ) = [0,∞), ρ(h0) = 1, ρ(hq1

1 ) = 2

I π(h0,q1) = hq1
1 , π(hq1

1 ,q2) = zq1,q2

I The payoffs are u1(zq1,q2 ) = q1(κ − c − q1 − q2),
u2(zq1,q2 ) = q2(κ − c − q1 − q2)

Denote θ = κ − c

Player 1 chooses q1, we know that the best response of player 2 is
q2 = (θ − q1)/2 where θ = κ − c.
Then u1(zq1,q2 ) = q1(θ − q1 − θ/2 − q1/2) = (θ/2)q1 − q2

1/2 which is
maximized by q1 = θ/2, giving q2 = θ/4.
Then u1(zq1,q2 ) = θ2/8 and u2(zq1,q2 ) = θ2/16.

Note that firm 1 has an advantage as a leader.
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Existence of SPE
From this moment on we consider only finite games!

Theorem 57
Every finite perfect-information extensive-form game has a SPE in
pure strategies.
Proof: By induction on the number of nodes.
Base case: If |H| = 1, the only node is terminal, and the trivial pure
strategy profile is SPE.
Induction step: Consider a game with more than one node. Let
K = {h1, . . . ,hk } be the set of all children of the root h0.
By induction, for every h` there is a SPE sh` in Gh` .
For every i ∈ N, define a strategy si of player i in G as follows:

I for i = ρ(h0) we have si(h0) ∈ argmaxh`∈K uh`
i (sh`)

I for all i ∈ N and h ∈ H we have si(h) = sh`
i (h) where h ∈ Hh` ∩ Hi

We claim that s = (s1, . . . , sn) is a SPE in pure strategies.

By definition, s is NE in all subgames except (possibly) the G itself.

�
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Existence of SPE (Cont.)
Let h` = sρ(h0)(h0).

Consider a possible deviation of player i.
Let s̄ be another pure strategy profile in G obtained from
s = (s1, . . . , sn) by changing si .

First, assume that i , ρ(h0). Then

ui(s) = uh`
i (sh`) ≥ uh`

i (s̄h`) = ui(s̄)

Here the first equality follows from h` = sρ(h0)(h0) and that s behaves similarly
as sh` in Gh` , the inequality follows from the fact that sh` is a NE in Gh` , and
the second equality follows from h` = sρ(h0)(h0) = s̄ρ(h0)(h0).

Second, assume that i = ρ(h0).
Let hr = s̄i(h0) = s̄ρ(h0)(h0).

Then uh`
i (sh`) ≥ uhr

i (shr ) because h` maximizes the payoff of
player i = ρ(h0) in the children of h0.
But then

ui(s) = uh`
i (sh`) ≥ uhr

i (shr ) ≥ uhr
i (s̄hr ) = ui(s̄)
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Chess

Recall that in the model of chess, the payoffs were from
{1,0,−1} and u1 = −u2 (i.e. it is zero-sum).

By Theorem 57, there is a SPE in pure strategies (s∗1, s
∗

2).

However, then one of the following holds:
1. White has a winning strategy

If u1(s∗1, s
∗

2) = 1 and thus u2(s∗1, s
∗

2) = −1

2. Black has a winning strategy
If u1(s∗1, s

∗

2) = −1 and thus u2(s∗1, s
∗

2) = 1

3. Both players have strategies to force a draw
If u1(s∗1, s

∗

2) = 0 and thus u2(s∗1, s
∗

2) = 0

Question: Which one is the right answer?
Answer: Nobody knows yet ... the tree is too big!
Even with ∼ 200 depth & ∼ 5 moves per node: 5200 nodes!
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Backward Induction
The proof of Theorem 57 gives an efficient procedure for computing
SPE for finite perfect-information extensive-form games.

Backward Induction: We inductively "attach" to every node h a SPE
sh in Gh , together with a vector of expected payoffs
u(h) = (u1(h), . . . ,un(h)).
I Initially: Attach to each terminal node z ∈ Z the empty profile

sz = (∅, . . . , ∅) and the payoff vector u(z) = (u1(z), . . . ,un(z)).
I While(there is an unattached node h with all children attached):

1. Let K be the set of all children of h
2. Let

hmax ∈ argmax
h′∈K

uρ(h)(h′)

3. Attach to h a SPE sh where
I sh

ρ(h)
(h) = hmax

I for all i ∈ N and all h′ ∈ Hi define sh
i (h′) = sh̄

i (h′) where

h′ ∈ Hh̄
∩ Hi (in Gh̄ , each sh

i behaves as sh̄
i i.e.

(
sh

)h̄
= sh̄)

4. Attach to h the expected payoffs ui(h) = ui(hmax) for i ∈ N.
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Efficient Algorithms for Pure Nash Equilibria

In the step 2. of the backward induction, the algorithm may choose
an arbitrary hmax ∈ argmaxh′∈K uρ(h)(h′) and always obtain a SPE.
In order to compute all SPE, the algorithm may systematically search
through all possible choices of hmax throughout the induction.

Backward induction is too inefficient (unnecessarily searches through
the whole tree).

There are better algorithms, such as α−β-prunning.

For details, extensions etc. see e.g.

I PB016 Artificial Intelligence I

I Multi-player alpha-beta prunning, R. Korf, Artificial Intelligence
48, pages 99-111, 1991

I Artificial Intelligence: A Modern Approach (3rd edition),
S. Russell and P. Norvig, Prentice Hall, 2009
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Example

Centipede game:

A A A A A

D D D D D

(1,0) (0,2) (3,1) (2,4) (4,3)

(3,5)1 2 1 2 1

SPE in pure strategies: (DDD,DD) ... Isn’t it weird?

There are serious issues here ...
I In laboratory setting, people usually play A for several steps.
I There is a theoretical problem: Imagine, that you are player 2.

What would you do when player 1 chooses A in the first step?
The SPE analysis says that you should go down, but the same
analysis also says that the situation you are in cannot appear :-)
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Dynamic Games of Complete Information
Extensive-Form Games

Mixed and Behavioral Strategies
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Mixed and Behavioral Strategies

Definition 58
A mixed strategy σi of player i in G is a mixed strategy of player i in
the corresponding strategic-form game.
I.e., a mixed strategy σi of player i in G is a probability distribution on Si (recall
that Si is the set of all pure strategies, i.e., functions of the form si : Hi → A ).

As before, we denote by σi the set of all mixed strategies of player i
and by Σ the set of all mixed strategy profiles Σ1 × · · · × Σn.

Definition 59
A behavioral strategy of player i in G is a function βi : Hi → ∆(A)
such that for every h ∈ Hi we have that supp(βi(h)) ⊆ χ(h).

Given a profile β = (β1, . . . , βn) of behavioral strategies, we denote by
Pβ(z) the probability of reaching z ∈ Z when β is used, i.e.,

Pβ(z) =

k∏
`=1

βρ(h`−1)(h`)(a`)

where h0a1h1a2h2 · · · ak hk is the unique path from h0 to hk = z.

We define ui(β) :=
∑

z∈Z Pβ(z) · ui(z).
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Behavioral Strategies: Example

1

h0

2

h1

z1

B

1
h3

z2

C

z3

C̄

B̄

A

2

h2

z4

D

z5

D̄

Ā

Pure strategies of player 1: AC, AC̄, ĀC, Ā C̄
An example of a mixed strategy σ1 of player 1:
σ1(AC) = 1

3 , σ1(AC̄) = 1
9 , σ1(ĀC) = 1

6 and σ1(Ā C̄) = 11
18
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Behavioral Strategies: Example

1

h0

2

h1

z1

B

1
h3

z2

C

z3

C̄

B̄

A

2

h2

z4

D

z5

D̄

Ā

An example of behavioral strategies of both players:
I player 1: β1(h0)(A) = 1

3 and β1(h3)(C) = 1
2

I player 2: β2(h1)(B) = 1
4 and β2(h2)(D) = 1

5

P(β1,β2)(z2) = 1
3

(
1 − 1

4

)
1
2 = 1

8
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Behavioral Strategies: Example

1

h0

2

h1

z1

(1,0)

B

1
h3

z2

(2,3)

C

z3

(3,2)

C̄

B̄

A

2

h2

z4

(1,1)

D

z5

(5,4)

D̄

Ā β = (β1, β2)

I player 1: β1(h0)(A) = 1
3

and β1(h3)(C) = 1
2

I player 2: β2(h1)(B) = 1
4

and β2(h2)(D) = 1
5

u1(β) = Pβ(z1) · 1 + Pβ(z2) · 2 + Pβ(z3) · 3 + Pβ(z4) · 1 + Pβ(z5) · 5

=
1
3

1
4

1 +
1
3

3
4

1
2

2 +
1
3

3
4

1
2

3 +
2
3

1
5

1 +
2
3

4
5

5 ≈ 3.508
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Mixed/Behavioral Profiles
Each pure strategy can be considered as a behavioral strategy.

Definition 60
A mixed/behavioral strategy profile is a tuple α = (α1, . . . , αn) where
each αi is either a mixed, or a behavioral strategy.

Let α = (α1, . . . , αn) be a mixed/behavioral strategy profile, and let
M = {i1, . . . , ik } ⊆ N be the set of all players ij ∈ N such that αij is
a mixed strategy. We define

ui(α) =
∑

si1∈Si1

· · ·

∑
sik ∈Sik

 k∏
`=1

αi`(si`)

 · ui(α
′

1, . . . , α
′

n)

where α′j =

sj if j ∈ M,
αj otherwise.

Intuitively, ui(α) is the expected payoff of player i in the following play: First,
each player i` ∈ M chooses his pure strategy si` randomly with the probability
αi` (si` ), then these fixed pure strategies are played against the behavioral
strategies of players from N rM (who may still randomize along the play).
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Equivalence of Mixed and Behavioral Strategies
We show how to translate behavioral strategies to equivalent mixed
ones (w.r.t. probabilities of reaching terminal nodes) and vice versa.

Behavioral to mixed: We say that a mixed strategy σi is induced by
a behavioral strategy βi if

σi(si) =
∏
h∈Hi

βi(h)(si(h)) for all si ∈ Si

Mixed to behavioral: For this direction some notation is needed.
Given h ∈ H , we denote by w[h] the unique path from h0 to h.
Given h ∈ Hi , we denote by Sh

i the set of all pure strategies si ∈ Si
such that for every h′ ∈ Hi visited by w[h] we have that si(h′) is
the action chosen in h′ on w[h].
Intuitively, Sh

i consists of all pure strategies that on the unique path from h0 to
h chose the appropriate actions to stay on the path. In other words, h can be
reached using si (assuming that the opponents play appropriately) iff si ∈ Sh

i .

Given h ∈ Hi and a ∈ χ(h), we denote by Sh,a
i ⊆ Sh

i the set of all pure
strategies si ∈ Sh

i such that si(h) = a.
I.e., strategies of Sh,a

i may reach h and then choose a there.
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Equivalence of Mixed and Behavioral Strategies
(Cont.)

We say that a behavioral strategy βi is induced by a mixed strategy σi
if the following holds:
For every h ∈ Hi and a ∈ χ(h)

I either∑
si∈Sh

i

σi(si) = 0

I or

βi(h)(a) =

∑
si∈Sh,a

i
σi(si)∑

si∈Sh
i
σi(si)

Intuitively, βi(h)(a) is the probability of selecting a in h assuming that h can
be reached with a positive probability if the other players play appropriately.

If the probability of reaching h using σi is zero (no matter of what
the opponents are doing), then the βi(h) may be defined arbitrarily since h is
reached with zero probability using β as well.
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Equivalence of Mixed and Behavioral Strategies

Theorem 61
Let α be a mixed/behavioral strategy profile and let α′ be any
mixed/behavioral profile obtained from α by substituting some of
the strategies in α with strategies they induce. Then ui(α) = ui(α′).

In fact, any node of H is reached from h0 with the same probability
for all such α′.
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Equivalence of Mixed and Behavioral Strategies

1

h0

2

h1

z1

(1,0)

B

1
h3

z2

(2,3)

C

z3

(3,2)

C̄

B̄

A

2

h2

z4

(1,1)

D

z5

(5,4)

D̄

Ā

Pure strategies of player 1: AC ,AC̄ , ĀC , Ā C̄
Pure strategies of player 2: BD,BD̄, B̄D, B̄D̄
Mixed strategies of player 1: σ1 = (pAC ,pAC̄ ,pĀ ,C ,pĀ C̄)
(Here pXY = σ1(s) where s is a pure str. such that s(h0) = X , s(h3) = Y )
Mixed strategies of player 2: σ2 = (pBD ,pBD̄ ,pB̄D ,pB̄D̄)
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Equivalence of Mixed and Behavioral Strategies

1

h0

2

h1

z1

(1,0)

B

1
h3

z2

(2,3)

C

z3

(3,2)

C̄

B̄

A

2

h2

z4

(1,1)

D

z5

(5,4)

D̄

Ā

Behavioral strategies of player 1: β1 = (qA ,qC) were qA = β1(h0)(A)
and qC = β1(h3)(C); Denote qĀ = 1 − qA and qC̄ = 1 − qC

Behavioral strategies of player 2: β2 = (qB ,qD) and we use
qB̄ = 1 − qB and qD̄ = 1 − qD
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Equivalence of Mixed and Behavioral Strategies
Behavioral to mixed: Given β1 = (qA ,qC) and β2 = (qB ,qD) define

σ1 = (pAC ,pAC̄ ,pĀ ,C ,pĀ C̄) := (qA qC ,qA qC̄ ,qĀ qC ,qĀ qC̄)

σ2 = (pBD ,pBD̄ ,pB̄D ,pB̄D̄) := (qBqD ,qBqD̄ ,qB̄qD ,qB̄qD̄)

What is the probability of reaching z2 ?
I Using (β1, β2) : qA qB̄qC

(i.e. multiply the probabilities assigned by β1, β2 along the path from h0

to z2)

I Using (σ1, σ2) : (qA qC)(qB̄qD + qB̄qD̄) = qA qB̄qC

(i.e., player 1 needs to choose the pure strategy AC, player 2 needs to
choose any pure strategy which selects B̄)

I Using (σ1, β2) : (qA qC)qB̄ = qA qB̄qC

(i.e., first player 1 chooses a pure strategy, this needs to be AC, and
then player 2 plays against this particular strategy by choosing B̄)

I Using (β1, σ2) : (qB̄qD + qB̄qD̄)qA qC = qA qB̄qC

(i.e., first player 2 chooses a pure strategy, needs to be one playing B̄ in
h1, and then player 1 plays against this strategy by choosing A and C)
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Equivalence of Mixed and Behavioral Strategies

Mixed to behavioral: Given σ1 = (pAC ,pAC̄ ,pĀ ,C ,pĀ C̄) and
σ2 = (pBD ,pBD̄ ,pB̄D ,pB̄D̄) we have

I β1 = (qA ,qC) where

qA = pAC +pAC̄ qC =

 pAC
pAC +pAC̄

if pAC + pAC̄ > 0

x otherwise

Here x is an arbitrary number between 0 and 1.
I β2 = (qB ,qD) where

qB = pBD + pBD̄ qD = pBD + pB̄D
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Equivalence of Mixed and Behavioral Strategies
First, consider qA = pAC + pAC̄ > 0.
What is the probability of reaching z2 ?
I Using (σ1, σ2) : pAC · (pB̄D + pB̄D̄)

i.e., player 1 chooses AC and player 2 chooses a pure str. playing B̄

I Using (β1, β2) :

qA · qB̄ · qC = (pAC + pAC̄) · qB̄ ·
pAC

pAC + pAC̄
= qB̄ · pAC

= pAC · (1 − qB)

= pAC · (1 − (pBD + pBD̄))

= pAC · (pB̄D + pB̄D̄)

I Using (β1, σ2) :

(pB̄D + pB̄D̄) · qA · qC = qA · qB̄ · qC = pAC · (pB̄D + pB̄D̄)

i.e., first player 2 chooses a pure strategy playing B̄ in h1 and then
player 1 plays the behavioral strategy β1 against it
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Equivalence of Mixed and Behavioral Strategies

I Using (σ1, β2) : pAC · qB̄ = pAC · (pB̄D + pB̄D̄)

i.e., first player 1 chooses the pure strategy AC and then player 2 plays
the behavioral str. β2 against it

Observe that all possible combinations of mixed and behavioral
strategies give the same probability of reaching z2; this holds for all
terminal nodes and hence all combinations give the same payoff.

Now, assume qA = pAC + pAC̄ = 0 (which implies pAC = 0).

What is the probability of reaching z2 ?

I Using (σ1, σ2) : pAC · (pB̄D + pB̄D̄) = 0

I Using (β1, β2) : qA · qB̄ · qC = 0

I Using (β1, σ2) : (pB̄D + pB̄D̄) · qA · qC = 0

I Using (σ1, β2) : pAC · qB̄ = 0
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Behavioral (Mixed) Strategy SPE
Let us denote by Bi the set of all behavioral strategies of player i, and
by B the set of all behavioral strategy profiles B1 × . . . × Bn.

Definition 62
β = (β1, . . . , βn) ∈ B is a behavioral Nash equilibrium if

ui(βi , β−i) ≥ ui(β
′

i , β−i) for all i ∈ N and β′i ∈ Bi

Observe that due to Theorem 61 behavioral NE coincide with mixed NE.

Definition 63
A subgame perfect equilibrium (SPE) in behavioral strategies is
a behavioral strategy profile β ∈ B such that for any subgame Gh of
G, the restriction of β to Hh is a behavioral Nash equilibrium.
Here β = (β1, . . . , βn) and the restriction of β to Gh is a behavioral strategy
profile βh = (βh

1 , . . . , β
h
n) where each βh

i is a restriction of βi to Hh
∩ Hi .

Theorem 64
There exists a pure strategy profile which is a SPE in behavioral
strategies.

The proof is similar to the proof of Theorem 57.
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Comments on Algorithms
Note that some SPE in behavioral strategies can be computed using
the backward induction.
Indeed, the algorithm computes a pure strategy profile where each player
always maximizes his value; such a pure strategy profile is SPE in both pure
and behavioral strategies.

Even though there always exists a pure SPE, there may exist
(a continuum of) SPE composed of "non-pure" behavioral strategies.
However, the necessary and sufficient condition for existence of such
SPE is that at some point of the backward induction one of the players
(say i) has two or more alternatives with the same equilibrium payoff.
The same payoff is only for the player i, the other players may have different
payoffs depending on the choice of the player i.

Then any convex combination of such alternatives can be made by
the player i, still leading to SPE (of course, for each combination
the resulting SPE may be different).

For two players the backward induction can be extended to compute
(a finite representation of) all SPE in behavioral strategies in
polynomial time.
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Dynamic Games of Complete Information
Extensive-Form Games

Imperfect-Information Games
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Extensive-form of Matching Pennies
Is it possible to model Matching pennies using extensive-form
games?

H T
H 1,−1 −1,1
T −1,1 1,−1

1

h0

2

h1

(1,−1)

H

(−1,1)

T

H

2

h2

(−1,1)

H

(1,−1)

T

T

The problem is that player 2 is "perfectly" informed about the choice
of player 1. In particular, there are pure Nash equilibria (H,TH) and
(T ,TH) in the extensive-form game as opposed to the strategic-form.

Reversing the order of players does not help.

We need to extend the formalism to be able to hide some information
about previous moves.
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Extensive-form of Matching Pennies
Matching pennies can be modeled using
an imperfect-information extensive-form game:

1

h0

2

h1

(1,−1)

H

(−1,1)

T

H

2

h2

(−1,1)

H

(1,−1)

T

T

Here h1 and h2 belong to the same information set of player 2.

As a result, player 2 is not able to distinguish between h1 and h2.

So even though players do not move simultaneously, the information
player 2 has about the current situation is the same as in
the simultaneous case.
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Imperfect Information Games
An imperfect-information extensive-form game is a tuple
Gimp = (Gperf , I) where

I Gperf = (N,A ,H,Z , χ, ρ, π,h0,u) is a perfect-information
extensive-form game (called the underlying game),

I I = (I1, . . . , In) where for each i ∈ N = {1, . . . ,n}

Ii = {Ii,1, . . . , Ii,ki }

is a collection of information sets for player i that satisfies
I

⋃ki
j=1 Ii,j = Hi and Ii,j ∩ Ii,k = ∅ for j , k

(i.e., Ii is a partition of Hi)
I for all h,h′ ∈ Ii,j , we have ρ(h) = ρ(h′) and χ(h) = χ(h′)

(i.e., nodes from the same information set are owned by the same
player and have the same sets of enabled actions)

Given h ∈ H, we denote by I(h) the information set Ii,j containing h.

Given an information set Ii,j , we denote by χ(Ii,j) the set of all actions
enabled in some (and hence all) nodes of Ii,j .
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Imperfect Information Games – Strategies

Now we define the set of pure, mixed, and behavioral strategies in Gimp as
subsets of pure, mixed, and behavioral strategies, resp., in Gperf that respect
the information sets.

Let Gimp = (Gperf , I) be an imperfect-information extensive-form game
where Gperf = (N,A ,H,Z , χ, ρ, π,h0,u).

Definition 65
A pure strategy of player i in Gimp is a pure strategy si in Gperf such
that for all j = 1, . . . , ki and all h,h′ ∈ Ii,j holds si(h) = si(h′).
Note that each si can also be seen as a function si : Ii → A such that for
every Ii,j ∈ Ii we have that si(Ii,j) ∈ χ(Ii,j).

As before, we denote by Si the set of all pure strategies of player i in
Gimp , and by S = S1 × · · · × Sn the set of all pure strategy profiles.

As in the perfect-information case we have a corresponding
strategic-form game Ḡimp = (N, (Si)i∈N , (ui)i∈N).
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Matching Pennies

1

h0

2

h1

(1,−1)

H

(−1,1)

T

H

2

h2

(−1,1)

H

(1,−1)

T

T

I1 = {I1,1} where I1,1 = {h0}

I1 = {I2,1} where I2,1 = {h1,h2}

Example of pure strategies:
I s1(I1,1) = H which describes the strategy s1(h0) = H
I s2(I2,1) = T which describes the strategy s2(h1) = s2(h2) = T

(it is also sufficient to specify s2(h1) = T since then s2(h2) = T )

So we really have strategies H,T for player 1 and H,T for player 2.
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Weird Example

1

h0

2

h1

(1,2)

K

(2,1)

L

A

2

h2

(3,5)

K

(7,1)

L

B

1
h3

(2,5)

A

(11,0)

B

(−4,10)

C

C

Note that I1 = {I1,1} where I1,1 = {h0,h3}

and that I2 = {I2,1} where I2,1 = {h1,h2}

What pure strategies are in this example?
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SPE with Imperfect Information

1
h0

2

h1

h3

1

z1

(4,1)

C

z2

(1,4)

C̄

B

1
h4

z3

(1,4)

C

z4

(4,1)

C̄

B̄

A

2

h2

z5

(1,1)

D

z6

(4,5)

D̄

Ā

What we designate as subgames to allow the backward induction?
Only subtrees rooted in h1, h2, and h0 (together with all subtrees
rooted in terminal nodes)

Note that subtrees rooted in h3 and h4 cannot be considered as
"independent" subgames because their individual solutions cannot be
combined to a single best response in the information set {h3,h4}. 211



SPE with Imperfect Information

Let Gimp = (Gperf , I) be an imperfect-information extensive-form game
where Gperf = (N,A ,H,Z , χ, ρ, π,h0,u) is the underlying
perfect-information extensive-form game.

Let us denote by Hproper the set of all h ∈ H that satisfy the following:
For every h′ reachable from h, we have that either all nodes of I(h′)
are reachable from h, or no node of I(h′) is reachable from h.
Intuitively, h ∈ Hproper iff every information set Ii,j is either completely contained
in the subtree rooted in h, or no node of Ii,j is contained in the subtree.

Definition 66
For every h ∈ Hproper we define a subgame Gh

imp to be the imperfect
information game (Gh

perf , I
h) where Ih is the restriction of I to Hh .

Note that as subgames of Gimp we consider only subgames of Gperf that
respect the information sets, i.e., are rooted in nodes of Hproper .

Definition 67
A strategy profile s ∈ S is a subgame perfect equilibrium (SPE) if sh is
a Nash equilibrium in every subgame Gh

imp of Gimp (here h ∈ Hproper ).
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Backward Induction with Imperfect Info
The backward induction generalizes to imperfect-information
extensive-form games along the following lines:

1. As in the perfect-information case, the goal is to label each node
h ∈ Hproper ∪ Z with a SPE sh and a vector of payoffs
u(h) = (u1(h), . . . ,un(h)) for individual players according to sh .

2. Starting with terminal nodes, the labeling proceeds bottom up.
Terminal nodes are labeled similarly as in the perfect-inf. case.

3. Consider h ∈ Hproper , let K be the set of all h′ ∈
(
Hproper ∪ Z

)
r {h}

that are h’s closest descendants out of Hproper ∪ Z .
I.e., h′ ∈ K iff h′ , h is reachable from h and the unique path from h to
h′ visits only nodes of H r Hproper (except the first and the last node).

For every h′ ∈ K we have already computed a SPE sh′ in Gh′
imp

and the vector of corresponding payoffs u(h′).

4. Now consider all nodes of K as terminal nodes where each
h′ ∈ K has payoffs u(h′). This gives a new game in which we
compute an equilibrium s̄h together with the vector u(h).
The equilibrium sh is then obtained by "concatenating" s̄h with
all sh′ , here h′ ∈ K , in the subgames Gh′

imp of Gh
imp . 213



Mutually Assured Destruction

Analysis of Cuban missile crisis of 1962
(as described in Games for Business and
Economics by R. Gardner)

I The crisis started with United States’ discovery of Soviet nuclear
missiles in Cuba.

I The USSR then backed down, agreeing to remove the missiles
from Cuba, which suggests that US had a credible threat "if you
don’t back off we both pay dearly".

Question: Could this indeed be a credible threat?
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Mutually Assured Destruction (Cont.)

Model as an extensive-form game:

I First, player 1 (US) chooses to either ignore the incident (I),
resulting in maintenance of status quo (payoffs (0,0)), or
escalate the situation (E).

I Following escalation by player 1, player 2 can back down (B),
causing it to lose face (payoffs (10,−10)), or it can choose to
proceed to a nuclear confrontation (N).

I Upon this choice, the players play a simultaneous-move game in
which they can either retreat (R), or choose doomsday (D).

I If both retreat, the payoffs are (−5,−5), a small loss due to
a mobilization process.

I If either of them chooses doomsday, then the world
destructs and payoffs are (−100,−100).

Find SPE in pure strategies.
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Mutually Assured Destruction (Cont.)

1
h0

2

h1

h2

1

h3

2

(−5,−5)

z1
R

(−100,−100)

z2
D

R
h4

2

(−100,−100)

z3
R

(−100,−100)

z4
D

D

N

(10,−10)

z5

B

E

(0,0)

z6

I

Solve Gh2
imp (a strategic-form game). Then Gh1

imp by solving a game rooted in h1

with terminal nodes h2, z5 (payoffs in h2 correspond to an equilibrium in Gh2
imp).

Finally solve Gimp by solving a game rooted in h0 with terminal nodes h1, z6

(payoffs in h1 have been computed in the previous step).
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Dynamic Games of Complete Information
Extensive-Form Games
Imperfect-Information

Mixed and Behavioral Strategies
Games with Chance Nodes
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Mixed and Behavioral Strategies

Definition 68
A mixed strategy σi of player i in Gimp is a mixed strategy of player i in
the corresponding strategic-form game Ḡimp = (N, (Si)i∈N ,ui).
Do not forget that now si ∈ Si iff si is a pure strategy that assigns the same
action to all nodes of every information set. Hence each si ∈ Si can be seen
as a function si : Ii → A .

As before, we denote by Σi the set of all mixed strategies of player i
and by Σ the set of all mixed strategy profiles Σ1 × · · · × Σn.

Definition 69
A behavioral strategy of player i in Gimp is a behavioral strategy βi in
Gperf such that for all j = 1, . . . , ki and all h,h′ ∈ Ii,j : βi(h) = βi(h′).
Each βi can be seen as a function βi : Ii → ∆(A) such that for all Ii,j ∈ Ii we
have supp(βi(Ii,j)) ⊆ χ(Ii,j).

Are they equivalent as in the perfect-information case?
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Example: Absent Minded Driver

1

0

L

1

5

L

1

R

R

Only one player: A driver who has to take a turn at a particular
junction. There are two identical junctions, the first one leads to
a wrong neighborhood where the driver gets completely lost
(payoff 0), the second one leads home (payoff 5). If the driver misses
both, there is a longer way home (payoff 1). The problem is that after
missing the first turn, the driver forgets that he missed the turn.
Behavioral strategy: β1(I1,1)(L) = 1

2 has the expected payoff 3
2 .

No mixed strategy gives a larger payoff than 1 since no pure strategy
ever reaches the terminal node with payoff 5. 219



Kuhn’s Theorem

Definition 70
Player i has perfect recall in Gimp if the following holds:

I Every information set of player i intersects every path from
the root h0 to a terminal node at most once.

I Every two paths from the root that end in the same information
set of player i

I pass through the same information sets of player i,
I and in the same order,
I and in every such information set the two paths choose the

same action.

In other words, along all paths ending in the same information set, player i
sees the same sequence of information sets and makes the same decisions
in his nodes (i.e. at the end knows exactly the sequence of visited information
sets and all his own choices along the way).
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Kuhn’s Theorem

The notion of induced strategies can be straightforwardly generalized
to imperfect information games:

Behavioral to mixed: We say that a mixed strategy σi is induced by
a behavioral strategy βi if

σi(si) =
∏
Ii,j∈Ii

βi(Ii,j)(si(Ii,j)) for all si ∈ Si

As before, for the opposite direction some notation is needed. Recall that
given h ∈ H , we denote by w[h] the unique path from h0 to h.
Given h ∈ Hi , we denote by Sh

i the set of all pure strategies si ∈ Si such that
for every h′ ∈ Hi visited by w[h] we have that si(h′) is the action chosen in h′

on w[h].
Given h ∈ Hi and a ∈ χ(h), we denote by Sh,a

i the set of all pure strategies
si ∈ Sh

i such that si(h) = a.
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Kuhn’s Theorem
Mixed to behavioral: We say that a behavioral strategy βi is induced
by a mixed strategy σi if the following holds:
Let Ii,j be an information set of player i and let h ∈ Ii,j be (an arbitrary)
node of Ii,j . We have that
I either

∑
si∈Sh

i
σi(si) = 0

I or for each action a ∈ χ(h) (= χ(Ii,j)) :

βi(Ii,j)(a) =

∑
si∈Sh,a

i
σi(si)∑

si∈Sh
i
σi(si)

(Here the perfect recall implies that the definition of βi(Ii,j) does not depend
on the choice of h.)

Theorem 71 (Kuhn, 1953)
Let α be a mixed/behavioral strategy profile and let α′ be any
mixed/behavioral profile obtained from α by substituting some of
the strategies in α with strategies they induce. Then ui(α) = ui(α′).

The concepts of Nash equilibria and SPE in behavioral strategies are
the same as in the perfect information case.
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Complexity of Zero-Sum Games
Recall that a behavioral strategy βi of player i is maxmin if

βi ∈ argmax
β′i ∈Bi

min
β−i∈B−i

ui(β
′

i , β−i)

Similarly for pure and mixed strategies.

Theorem 72 (Koller and Megiddo, 1990)
Consider finite two-player zero-sum imperfect information games.

I For such games with perfect recall, the problem of computing
a maxmin behavioral strategy is in PTIME.

I For games with possibly imperfect recall, the problem of
computing a (pure, behavioral, or mixed) strategy that
guarantees a given payoff is NP-hard.

How to compute Nash equilibria in polynomial time?
Existence of a poly. time algorithm for computing behavioral NE does not
immediately follow from Thm 72 and von Neumann’s Thm 48. Indeed,
Thm 48 has been proved only for mixed strategies. However, using Kuhn’s
thm, von Neumann’s thm can be easily extended to behavioral strategies.
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Complexity of Zero-Sum Games

Proposition 5
Let (β1, β2) be a behavioral strategy profile. Then (β1, β2) is a NE iff
both β1 and β2 are maxmin.
Proof. Let (β1, β2) be a profile of behavioral strategies. Apply Kuhn’s
theorem and obtain induced mixed strategies (σ1, σ2).

Since we used only the Kuhn’s theorem to obtain (σ1, σ2) from
(β1, β2), for both i ∈ {1,2} holds: ui(β1, β2) = ui(σ1, σ2) and
I for every behavioral strategy β′

−i and an induced mixed strategy
σ′
−i , we have that ui(βi , β′−i) = ui(σi , σ′−i),

I for every mixed strategy σ′
−i and an induced behavioral strategy

β′
−i , we have that ui(σi , σ′−i) = ui(βi , β′−i).

Now (β1, β2) is a Nash equilibrium iff (σ1, σ2) is a Nash equilibrium iff
σ1 and σ2 are maxmin iff β1 and β2 are maxmin.

Corollary 73
The complexity of computing Nash equilibria in behavioral strategies
in two-player zero-sum imperfect information games with perfect
recall is in PTIME.
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Complexity of Non-Zero-Sum Games
Computing NE (or SPE) in non-zero-sum imperfect-information
extensive-form games is at least as hard as for strategic-form games.

Backward induction helps in decomposing the game into "subgames"
rooted in nodes of Hsingle but large games may still remain to be
solved using other methods.

Naively, any solution concept developed for strategic-form games can
be applied to imperfect-information extensive-form games (with
perfect recall) via the corresponding strategic-form game Ḡimp .
However, such solution is not efficient (the corresponding game is
exponentially large and often degenerate).

More efficient methods exist for two-player games of perfect recall,
e.g., using sequence form representation of the game, where nodes
of Gimp are represented by sequences of actions leading to the
nodes, which leads to a linear complementarity problem of polynomial
size, which in turn can be solved using a modified Lemke-Howson.
For a detailed treatment of complexity see "The complexity of computing a
(perfect) equilibrium for an n-player extensive form game of perfect recall" by
Kousha Etessami. 225



Imperfect-information and Chance Nodes

0

h0

1

h1

(−2,2)

C

(−1,1)

F

1
2

1

h2

(2,−2)

C

(−1,1)

F

1
2

A very simple card game:
I Player 1 chooses randomly a card from a large deck of cards,

containing only an equal number of Kings and Aces.
I Then Player 1 may either call (C) or fold (F), no look at the card.
I If he folds, then pays $1 to player 2, otherwise

I call + King means that player 1 pays $2 to player 2
I call + Ace means that player 2 pays $2 to player 1
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Imperfect-information and Chance Nodes
An imperfect-information extensive-form game with chance nodes is
a tuple Gimp = (Gperf , I, β0) where
I The set of players N is equal to {0,1, . . . ,n} (i.e., there is a new

player 0 called chance, or nature),
I We assume that for every h ∈ H0 the set of enabled actions χ(h)

is the set of all children nodes of h,
I Each information set of player 0 is a singleton (i.e., the nature

has a complete information),
I β0 is a fixed behavioral strategy for player 0. Player 0 always

plays according to β0.
Note that due to the above assumption, β0(h) is a distribution on all
children of h

As player 0 plays the same strategy always, we exclude this strategy
from strategy profiles
(i.e. pure strategy profiles remain to be elements of S1 × · · · × Sn)

A game with chance nodes is a perfect information game if all
information sets of I are singletons.
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Example

0

h0

1

h1

(−2,2)

C

(−1,1)

F

1
2

1

h2

(2,−2)

C

(−1,1)

F

1
2

Here β0(h0)(h1) = 1
2 and β0(h0)(h2) = 1

2

Player 1 has just one information set I1,1 = {h1,h2}.

Consider a mixed strategy σ1 of player 1 defined by
σ1(I1,1)(C) = 1

4 and σ1(I1,1)(F) = 3
4 .

Then u1(σ1) = 1
2

1
4(−2) + 1

2
3
4(−1) + 1

2
1
42 + 1

2
3
4(−1) = −3

4
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Results

All results for games without chance nodes presented so
far remain valid for games with chance nodes.

In particular, Theorem 57 and Theorem 64 remain valid for
games of perfect information with chance nodes. Concretely:

Theorem 74
Consider games of perfect information with chance nodes.
I There exists a pure strategy profile which is a SPE with

respect to pure strategies.
I There exists a pure strategy profile which is a SPE with

respect to behavioral strategies.

Backward induction can be straightforwardly modified to deal
with chance nodes (see next slide).
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Backward induction with perfect info. & chance
Backward Induction: We inductively "attach" to every node h a SPE
sh in Gh , and expected payoffs u(h) = (u1(h), . . . ,un(h)).

I Initially: Attach to each terminal node z ∈ Z the empty profile
sz = (∅, . . . , ∅) and the payoff vector u(z) = (u1(z), . . . ,un(z)).

I While(there is an unattached node h with all children attached):
1. Let K be the set of all children of h
2. If χ(h) , 0 then let hmax ∈ argmaxh′∈K uρ(h)(h′) and

I attach to h a SPE sh where sh
ρ(h)

(h) = hmax and for i ∈ N r {0}

and all h′ ∈ Hi define sh
i (h′) = sh̄

i (h′) where h′ ∈ Hh̄
∩ Hi

(i.e. in subgames rooted in h̄ ∈ K , sh behaves as sh̄ .)
I attach to h expected payoffs ui(h) = ui(hmax) for i ∈ N r {0}

3. If χ(h) = 0, then
I attach to h a SPE sh where for all i ∈ N r {0} and all h′ ∈ Hi

define sh
i (h′) = sh̄

i (h′) where h′ ∈ Hh̄
∩ Hi

(i.e. in subgames rooted in h̄ ∈ K , sh behaves as sh̄ .)
I attach to h the expected payoffs

ui(h) =
∑
h̄∈K

(
β0(h)(h̄)

)
ui(h̄)

(i.e., the weighted average payoff in all children nodes) 230



Backward Induction for Imperfect Info & Chance

The high-level description of backward induction for
imperfect-information games given earlier remains valid also for
imperfect-information games with chance nodes.

We only have to notice that in the games newly created in
step 4., player 0 participates with the strategy β0.
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Dynamic Games of Complete Information
Repeated Games

Finitely Repeated Games
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Example

C S
C −5,−5 0,−20
S −20,0 −1,−1

Imagine that the criminals are being arrested repeatedly.

Can they somewhat reflect upon their experience in order to play
"better"?

In what follows we consider strategic-form games played repeatedly

I for finitely many rounds, the final payoff of each player will be
the average of payoffs from all rounds

I infinitely many rounds, here we consider a discounted sum of
payoffs and the long-run average payoff

We analyze Nash equilibria and sub-game perfect equilibria.

We stick to pure strategies only!
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Finitely Repeated Games
Let G = ({1,2}, (S1,S2) , (u1,u2)) be a finite strategic-form game of
two players.

A T-stage game GT-rep based on G proceeds in T stages so that in
a stage t ≥ 1, players choose a strategy profile st = (st

1, s
t
2).

After T stages, both players collect the average payoff
∑T

t=1 ui(st ) /T .

A history of length 0 ≤ t ≤ T is a sequence h = s1
· · · st

∈ S t of t
strategy profiles. Denote by H(t) the set of all histories of length t .

A pure strategy for player i in a T -stage game GT -rep is a function

τi :

T−1⋃
t=0

H(t)→ Si

which for every possible history chooses a next step for player i.

Every strategy profile τ = (τ1, τ2) in GT -rep induces a sequence of
pure strategy profiles wτ = s1

· · · sT in G so that st
i = τi(s1

· · · st−1).

Given a pure strategy profile τ in GT -rep such that wτ = s1
· · · sT ,

define the payoffs ui(τ) =
∑T

t=1 ui(st ) /T .
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Example

C S
C −5,−5 0,−20
S −20,0 −1,−1

Consider a 3-stage game.

Examples of histories: ε, (C ,S), (C ,S)(S ,S), (C ,S)(S ,S)(C ,C)

Here the last one is terminal, obtained using τ1, τ2 s.t.:

τ1(ε) = C, τ1((C ,S)) = S, τ1((C ,S)(S ,S)) = C
τ2(ε) = S, τ2((C ,S)) = S, τ2((C ,S)(S ,S)) = C
Thus w(τ1,τ2) = (C ,S)(S ,S)(C ,C)

u1(τ1, τ2) = (0 + (−1) + (−5))/3 = −2
u2(τ1, τ2) = (−20 + (−1) + (−5))/3 = −26/3
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Finitely Repeated Games in Extensive-Form
Every T -stage game GT -rep can be defined as an imperfect
information extensive-form game.

Define an imperfect-information extensive-form game Grep
imp = (Grep

perf , I)
such that Grep

perf = ({1,2},A ,H,Z , χ, ρ, π,h0,u) where

I A = S1 ∪ S2

I H = (S1 × S2)≤T
∪ (S1 × S2)<T

· S1

Intuitively, elements of (S1 × S2)≤k are possible histories;
(S1 × S2)<k

· S1 is used to simulate a simultaneous play of G by letting
player 1 choose first and player 2 second.

I Z = (S1 × S2)T

I χ(ε) = S1 and χ(h · s1) = S2 for s1 ∈ S1, and χ(h · (s1, s2)) = S1
for (s1, s2) ∈ S

I ρ(ε) = 1 and ρ(h · s1) = 2 and ρ(h · (s1, s2)) = 1
I π(ε, s1) = s1 and π(h · s1, s2) = h · (s1, s2) and
π(h · (s1, s2), s′1) = h · (s1, s2) · s′1

I h0 = ε and ui((s1
1 , s

1
2)(s2

1 , s
2
2) · · · (sT

1 , s
T
2 )) =

∑T
t=1 ui(st

1, s
t
2) /T
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Finitely Repeated Games in Extensive-Form

The set of information sets is defined as follows: Let h ∈ H1 be a node
of player 1, then

I there is exactly one information set of player 1 containing h as
the only element,

I there is exactly one information set of player 2 containing all
nodes of the form h · s1 where s1 ∈ S1.

Intuitively, in every round, player 1 has a complete information about
results of past plays,

player 1 chooses a pure strategy s1 ∈ S1,

player 2 is not informed about s1 but still has a complete information
about results of all previous rounds,

player 2 chooses a pure strategy s2 ∈ S2 and both players are
informed about the result.
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Finitely Repeated Games – Equilibria

Definition 75
A strategy profile τ = (τ1, τ2) in a T -stage game GT -rep is a Nash
equilibrium if for every i ∈ {1,2} and every τ′i we have

ui(τ1, τ2) ≥ ui(τ
′

i , τ−i)

To define SPE we use the following notation. Given a history
h = s1

· · · st and a strategy τi of player i, we define a strategy τh
i in

(T − t)-stage game based on G by

τh
i (s̄1
· · · s̄ t̄ ) = τi(s1

· · · st s̄1
· · · s̄ t̄ ) for every sequence s̄1

· · · s̄ t̄

(i.e. τh
i behaves as τi after h)

Definition 76
A strategy profile τ = (τ1, τ2) in a T -stage game GT -rep is
a subgame-perfect Nash equilibrium (SPE) if for every history h
the profile (τh

1 , τ
h
2) is a Nash equilibrium in the (T − |h|)-stage game

based on G.
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SPE with Single NE in G

C S
C −5,−5 0,−20
S −20,0 −1,−1

Consider a T -stage game based on Prisoner’s dilemma.

For every T , find a SPE.

... there is one, play (C ,C) all the time. Is it all?

Theorem 77
Let G be an arbitrary finite strategic-form game. If G has a unique
Nash equilibrium, then playing this equilibrium all the time is
the unique SPE in the T-stage game based on G.

Proof.
By backward induction, players have to play the NE in the last stage.
As the behavior in the last stage does not depend on the behavior in
the (T − 1)-th stage, they have to play the NE also in the (T − 1)-th
stage. Then the same holds in the (T − 2)-th stage, etc. �
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Further Discussion of Prisoner’s Dilemma

C S
C −5,−5 0,−20
S −20,0 −1,−1

Are there other NE (that are not SPE) in the repeated Prisoner’s
dilemma?

To simplify our discussion, we use the following notation: X−YZ ,
where X ,Y ,Z ∈ {C ,S} denotes the following strategy:

I In the first phase, play X

I In the second phase, play Y if the opponent plays C in the first
phase, otherwise play Z

There are 4 NE: They are the four profiles that lead to (C ,C)(C ,C),
i.e., each player plays either C−CC, or C−CS.
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Further Discussion of Prisoner’s Dilemma

C S
C −5,−5 0,−20
S −20,0 −1,−1

The strategy C strictly dominates S in the Prisoner’s dilemma.

Is there a strictly dominant strategy in the 2-stage game based on
the Prisoner’s dilemma?

If player 2 plays S−CS, then the best responses of player 1 are
S−CC and S−SC.
(The strategy S−CS is usually called "tit-for-tat".)

If player 2 plays S−SC, then the best responses are C−SC and
C−CC.

So there is no strictly dominant strategy for player 1.
(Which would be among the best responses for all strategies of player 2.)
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SPE with Multiple NE in G

Let s = (s1, s2) be a Nash equilibrium in G.
Define a strategy profile τ = (τ1, τ2) in GT -rep where

I τ1 chooses s1 in every stage

I τ2 chooses s2 in every stage

Proposition 6
τ is a SPE in GT-rep for every T ≥ 1.

Proof.
Apparently, changing τi in some stage(s) may only result in the same
or worse payoff for player i, since the other player always plays s2
independent of the choices of player 1. �

The proposition may be generalized by allowing players to play
different equilibria in particular stages
I.e., consider a sequence of NE s1, s2, . . . , sT in G and assume that in stage `
player i plays s`i

Does this cover all possible SPE in finitely repeated games?
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SPE with Multiple NE in G

m f r
M 4,4 −1,5 0,0
F 5,−1 1,1 0,0
R 0,0 0,0 3,3

NE in the above game G : (F , f) and (R , r)

Consider 2-stage game G2-rep and strategies τ1, τ2 where

I τ1 : Chooses M in stage 1. In stage 2 plays R if (M,m) was
played in the first stage, and plays F otherwise.

I τ2 : Chooses m in stage 1. In stage 2 plays r if (M,m) was
played in the first stage, and plays f otherwise.

Is this SPE?

Note that here the players do not play a NE in the first step.

The idea is that both players agree to play a Pareto optimal profile. If
both comply, then a favorable NE is played in the second stage. If one
of them betrays then a "punishing" NE is played.
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Dynamic Games of Complete Information
Repeated Games

Infinitely Repeated Games
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Infinitely Repeated Games
Let G = ({1,2}, (S1,S2) , (u1,u2)) be a strategic-form game of two
players.

An infinitely repeated game Girep based on G proceeds in stages so
that in each stage, say t , players choose a strategy profile
st = (st

1, s
t
2).

Recall that a history of length t ≥ 0 is a sequence h = s1
· · · st

∈ S t of
t strategy profiles. Denote by H(t) the set of all histories of length t .

A pure strategy for player i in the infinitely repeated game Girep is
a function

τi :

∞⋃
t=0

H(t)→ Si

which for every possible history chooses a next step for player i.

Every pure strategy profile τ = (τ1, τ2) in Girep induces a sequence of
pure strategy profiles wτ = s1s2

· · · in G so that st
i = τi(s1

· · · st−1).
(Here for t = 0 we have that s1

· · · st−1 = ε.)
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Infinitely Repeated Games & Discounted Payoff

Let τ = (τ1, τ2) be a pure strategy profile in Girep such that
wτ = s1s2

· · ·

Given 0 < δ < 1, we define a δ-discounted payoff by

uδi (τ) = (1 − δ)

∞∑
t=0

δt
· ui(st+1)

Given a strategic-form game G and 0 < δ < 1, we denote by Gδ
irep the

infinitely repeated game based on G together with the δ-discounted
payoffs.
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Infinitely Repeated Games & Discounted Payoff

Definition 78
A strategy profile τ = (τ1, τ2) is a Nash equilibrium in Gδ

irep if for both
i ∈ {1,2} and for every τ′i we have that

uδi (τi , τ−i) ≥ uδi (τ′i , τ−i)

Given a history h = s1
· · · st and a strategy τi of player i, we define

a strategy τh
i in the infinitely repeated game Girep by

τh
i (s̄1
· · · s̄ t̄ ) = τi(s1

· · · st s̄1
· · · s̄ t̄ ) for every sequence s̄1

· · · s̄ t̄

(i.e. τh
i behaves as τi after h)

Now τ = (τ1, τ2) is a SPE in Gδ
irep if for every history h we have that

(τh
1 , τ

h
2) is a Nash equilibrium.

Note that (τh
1 , τ

h
2) must be a NE also for all histories h that are not visited

when the profile (τ1, τ2) is used.
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Example

Consider the infinitely repeated game Girep based on Prisoner’s
dilemma:

C S
C −5,−5 0,−20
S −20,0 −1,−1

What are the Nash equilibria and SPE in Gδ
irep for a given δ ?

Consider a pure strategy profile (τ1, τ2) where τi(s1
· · · sT ) = C for all

T ≥ 1 and i ∈ {1,2}. Is it a NE? A SPE?

Consider a "grim trigger" profile (τ1, τ2) where

τi(s1
· · · sT ) =


S T = 0
S s` = (S ,S) for all 1 ≤ ` ≤ T
C otherwise

Is it a NE? Is it a SPE?
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One-Shot Deviation Principle
A pure strategy profile τ = (τ1, τ2) in Girep satisfies one-shot deviation
property in Gδ

irep if for every i ∈ {1,2} and every τ̄i , differing from τi just
on a single history h, we have uδi (τ̄h

1 , τ
h
2) ≤ uδi (τh

1 , τ
h
2).

Theorem 79
Let G = ({1,2}, (S1,S2), (u1,u2)) be a two-player strategic-form game
such that both u1 and u2 are bounded on S = S1 × S2. Let 0 < δ < 1.
A pure strategy profile τ = (τ1, τ2) in Girep is a SPE in Gδ

irep iff
it satisfies the one-shot deviation property in Gδ

irep .

Before proving Theorem 79, let us note the following:
I The one shot deviation property is concerned with all strategies
τ̄i that differ from τi on a single history. This means that we have
to consider all histories h, even those that can not be visited
using τi with any opponent.

I The one-shot deviation property immediately implies
the following: If τ̄i does not differ from τi on any history of
the form h′ = hh′′ where h′′ , ε (i.e., on any history obtained by
prolonging h), then uδi (τ̄h

1 , τ
h
2) ≤ uδi (τh

1 , τ
h
2).

Indeed, note that τh
i differs from τ̄h

i only on h.
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One-Shot Deviation Principle

Proof. ⇒: Trivial.
⇐: Assume that τ satisfies the one-shot deviation property but is not
a SPE. That is, a deviation may increase payoff of one of the players
in a subgame. Assume, w.l.o.g., that player 1 gains by deviation to
a strategy τ̄1 in a subgame starting with a h, i.e.,

uδ1(τ̄h
1 , τ

h
2) > uδ1(τh

1 , τ
h
2) (29)

Since δ < 1 and ui are bounded on S, we may safely choose τ̄1 so
that τ̄1(h′) = τ1(h′) for all sufficiently long histories h′.
Indeed, since ui is bounded on pure strategies of G, the sum

∑
∞

t=` δ
t
· ui(st+1)

goes to 0 as ` goes to ∞; hence the strict inequality (29) remains valid even if
τ̄1 is arbitrarily modified in a very distant future.
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One-Shot Deviation Principle
Let h′ be a history of maximum length such that h is a prefix of h′ and
τ̄1(h′) , τ1(h′). (Note that then τ̄1(h′h′′) = τ1(h′h′′) for all h′′ , ε.)

Let τ̄11 be a strategy of player 1 obtained from τ̄1 by changing τ̄1(h′)
to τ1(h′). Now note that the one-shot deviation property implies, that

uδ1(τ̄h′
11, τ

h′
2 ) = uδ1(τh′

1 , τ
h′
2 ) ≥ uδ1(τ̄h′

1 , τ
h′
2 )

and thus uδ1(τ̄h
11, τ

h
2) ≥ uδ1(τ̄h

1 , τ
h
2) > uδ1(τh

1 , τ
h
2). Note that τ̄h

11 has
a strictly smaller number of deviations from τh

1 than τ̄h
1 .

Repeating the same argument with τ̄11 in place of τ̄1 we obtain τ̄12
such that uδ1(τ̄h

12, τ
h
2) ≥ uδ1(τ̄h

11, τ
h
2) > uδ1(τh

1 , τ
h
2). Here τ̄h

12 has even less
deviations from τh

1 than τ̄h
11.

Then repeating with τ̄12 in place of τ̄1 we obtain τ̄13 such that
uδ1(τ̄h

13, τ
h
2) ≥ uδ1(τ̄h

12, τ
h
2) > uδ1(τh

1 , τ
h
2), etc., still decreasing the number

of deviations from τh
1 .

Eventually, as τ̄h
1 has only finitely many deviations from τh

1 , we get
τ̄h

1k = τh
1 for some k and thus uδ1(τh

1 , τ
h
2) = uδ1(τ̄h

1k , τ
h
2) > uδ1(τh

1 , τ
h
2),

a contradiction. �
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Example

Consider the infinitely repeated game based on Prisoner’s dilemma:

C S
C −5,−5 0,−20
S −20,0 −1,−1

The grim trigger profile (τ1, τ2) where

τi(s1
· · · sT ) =


S T = 0
S s` = (S ,S) for all 1 ≤ ` ≤ T
C otherwise

is a SPE.
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A Simple Version of Folk Theorem
Let G = ({1,2}, (S1,S2) , (u1,u2)) be a two-player strategic-form game
where u1,u2 are bounded on S = S1 × S2 (but S may be infinite) and
let s∗ be a Nash equilibrium in G.

Let s be a strategy profile in G satisfying ui(s) > ui(s∗) for all i ∈ N.

Consider the following grim trigger for s using s∗ strategy profile
τ = (τ1, τ2) in Girep where

τi(s1
· · · sT ) =


si T = 0
si s` = s for all 1 ≤ ` ≤ T
s∗i otherwise

Then for

δ ≥ max
i∈{1,2}

maxs′i ∈Si ui(s′i , s−i) − ui(s)

maxs′i ∈Si ui(s′i , s−i) − ui(s∗)

we have that (τ1, τ2) is a SPE in Gδ
irep and uδi (τ) = ui(s).

Proof: Consider a possible one-shot deviation τ̄1 of player 1, i.e.,
there is exactly one h such that τ̄1(h) , τ1(h). We distinguish two
cases depending on h. 253



Proof of Simple Folk Theorem (Cont.)
Case 1: h , s · · · s. Then there is a deviation from s in h and thus
according to (τh

1 , τ
h
2) both players play s∗ forever :

uδ1(τh
1 , τ

h
2) = (1 − δ)

∞∑
k=0

δk u1(s∗) = u1(s∗)(1 − δ)

∞∑
k=0

δk = u1(s∗)

Now (τ̄h
1 , τ

h
2) gives a sequence w(τ̄h

1 ,τ
h
2) = (s′1, s

∗

2)s∗s∗ · · · where s′1 is
a strategy of player 1 to which he deviates after h.
Here player 2 plays s∗2 all the time after h because one of the players has
already deviated in h.

We obtain

u1(τ̄h
1 , τ

h
2) = (1 − δ)

u1(s′1, s
∗

2) +

∞∑
k=1

δk u1(s∗)


≤ (1 − δ)

u1(s∗1, s
∗

2) +

∞∑
k=1

δk u1(s∗)


= u1(s∗)

So this deviation cannot be beneficial no matter what δ is.
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Proof of Simple Folk Theorem (Cont.)
Case 2: h = s · · · s. Clearly, u1(τh

1 , τ
h
2) = u1(s).

Now (τ̄h
1 , τ

h
2) gives a sequence w(τ̄h

1 ,τ
h
2) = (s′1, s2)s∗s∗ · · · where s′1 is

a strategy of player 1 to which he deviates after h.
As opposed to the previous case, here player 2 first plays s2 (since
the deviation of player 1 to s′1 is the first deviation in the history) and then
both players react by playing s∗ forever.

If u1(s′1, s2) < u1(s), then

uδ1(τ̄h
1 , τ

h
2) = (1 − δ)

u1(s′1, s2) +

∞∑
k=1

δk u1(s∗)


< (1 − δ)

u1(s1, s2) +

∞∑
k=1

δk u1(s∗)


< (1 − δ)

u1(s) +

∞∑
k=1

δk u1(s)

 = u1(s) = uδ1(τh
1 , τ

h
2)

and thus this deviation is also not beneficial no matter what δ is.
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Proof of Simple Folk Theorem (Cont.)
Finally, if u1(s′1, s2) ≥ u1(s), then

uδ1(τ̄h
1 , τ

h
2) = (1 − δ)

u1(s′1, s2) +

∞∑
k=1

δk u1(s∗)


= (1 − δ)u1(s′1, s2) + (1 − δ)u1(s∗) · δ

∞∑
k=0

δk

= u1(s′1, s2) − δ · u1(s′1, s2) + δ · u1(s∗)

Thus

uδ1(τ̄h
1 , τ

h
2) ≤ uδ1(τh

1 , τ
h
2) = u1(s) iff

u1(s′1, s2) − δ · u1(s′1, s2) + δ · u1(s∗) ≤ u1(s) iff

u1(s′1, s2) − u1(s) ≤ δ · (u1(s′1, s2) − u1(s∗)) iff

δ ≥
u1(s′1, s2) − u1(s)

u1(s′1, s2) − u1(s∗)
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Proof of Simple Folk Theorem (Cont.)
Thus (τ1, τ2) satisfies the one-shot deviation property in Gδ

irep w.r.t.
player 1 if

δ ≥
u1(s′1, s2) − u1(s)

u1(s′1, s2) − u1(s∗)
for all s′1 ∈ S1 satisfying u1(s′1, s2) ≥ u1(s)

Note that the right-hand-side expression is maximized when
u1(s′1, s2) is maximized and thus we get

δ ≥
maxs′1∈S1 u1(s′1, s2) − u1(s)

maxs′1∈S1 u1(s′1, s2) − u1(s∗)

Proving the same for player 2 and putting the results together, we
obtain that (τ1, τ2) satisfies the one-shot deviation property in Gδ

irep if

δ ≥ max
i∈{1,2}

maxs′i ∈Si ui(s′i , s−i) − ui(s)

maxs′i ∈Si ui(s′i , s−i) − ui(s∗)
(30)

Thus by Theorem 79, (τ1, τ2) is a SPE in Gδ
irep if δ satisfies ineq. (30).
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Simple Folk Theorem – Example
Consider the infinitely repeated game Girep based on the following
game G:

m f r
M 4,4 −1,5 3,0
F 5,−1 1,1 0,0
R 0,3 0,0 2,2

NE in G : (F , f)

Consider the grim trigger for (M,m) using (F , f), i.e., the profile
(τ1, τ2) in Girep where
I τ1 : Plays M in a given stage if (M,m) was played in all previous

stages, and plays F otherwise.
I τ2 : Plays m in a given stage if (M,m) was played in all previous

stages, and plays f otherwise.

This is a SPE in Gδ
irep for all δ ≥ 1

4 . Also, ui(τ1, τ2) = 4 for i ∈ {1,2}.

Are there other SPE? Yes, a grim trigger for (R , r) using (F , f). This is
a SPE in Gδ

irep for δ ≥ 1
2 .
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Tacit Collusion
Consider the Cournot duopoly game model G = (N, (Si)i∈N , (ui)i∈N)

I N = {1,2}

I Si = [0, κ]

I u1(q1,q2) = q1(κ − q1 − q2) − q1c1 = (κ − c1)q1 − q2
1 − q1q2

u2(q1,q2) = q2(κ − q2 − q1) − q2c2 = (κ − c2)q2 − q2
2 − q2q1

Assume for simplicity that c1 = c2 = c and denote θ = κ − c.

If the firms sign a binding contract to produce only θ/4, their profit
would be θ2/8 which is higher than the profit θ2/9 for playing the NE
(θ/3, θ/3).

However, such contracts are forbidden in many countries (including
US).

Is it still possible that the firms will behave selfishly (i.e. only
maximizing their profits) and still obtain such payoffs?

In other words, is there a SPE in the infinitely repeated game based
on G (with a discount factor δ) which gives the payoffs θ2/8 ?
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Tacit Collusion
Consider the Cournot duopoly game model G = (N, (Si)i∈N , (ui)i∈N)

I N = {1,2}

I Si = [0,∞)

I u1(q1,q2) = q1(κ − q1 − q2) − q1c1 = (κ − c1)q1 − q2
1 − q1q2

u2(q1,q2) = q2(κ − q2 − q1) − q2c2 = (κ − c2)q2 − q2
2 − q2q1

Assume for simplicity that c1 = c2 = c and denote θ = κ − c.

Consider the grim trigger profile for (θ/4, θ/4) using (θ/3, θ/3) :
Player i will

I produce qi = θ/4 whenever all profiles in the history are
(θ/4, θ/4),

I whenever one of the players deviates, produce θ/3 from that
moment on.

Assuming that κ = 100 and c = 10 (which gives θ = 90), this is
a SPE Gδ

irep for δ ≥ 0.5294 · · · . It results in (θ/4, θ/4)(θ/4, θ/4) · · ·

with the discounted payoffs θ2/8.
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Dynamic Games of Complete Information
Repeated Games

Infinitely Repeated Games
Long-Run Average Payoff and Folk Theorems
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Infinitely Repeated Games & Average Payoff
In what follows we assume that all payoffs in the game G are
positive and that S is finite!

Let τ = (τ1, τ2) be a strategy profile in the infinitely repeated game
Girep such that wτ = s1s2

· · · .

Definition 80
We define a long-run average payoff for player i by

uavg
i (τ) = lim sup

T→∞

1
T

T∑
t=1

ui(st )

(Here lim sup is necessary because τi may cause non-existence of the limit.)

The lon-run average payoff uavg
i (τ) is well-defined if the limit

uavg
i (τ) = limT→∞

1
T

∑T
t=1 ui(st ) exists.

Given a strategic-form game G, we denote by Gavg
irep the infinitely

repeated game based on G together with the long-run average
payoff.
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Infinitely Repeated Games & Average Payoff

Definition 81
A strategy profile τ is a Nash equilibrium if uavg

i (τ) is well-defined for
all i ∈ N, and for every i and every τ′i we have that

uavg
i (τi , τ−i) ≥ uavg

i (τ′i , τ−i)

(Note that we demand existence of the defining limit of uavg
i (τi , τ−i) but

the limit does not have to exist for uavg
i (τ′i , τ−i).)

Moreover, τ = (τ1, τ2) is a SPE in Gavg
irep if for every history h we have

that (τh
1 , τ

h
2) is a Nash equilibrium.
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Example
Consider the infinitely repeated game based on Prisoner’s dilemma:

C S
C −5,−5 0,−20
S −20,0 −1,−1

The grim trigger profile (τ1, τ2) where

τi(s1
· · · sT ) =


S T = 0
S s` = (S ,S) for all 1 ≤ ` ≤ T
C otherwise

is a SPE which gives the long-run average payoff −1 to each player.

The intuition behind the grim trigger works as for the discounted payoff:
Whenever a player i deviates, the player −i starts playing C for which the best
response of player i is also C. So we obtain
(S ,S) · · · (S ,S)(X ,Y)(C ,C)(C ,C) · · · (here (X ,Y) is either (C ,S) or (S ,C)

depending on who deviates). Apparently, the long-run average payoff is −5
for both players, which is worse than −1.
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Example
Consider the infinitely repeated game based on Prisoner’s dilemma:

C S
C −5,−5 0,−20
S −20,0 −1,−1

However, other payoffs can be supported by NE. Consider e.g.
a strategy profile (τ1, τ2) such that
I Both players cyclically play as follows:

I 9 times (S ,S)
I once (S ,C)

I If one of the players deviates, then, from that moment on, both
play (C ,C) forever.

Then (τ1, τ2) is also SPE.

Apparently, uavg
1 (τ1, τ2) = 9

10 · (−1) + (−20)/10 = −29/10 and
uavg

1 (τ1, τ2) = 9
10 (−1) = −9/10.

Player 2 gets better payoff than from the Pareto optimal profile (S ,S)!
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Outline of the Folk Theorems

The previous examples suggest that other (possibly all?) convex
combinations of payoffs may be obtained by means of Nash
equilibria.

This observation forms a basis for a bunch of theorems, collectively
called Folk Theorems.
No author is listed since these theorems had been known in games
community long before they were formalized.

In what follows we prove several versions of Folk Theorem
concerning achievable payoffs for repeated games.

Ordered by increasing technical and conceptual difficulty, we consider
the following variants:

I Long-run average payoffs & SPE

I Discounted payoffs & SPE

I Long-run average payoffs & Nash equilibria
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Folk Theorems – Feasible Payoffs

Definition 82
We say that a vector of payoffs v = (v1, v2) ∈ R2 is feasible if it is
a convex combination of payoffs for pure strategy profiles in G with
rational coefficients, i.e., if there are rational numbers βs , here s ∈ S,
satisfying βs ≥ 0 and

∑
s∈S βs = 1 such that for both i ∈ {1,2} holds

vi =
∑
s∈S

βs · ui(s)

We assume that there is m ∈N such that each βs can be written in
the form βs = γs/m.

The following theorems can be extended to a notion of feasible payoffs using
arbitrary, possibly irrational, coefficients βs in the convex combination.
Roughly speaking, this follows from the fact that each real number can be
approximated with rational numbers up to an arbitrary error. However,
the proofs are technically more involved.
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Folk Theorems – Long-Run Average & SPE

Theorem 83
Let s∗ be a pure strategy Nash equilibrium in G and let v = (v1, v2) be
a feasible vector of payoffs satisfying vi ≥ ui(s∗) for both i ∈ {1,2}.
Then there is a strategy profile τ = (τ1, τ2) in Girep such that

I τ is a SPE in Gavg
irep

I uavg
i (τ) = vi for i ∈ {1,2}

Proof: Consider a strategy profile τ = (τ1, τ2) in Girep which gives
the following behavior:

1. Unless one of the players deviates, the players play cyclically all
profiles s ∈ S so that each s is always played for γs rounds.

2. Whenever one of the players deviates, then, from that moment
on, each player i plays s∗i .

It is easy to see that uavg
i (τ) = vi .

We verify that τ is SPE.
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Folk Theorems – Long-Run Average & SPE

Fix a history h, we show that τh = (τh
1 , τ

h
2) is a NE in Gavg

irep .

I If h does not contain any deviation from the cyclic behavior 1.,
then τh continues according to 1., thus uavg

i (τh) = vi .

I If h contains a deviation from 1., then

wτh = s∗s∗ · · ·

and thus uavg
i (τh) = ui(s∗).

I Now if a player i deviates to τ̄h
i from τh

i in Gavg
irep , then

w(τ̄h
i ,τ

h
−i)

= (s1
i , s

′

−i)(s2
i , s

∗

−i)(s3
i , s

∗

−i) · · ·

where s1
i , s

2
i , . . . are strategies of Si and s′

−i is a strat. of S−i .
However, then uavg

i (τ̄h
i , τ

h
−i) ≤ ui(s∗) ≤ vi since s∗ is a Nash

equilibrium and thus ui(sk
i , s

∗

−i) ≤ ui(s∗) for all k ≥ 1.
Intuitively, player −i punishes player i by playing s∗

−i . �
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Folk Theorems – Discounted Payoffs & SPE

Theorem 84
Let s∗ be a pure strategy Nash equilibrium in G and let v = (v1, v2) be
a feasible payoff satisfying vi > ui(s∗) for both i ∈ {1,2}. Then there is
a strategy profile τ = (τ1, τ2) in Girep and δ < 1 such that

I τ is a SPE in Gδ′

irep for every δ′ ∈ [δ,1) and

I limδ′→1 uδ′i (τ) = vi .

Proof: The following claim allows us to reduce the discounted payoff
to the long-run-average.

Claim 5
Let τ be a well-defined strategy profile. Then

lim
δ→1−

uδi (τ) = uavg
i (τ)

Now to prove Theorem 84, consider the strategy profile τ = (τ1, τ2) in
Girep from the proof of Theorem 83.

We check the one-shot deviation property in Gδ
irep for δ close to 1. 270



Folk Theorems – Discounted Payoffs & SPE
Fix a history h and consider τh = (τh

1 , τ
h
2).

I If h does not contain any deviation from 1., then both players
follow 1., and uδi (τh) is close to uavg

i (τh) = vi for δ close to 1.

I If h contains any deviation from 1., then wτh = s∗s∗ · · · and
uδi (τh) = ui(s∗).

I Now assume, w.l.o.g., that player 1 deviates exactly after h,
which gives a strategy τ̄h

1 differing from τh
1 only on h. Thus

w(τ̄h
1 ,τ

h
2) = (s′1, s

′

2)s∗s∗ · · · where s′1 is a strategy of S1 and s′2 is
either the next step in the cyclic behavior described by 1. (if h
follows 1.), or equal to s∗2 (h does not follow 1.)

Note that for δ close to 1, we have that uδi (τ̄h
i , τ

h
−i) is close to

uavg
i (τ̄h

i , τ
h
−i) = ui(s∗).

I If h follows 1., then uδ1(τh) is close to v1 which is greater
than u1(s∗) to which uδ1(τ̄h

1 , τ
h
2) is close.

I If h does not follow 1., then s′2 = s∗2 (players punish due to
a deviation in h), and thus uδ1(τ̄h

1 , τ
h
2) ≤ u1(s∗) = uδ1(τh). �
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Folk Theorems – Individually Rational Payoffs

Definition 85
v = (v1, v2) ∈ R2 is individually rational if for both i ∈ {1,2} holds

vi ≥ min
s−i∈S−i

max
si∈Si

ui(si , s−i)

That is, vi is at least as large as the value that player i may secure by playing
best responses to the most hostile behavior of player −i.

Example:

m f r
M 4,4 −1,5 3,0
F 5,−1 1,1 0,0
R 0,3 0,0 2,2

Here any (v1, v2) such that v1 ≥ 2 and v2 ≥ 1 is individually
rational.
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Folk Theorems – Long-Run Average & NE

Theorem 86
Let v = (v1, v2) be a feasible and individually rational vector of
payoffs. Then there is a strategy profile τ = (τ1, τ2) in Girep such that

I τ is a Nash equilibrium in Gavg
irep

I uavg
i (τ) = vi for i ∈ {1,2}

Proof: It suffices to use a slightly modified strategy profile τ = (τ1, τ2)
in Girep from Theorem 83:

I Unless one of the players deviates, the players play cyclically all
profiles s ∈ S so that each s is always played for γs rounds.

I Whenever a player i deviates, the opponent −i plays a strategy
smin
−i ∈ argmins−i∈S−i

maxsi∈Si ui(si , s−i).

It is easy to see that uavg
i (τ) = vi .

If a player i deviates, then his long-run average payoff cannot be
higher than mins−i∈S−i maxsi∈Si ui(si , s−i) ≤ vi , so τ is a NE. �
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Folk Theorems – Long-Run Average & NE

Theorem 87
If a strategy profile τ = (τ1, τ2) is a NE in Gavg

irep , then
(
uavg

1 (τ),uavg
2 (τ)

)
is individually rational.

Proof: Suppose that
(
uavg

1 (τ),uavg
2 (τ)

)
is not individually rational.

W.l.o.g. assume that uavg
1 (τ) < mins2∈S2 maxs1∈S1 u1(s1, s2).

Now let us consider a new strategy τ̄1 such that for an arbitrary
history h the pure strategy τ̄1(h) is a best response to τ2(h).

But then, for every history h, we have

u1(τ̄1(h), τ2(h)) ≥ min
s2∈S2

max
s1∈S1

u1(s1, s2) > uavg
1 (τ)

So clearly uavg
1 (τ̄1, τ2) > uavg

1 (τ) which contradicts the fact that (τ1, τ2)
is a NE. �

Note that if irrational convex combinations are allowed in the definition of
feasibility, then vectors of payoffs for Nash equilibria in Gavg

irep are exactly
feasible and individually rational vectors of payoffs. Indeed, the coefficients βs

in the definition of feasibility are exactly frequencies with which the individual
profiles of S are played in the NE. 274



Folk Theorems – Summary

I We have proved that "any reasonable" (i.e. feasible and
individually rational) vector of payoffs can be justified as payoffs
for a Nash equilibrium in Gavg

irep (where the future has "an infinite
weight").

I Concerning SPE, we have proved that any feasible vector of
payoffs dominating a Nash equilibrium in G can be justified as
payoffs for SPE in Gavg

irep .
This result can be generalized to arbitrary feasible and strictly
individually rational payoffs by means of a more demanding
construction.

I For discounted payoffs, we have proved that an arbitrary feasible
vector of payoffs strictly dominating a Nash equilibrium in G can
be approximated using payoffs for SPE in Gδ

irep as δ goes to 1.
Even this result can be extended to feasible and strictly individually
rational payoffs.

For a very detailed discussion of Folk Theorems see "A Course in
Game Theory" by M. J. Osborne and A. Rubinstein.
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Summary of Extensive-Form Games

We have considered extensive-form games (i.e., games on trees)

I with perfect information

I with imperfect information

I with chance nodes (and both perfect and imperfect information)

We have considered pure, mixed and behavioral strategies.

We have considered Nash equilibria (NE) and subgame perfect
equilibria (SPE) in pure and behavioral strategies.
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Summary of Extensive-Form Games (Cont.)
For perfect information we have shown that
I mixed and behavioral strategies are equivalent
I there is a pure strategy SPE in both pure as well as behavioral

strategies
I SPE can be computed using backward induction in polynomial

time

For imperfect information we have shown that
I mixed and behavioral strategies are not equivalent in general

(but they are equivalent for games with perfect recall)
I backward induction can be used to propagate values through

"perfect information nodes", but "imperfect information parts"
have to be solved by different means

I solving imperfect information games is at least as hard as
solving games in strategic-form; however, even in the zero-sum
case, most decision problems are NP-hard (for details see
the lecture).

Chance nodes do not interfere with any of the above results.
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Summary of Extensive-Form Games (Cont.)

Finally, we discussed repeated games. We considered both, finitely
as well as infinitely repeated games.

For finitely repeated games we considered the average payoff and
discussed existence of pure strategy NE and SPE with respect to
existence of NE in the original strategic-form game.

For infinitely repeated games we considered both

I discounted payoff: We have proved that

I one-shot deviation property is equivalent to SPE
I "grim trigger" strategy profiles can be used to implement

any vector of payoffs strictly dominating payoffs for a Nash
equilibrium in the original strategic-form game (Simple Folk
Theorem)

I long-run average payoff: We have proved that all feasible and
individually rational vectors of payoffs can be achieved by Nash
equilibria (a variant of grim trigger)
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Games of INcomplete Information
Bayesian Games

Auctions
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Auctions
The (General) problem: How to allocate (discrete) resources among
selfish agents in a multi-agent system?

Auctions provide a general solution to this problem.

As such, auctions have been heavily used in real life, in consumer,
corporate, as well as government settings:

I eBay, art auctions, wine auctions, etc.

I advertising (Google adWords)

I governments selling public resources: electromagnetic
spectrum, oil leases, etc.

I · · ·

Auctions also provide a theoretical framework for understanding
resource allocation problems among self-interested agents: Formally,
an auction is any protocol that allows agents to indicate their interest
in one or more resources and that uses these indications to
determine both the resource allocation and payments of the agents.
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Auctions: Taxonomy
Auctions may be used in various settings depending on
the complexity of the resource allocation problem:
I Single-item auctions: Here n bidders (players) compete for

a single indivisible item that can be allocated to just one of
them. Each bidder has his own private value of the item in
case he wins (gets zero if he loses). Typically (but not
always) the highest bid wins. How much should he pay?

I Multiunit auctions: Here a fixed number of identical units of
a homogeneous commodity are sold. Each bidder submits
both a number of units he demands and a unit price he is
willing to pay. Here also the highest bidders typically win,
but it is unclear how much they should pay (pay-as-bid vs
uniform pricing)

I Combinatorial auctions: Here bidders compete for a set of
distinct goods. Each player has a valuation function which
assigns values to subsets of the set (some goods are
useful only in groups etc.) Who wins and what he pays?

(We mostly concentrate on the single-item auctions.) 281



Single Unit Auctions
There are many single-item auctions, we consider the following
well-known versions:
I open auctions:

I The English Auction: Often occurs in movies, bidders are
sitting in a room (by computer or a phone) and the price of
the item goes up as long as someone is willing to bid it
higher. Once the last increase is no longer challenged,
the last bidder to increase the price wins the auction and
pays the price for the item.

I The Dutch Auction: Opposite of the English auction, the
price starts at a prohibitively high value and the auctioneer
gradually drops the price. Once a bidder shouts "buy",
the auction ends and the bidder gets the item at the price.

I sealed-bid-auction:
I k-th price Sealed-Bid Auction: Each bidder writes down his

bid and places it in an envelope; the envelopes are opened
simultaneously. The highest bidder wins and then pays
the k-th maximum bid. (In a reverse auction it is the k -the
minimum.) The most prominent special cases are
The First-Price Auction and The Second-Price Auction. 282



Single Unit Auctions (Cont.)

Observe that
I the English auction is essentially equivalent to the second price

auction if the increments in every round are very small.
There exists a "continuous" version, called Japanese auction, where
the price continuously increases. Each bidder may drop out at any time.
The last one who stays gets the item for the current price (which is
the dropping price of the "second highest bid").

I similarly, the Dutch auction is equivalent to the first price auction.
Note that the bidder with the highest bid stops the decrement of
the price and buys at the current price which corresponds to his
bid.

Now the question is, which type of auction is better?
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Objectives

The goal of the bidders is clear: To get the item at as low price
as possible (i.e., they maximize the difference between their
private value and the price they pay)
We consider self-interested non-communicating bidders that
are rational and intelligent.

There are at least two goals that may be pursued by
the auctioneer (in various settings):
I Revenue maximization

This may lead to auctions that do not always sell the item to the highest
bid

I Incentive compatibility: We want the bidders to
spontaneously bid their true value of the item
This means, that such an auction cannot be strategically manipulated
by lying.
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Auctions vs Games
Consider single-item sealed-bid auctions as strategic form games:
G = (N, (Bi)i∈N , (ui)i∈N) where
I The set of players N is the set of bidders
I Bi = [0,∞) where each bi ∈ Bi corresponds to the bid bi

(We follow the standard notation and use bi to denote pure strategies
(bids))

I To define ui , we assume that each bidder has his own private
value vi of the item, then given bids b = (b1, . . . ,bn) :

First Price: ui(b) =

vi − bi if bi > maxj,i bj

0 otherwise

Second Price: ui(b) =

vi −maxj,i bj if bi > maxj,i bj

0 otherwise

Is this model realistic? Not really, usually, the bidders are not perfectly
informed about the private values of the other bidders.

Can we use (possibly imperfect information) extensive-form games?
285



Incomplete Information Games
A (strict) incomplete information game is a tuple
G = (N, (Ai)i∈N , (Ti)i∈N , (ui)i∈N) where

I N = {1, . . . ,n} is a set of players,

I Each Ai is a set of actions available to player i,
We denote by A =

∏n
i=1 Ai the set of all action profiles

a = (a1, . . . ,an).

I Each Ti is a set of possible types of player i,
Denote by T =

∏n
i=1 Ti the set of all type profiles t = (t1, . . . , tn).

I ui is a type-dependent payoff function

ui : A1 × · · · × An × Ti → R

Given a profile of actions (a1, . . . ,an) ∈ A and a type ti ∈ Ti , we
write ui(a1, . . . ,an; ti) to denote the corresponding payoff.

A pure strategy of player i is a function si : Ti → Ai . As before, we
denote by Si the set of all pure strategies of player i, and by S the set
of all pure strategy profiles

∏n
i=1 Si .
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Dominant Strategies

I A pure strategy si very weakly dominates s′i if for every ti ∈ Ti
the following holds: For all a−i ∈ A−i we have

ui(si(ti),a−i ; ti) ≥ ui(s′i (ti),a−i ; ti)

A pure strategy si weakly dominates s′i if for every ti ∈ Ti
the following holds: For all a−i ∈ A−i we have

ui(si(ti),a−i ; ti) ≥ ui(s′i (ti),a−i ; ti)

and the inequality is strict for at least one a−i

(Such a−i may be different for different ti .)

I A pure strategy si strictly dominates s′i if for every ti ∈ Ti
the following holds: For all a−i ∈ A−i we have

ui(si(ti),a−i ; ti) > ui(s′i (ti),a−i ; ti)

Definition 88
si is (very weakly, weakly, strictly) dominant if it (very weakly, weakly,
strictly, resp.) dominates all other pure strategies.
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Nash Equilibrium

In order to generalize Nash equilibria to incomplete information
games, we use the following notation: Given a pure strategy profile
(s1, . . . , sn) ∈ S and a type profile (t1, . . . , tn) ∈ T , for every player i
write

s−i(t−i) = (s1(t1), . . . , si−1(ti−1), si+1(ti+1), . . . , sn(tn))

Definition 89
A strategy profile s = (s1, . . . , sn) ∈ S is an ex-post-Nash equilibrium if
for every t1, . . . , tn we have that (s1(t1), . . . , sn(tn)) is a Nash
equilibrium in the strategic-form game defined by the ti ’s.

Formally, s = (s1, . . . , sn) ∈ S is an ex-post-Nash equilibrium if for all
i ∈ N and all t1, . . . , tn and all ai ∈ Ai :

ui(s1(t1), . . . , sn(tn); ti) ≥ ui(ai , s−i(t−i); ti)
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Example: Single-Item Sealed-Bid Auctions
Consider single-item sealed-bid auctions as strict incomplete
information games: G = (N, (Bi)i∈N , (Vi)i∈N , (ui)i∈N) where
I The set of players N is the set of bidders
I Bi = [0,∞) where each action bi ∈ Bi corresponds to the bid bi

I Vi = [0,∞) where each type vi ∈ Vi corresponds to the private
value vi

I Let vi ∈ Vi be the type of player i (i.e. his private value), then
given an action profile b = (b1, . . . ,bn) (i.e. bids) we define

First Price: ui(b; vi) =

vi − bi if bi > maxj,i bj

0 otherwise.

Second Price: ui(b; vi) =

vi −maxj,i bj if bi > maxj,i bj

0 otherwise.

Note that if there is a tie (i.e., there are k , ` such that bk = b` = maxj bj),
then all players get 0.

Are there dominant strategies? Are there ex-post-Nash equilibria?
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Second-Price Auction

For every i, we denote by vi the pure strategy si for player i defined by
si(vi) = vi .
Intuitively, such a strategy is truth telling, which means that the player bids his
own private value truthfully.

Theorem 90
Assume the Second-Price Auction. Then for every player i we have
that vi is a weakly dominant strategy. Also, v is the unique
ex-post-Nash equilibrium.
Proof. Let us fix a private value vi and a bid bi ∈ Bi such that bi , vi .
We show that for all bids of opponents b−i ∈ B−i :

ui(vi ,b−i ; vi) ≥ ui(bi ,b−i ; vi)

with the strict inequality for at least one b−i .

Intuitively, assume that player i bids bi against b−i and compare his payoff
with the payoff he obtains by playing vi against b−i .

There are two cases to consider: bi < vi and bi > vi .

290



Second-Price Auction (Cont.)
Case bi < vi : We distinguish three sub-cases depending on b−i .

A. If bi > maxj,i bj , then

ui(bi ,b−i ; vi) = vi −max
j,i

bj = ui(vi ,b−i ; vi)

Intuitively, player i wins and pays the price maxj,i bj < bi . However, then
bidding vi , player i wins and pays maxj,i bj as well.

B. If there is k , i such that bk > maxj,k bj , then

ui(bi ,b−i ; vi) = 0 ≤ ui(vi ,b−i ; vi)

Moreover, if bi < bk < vi , then we get the strict inequality

ui(bi ,b−i ; vi) = 0 < vi − bk = ui(vi ,b−i ; vi)

Intuitively, if another player k wins, then player i gets 0 and increasing bi

to vi does not hurt. Moreover, if bi < bk < vi , then increasing bi to vi

strictly increases the payoff of player i.

C. If there are k , ` such that bk = b` = maxj bj , then

ui(bi ,b−i ; vi) = 0 ≤ ui(vi ,b−i ; vi)

Intuitively, there is a tie in (bi ,b−i) and hence all players get 0.
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Second-Price Auction (Cont.)
Case bi > vi : We distinguish four sub-cases depending on b−i .

A. If bi > maxj,i bj > vi , then

ui(bi ,b−i ; vi) = vi −max
j,i

bj < 0 = ui(vi ,b−i ; vi)

So in this case the inequality is strict.

B. If bi > vi ≥ maxj,i bj , then

ui(bi ,b−i ; vi) = vi −max
j,i

bj = ui(vi ,b−i ; vi)

Note that this case also covers vi = maxj,i bj where decreasing bi to vi

causes a tie with zero payoff for player i.

C. If there is k , i such that bk > maxj,k bj > vi , then

ui(bi ,b−i ; vi) = 0 = ui(vi ,b−i ; vi)

D. If there are k , k ′ such that bk = bk ′ = maxj bj > vi , then

ui(bi ,b−i ; vi) = 0 = ui(vi ,b−i ; vi)
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First-Price Auction
Consider the First-Price Auction.
Here the highest bidder wins and pays his bid.
Let us impose a (reasonable) assumption that no player bids more
than his private.
Question: Are there any dominant strategies?
Answer: No, to obtain a contradiction, assume that si is a very
weakly dominant strategy.
Intuitively, if player i wins against some bids of his opponents, then his bid is
strictly higher than bids of all his opponents. Thus he may slightly decrement
his bid and still win with a better payoff.

Formally, assume that all opponents bid 0, i.e., bj = 0 for all j , i, and
consider vi > 0.
If si(vi) > 0, then

ui(si(vi),b−i ; vi) = vi − si(vi) < vi − si(vi)/2 = ui(si(vi)/2,b−i ; vi)

If si(vi) = 0, then

ui(si(vi),b−i ; vi) = 0 < vi/2 = ui(vi/2,b−i ; vi)

Hence, si cannot be weakly dominant.
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First-Price Auction (Cont.)
Question: Is there a pure strategy Nash equilibrium?
Answer: No, assume that (s1, . . . , sn) is a Nash equilibrium.
If there are v1, . . . , vn such that some player i wins, i.e., his bid si(vi)
satisfies si(vi) > maxj,i sj(vj), then

ui(si(vi), s−i(v−i); vi) = vi − si(vi)

< vi − (si(vi) − ε) = ui(si(vi) − ε, s−i(v−i); vi)

for ε > 0 small enough to satisfy si(vi) − ε > maxj,i sj(vj)
(i.e., player i may help himself by decreasing the bid a bit)

Assume that for no v1, . . . , vn there is a winner (this itself is a bit
weird). Consider 0 < v1 < · · · < vn. Since there is no winner, there are
two players i, j such that i < j satisfying

sj(vj) = si(vi) ≥ max
`

s`(v`)

But then, due to our assumption, sj(vj) = si(vi) ≤ vi < vj and thus

uj(sj(vj), s−j(v−j); vj) = 0 < vj − (sj(vj) + ε) = uj(sj(vj) + ε, s−j(v−j); vj)

for ε > 0 small enough to satisfy sj(vj) + ε < vj .
(i.e., player j can help himself by increasing his bid a bit)
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Summary

Second Price Auction:
I There is an ex-post Nash equilibrium in weakly dominant

strategies
I It is incentive compatible (players are self-motivated to bid

their private values)
First Price Auction:
I There are neither dominant strategies, nor ex-post Nash

equilibria
Question: Can we modify the model in such a way that First
Price Auction has a solution?

Answer: Yes, give the players at least some information about
private values of other players.
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Bayesian Games
A Bayesian Game G = (N, (Ai)i∈N , (Ti)i∈N , (ui)i∈N ,P) where
(N, (Ai)i∈N , (Ti)i∈N , (ui)i∈N) is a strict incomplete information
game and P is a distribution on types, i.e.,
I N = {1, . . . ,n} is a set of players,
I Ai is a set of actions available to player i,
I Ti is a set of possible types of player i,

Recall that T =
∏n

i=1 Ti is the set of type profiles, and that A =
∏n

i=1 Ai

is the set of action profiles.
I ui is a type-dependent payoff function

ui : A1 × · · · × An × Ti → R

I P is a (joint) probability distribution over T called common
prior.
Formally, P is a probability measure over an appropriate measurable
space on T . However, I will not go into measure theory and consider
only two special cases: finite T (in which case P : T → [0,1] so that∑

t∈T P(t) = 1) and Ti = R for all i (in which case I assume that P is
determined by a (joint) density function p on Rn).
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Bayesian Games: Strategies & Payoffs

A play proceeds as follows:
I First, a type profile (t1, . . . , tn) ∈ T is randomly chosen

according to P.
I Then each player i learns his type ti .

(It is a common knowledge that every player knows his own type but not
the types of other players.)

I Each player i chooses his action based on ti .
I Each player receives his payoff ui(a1, . . . ,an; ti).

A pure strategy for player i is a function si : Ti → Ai .
As before, we use S to denote the set of pure strategy profiles.
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Properties

I We assume that ui depends only on ti and not on t−i . This
is called private values model and can be used to model
auctions. This model can be extended to common values
by using ui(a1, . . . ,an; t1, . . . , tn).

I We assume the common prior P. This means that all
players have the same beliefs about the type profile. This
assumption is rather strong. More general models allow
each player to have
I his own individual beliefs about types
I ... his own beliefs about beliefs about types
I .... beliefs about beliefs about beliefs about types
I .....
I (we get an infinite hierarchy)

There is a generic result of Harsanyi saying that
the hierarchy is not necessary: It is possible to extend
the type space in such a way that each player’s "extended
type" describes his original type as well as all his beliefs.
(This does not mean that common prior suffices.)
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Example: Battle of Sexes
Assume that player 1 may suspect that player 2 is angry with him/her
(the choice is yours) but cannot be sure.

In other words, there are two types of player 2 giving two different
games.

Formally we have a Bayesian Game
G = (N, (Ai)i∈N , (Ti)i∈N , (ui)i∈N ,P) where
I N = {1,2}
I A1 = A2 = {F ,O}
I T1 = {t1} and T2 = {t1

2 , t
2
2 }

I The payoffs are given by

t1
2 t2

2

t1 :
F O

F 2,1 0,0
O 0,0 1,2

F O
F 2,0 0,2
O 0,1 1,0

I P(t1
2 ) = P(t2

2 ) = 1
2
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Example: Single-Item Sealed-Bid Auctions
Consider single-item sealed-bid auctions as Bayesian games:
G = (N, (Bi)i∈N , (Vi)i∈N , (ui)i∈N ,P) where
I The set of players N = {1, . . . ,n} is the set of bidders
I Bi = [0,∞) where each action bi ∈ Bi corresponds to the bid
I Vi = R where each type vi corresponds to the private value
I Let vi ∈ Vi be the type of player i (i.e. his private value), then

given an action profile b = (b1, . . . ,bn) (i.e. bids) we define

First Price: ui(b; vi) =

vi − bi if bi > maxj,i bj

0 otherwise.

Second Price: ui(b; vi) =

vi −maxj,i bj if bi > maxj,i bj

0 otherwise.

I P is a probability distribution of the private values such that
P(v ∈ [0,∞)n) = 1. For example, we may (and will) assume that
each vi is chosen independently and uniformly from [0, vmax]
where vmax is a given number. Then P is uniform on [0, vmax]n.
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Finite-Type Bayesian Games: Payoffs

For now, let us assume that each player has only finitely many
types, i.e., T is finite.

Given a type profile t = (t1, . . . , tn), we denote by P(t−i | ti)
the conditional probability that the opponents of player i have
the type profile t−i conditioned on player i having ti , i.e.,

P(t−i | ti) :=
P(ti , t−i)∑
t ′
−i

P(ti , t ′−i)

Intuitively, P(t−i | ti) is the maximum information player i may squeeze out of
P about possible types of other players once he learns his own type ti .

Given a pure strategy profile s = (s1, . . . , sn) and a type ti ∈ Ti
of player i the expected payoff for player i is

ui(s; ti) =
∑

t−i∈T−i

P(t−i | ti) · ui(s1(t1), . . . , sn(tn); ti)

(this is the conditional expectation of ui assuming the type ti of player i)
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Example: Battle of Sexes

t1
2 t2

2

t1 :
F O

F 2,1 0,0
O 0,0 1,2

F O
F 2,0 0,2
O 0,1 1,0

P(t1
2 ) = P(t2

2 ) = 1
2

Consider strategies s1 of player 1 and s2 of player 2 defined by

I s1(t1) = F

I s2(t1
2 ) = F and s2(t2

2 ) = O

Then

I u1(s1, s2; t1) = 1
2 · 2 + 1

2 · 0 = 1

I u2(s1, s2; t1
2 ) = 1 and u2(s1, s2; t2

2 ) = 2
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Infinite-Type Bayesian Games: Payoffs
Now assume that for each player i we have Ti = R and thus that
T = Rn. The concrete type is randomly chosen according to P,
denote by t = (t1, . . . , tn) the corresponding random vector with
distribution P (each ti is a random variable giving a type of player i).

Assume that the type t is absolutely continuous which means that
there is a (joint) density function p such that for all rectangles
R = [a1,b1] × · · · × [an,bn]

P[t ∈ R] =

∫ b1

a1

· · ·

∫ bn

an

p(t1, . . . , tn)dtn · · · dt1

Let pi be the marginal density function of ti , i.e.,

pi(ti) =

∫
T−i

p(ti , t−i)dt−i

The conditional density of t−i = (t1, . . . , ti−1, ti+1, . . . , tn) conditioned
on ti = ti where pi(ti) > 0 is

p(t−i | ti) = p(t)/pi(ti)

(Here t = (t1, . . . , tn) is a type profile.)
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Infinite-Type Bayesian Games: Payoffs
Given a pure strategy profile s = (s1, . . . , sn) and a type ti ∈ Ti of
player i, the expected payoff for player i is

ui(s; ti) =

∫
T−i

ui(s1(t1), . . . , sn(tn); ti) p(t−i | ti) dt−i

Example: First-Price Auction
Consider the first-price auction as a Bayesian game where the types
of players are chosen uniformly and independently from [0, vmax].

Consider a pure strategy profile v = (v1/2, . . . , vn/2) (i.e., each player
i plays vi/2). What is ui(v; vi) ?

ui(v; vi) = P(player i wins) · vi/2 + P(player i loses) · 0
= P(all players except i bid less than vi/2) · vi/2

=
( vi

2vmax

)n−1
· vi/2

=
vn

i

2nvn−1
max 304



Risk Aversion

We assume that players maximize their expected payoff. Such
players are called risk neutral.
In general, there are three kinds of players that can be described
using the following experiment. A player can choose between two
possibilities: Either get $50 surely, or get $100 with probability 1

2 and
0 with probability 1

2 .

I risk neutral person has no preference

I risk averse person prefers the first alternative

I risk seeking person prefers the second one
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Dominance and Nash Equilibria

A pure strategy si weakly dominates s′i if for every ti ∈ Ti the following
holds: For all s−i ∈ S−i we have

ui(si , s−i ; ti) ≥ ui(s′i , s−i ; ti)

and the inequality is strict for at least one s−i .
The other modes of dominance are defined analogously. Dominant strategies
are defined as usual.

Definition 91
A pure strategy profile s = (s1, . . . , sn) ∈ S in the Bayesian game is
a pure strategy Bayesian Nash equilibrium if for each player i and
each type ti ∈ Ti of player i and every strategy s′i ∈ Si we have that

ui(si , s−i ; ti) ≥ ui(s′i , s−i ; ti)
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Example: Battle of Sexes
t1
2 t2

2

t1 :
F O

F 2,1 0,0
O 0,0 1,2

F O
F 2,0 0,2
O 0,1 1,0

P(t1
2 ) = P(t2

2 ) = 1
2

Use the following notation: (X , (Y ,Z)) means that player 1 plays X ∈ {F ,O},
and player 2 plays Y ∈ {F ,O} if his/her type is t1

2 and Z ∈ {F ,O} otherwise.

Are there pure strategy Bayesian Nash equilibria?

(F , (F ,O)) is a Bayesian NE.

Even though O is preferred by player 2, the outcome (O ,O) cannot
occur with a positive probability in any BNE.
I To ever meet at the opera, player 1 needs to play O .
I The unique best response of player 2 to O is (O ,F)

I But (O , (O ,F)) is not a BNE:
I The expected payoff of player 1 at (O , (O ,F)) is 1

2
I The expected payoff of player 1 at (F , (O ,F)) is 1 307



Second Price Auction

Consider the second-price sealed-bid auction as a Bayesian
game where the types of players are chosen according to
an arbitrary distribution.

Proposition 7
In a second-price sealed-bid auction, with any probability
distribution P, the truth revealing profile of bids, i.e.,
v = (v1, . . . , vn), is a weakly dominant strategy profile.

Proof.
The exact same proof as for the strict incomplete information
games. Indeed, we do not need to assume that the players
have a common prior for this! �

308



First Price Auction
Consider the first-price sealed-bid auction as a Bayesian game with
some prior distribution P.

Note that bidding truthfully does not have to be a dominant strategy.
For example, if player i knows that (with high probability) his value vi
is much larger than maxj,i vj , he will not waste money and bid less
than vi .

So is there a pure strategy Bayesian Nash equilibrium?

Proposition 8
Assume that for all players i the type of player i is chosen
independently and uniformly from [0, vmax]. Consider a pure strategy
profile s = (s1, . . . , sn) where si(vi) = n−1

n vi for every player i and
every value vi . Then s is a Bayesian Nash equilibrium.
Proof. We show that si(vi) = n−1

n vi is the best response to s−i for all i.
Let us fix i and consider a pure strategy s′i of player i.
Fix vi and define bi = s′i (vi). We show (see the greenboard) that
bi = n−1

n vi maximizes ui(bi , s−i ; vi). This holds for all vi , and thus
s′i = si is the best response to s−i . �
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First Price Auction (Cont.)

More generally, assume only that the private values vi are identically
and independently distributed on [vmin, vmax] (this is called
independent private values model). Let F(x) be the cumulative
distribution function of the private value (for each player).

Let us restrict to strictly increasing strategies.
Note that this restriction is quite reasonable, intuitively it means, that
the higher the private value, the higher is the bid.

Then one may show that there is a symmetric Bayesian Nash
equilibrium (s1, . . . , sn) where each si is defined by

si(vi) = vi −

∫ vmax

vmin
[F(vi)]n−1dx

[F(vi)]n−1

That is, in particular, the bid is always smaller than the private value.
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Expected Revenue
Consider the first and second price sealed-bid auctions. For
simplicity, assume that the type of each player is chosen
independently and uniformly from [0,1].

What is the expected revenue of the auctioneer from these two
auctions when the players play the corresponding Bayesian NE?
I In the first-price auction, players bid n−1

n vi . Thus the probability
distribution of the revenue is

F(x) = P(max
j

n − 1
n

vj ≤ x) = P(max
j

vj ≤
nx

n − 1
) =

( nx
n − 1

)n

It is straightforward to show that then the expected maximum bid
in the first-price auction (i.e., the revenue) is n−1

n+1 .
I In the second-price auction, players bid vi . However, the revenue

is the expected second largest value. Thus the distribution of the
revenue is

F(x) = P(max
j

vj ≤ x) +

n∑
i=1

P(vi > x and for all j , i, vj ≤ x)

Amazingly, this also gives the expectation n−1
n+1 . 311



Revenue Equivalence (Cont.)

The result from the previous slide is a special case of a rather
general revenue equivalence theorem, first proved by Vickrey
(1961) and then generalized by Myerson (1981).
Both Vickrey and Myerson were awarded Nobel Prize in economics for their
contribution to the auction theory.

Theorem 92 (Revenue Equivalence)
Assume that each of n risk-neutral players has independent
private values drawn from a common cumulative distribution
function F(x) which is continuous and strictly increasing on
an interval [vmin, vmax] (the probability of vi < [vmin, vmax] is zero).
Then any efficient auction mechanism in which any player with
value vmin has an expected payoff zero yields the same
expected revenue.
Here efficient means that the auction has a symmetric and
increasing Bayesian Nash equilibrium and always allocates
the item to the player with the highest bid.
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Bayesian Games – Nature & Common Values

A Bayesian Game (with nature and common values) consists of

I a set of players N = {1, . . . ,n},

I a set of states of nature Ω,

I a set of actions Ai available to player i,

I a set of possible types Ti of player i,

I a type function τi : Ω→ Ti assigning a type of player i to every
state of nature,

I a payoff function ui for every player i

ui : A1 × · · · × An × Ω→ R

I a probability distribution P over Ω called common prior.

As before, a pure strategy for player i is a function si : Ti → Ai .
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Bayesian Games – Nature & Common Values
Given a pure strategy si of player i and a state of nature ω ∈ Ω, we
denote by si(ω) the action si(τi(ω)) chosen by player i when the state
is ω.
We denote by s(ω) the action profile (s1(τ1(ω)), . . . , sn(τn(ω))).

Given a set A ⊆ Ω of states of nature and a type ti ∈ Ti of player i, we
denote by P(A | ti) the conditional probability of A conditioned on
the event that player i has type ti .

We define the expected payoff for player i by

ui(s1, . . . , sn; ti) = Eω∼P [ui(s(ω);ω) | τi(ω) = ti ]

Here the right hand side is the expected payoff of player i with respect
to the probability distribution P conditioned on his type ti .

Definition 93
A pure strategy profile s = (s1, . . . , sn) ∈ S in the Bayesian game is
a pure strategy Bayesian Nash equilibrium if for each player i and
each type ti ∈ Ti and every pure strategy s′i of player i we have that

ui(si , s−i ; ti) ≥ ui(s′i , s−i ; ti)
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Adverse Selection

I A firm C is taking over a firm D.
I The true value d of D is not known to C, assume that it is

uniformly distributed on [0,1].
This is of course a bit artificial, more precise analysis can be done with
a different distribution.

I It is known that D ’s value will flourish under C ’s ownership:
it will rise to λd where λ > 1.

I All of the above is a common knowledge.

Let us model the situation as a Bayesian game (with common
values).
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Adverse Selection (Cont.)

I N = {C ,D},

I Ω = [0,1] where d ∈ Ω expresses the true value of D,

I AC = [0,1] where c ∈ AC expresses how much is the firm C
willing to pay for the firm D,

AD = {yes,no} (sell or not to sell),

I TC = {t1} (a trivial type) and TD = Ω = [0,1],

I τC(d) = t1 and τD(d) = d for all d ∈ Ω,

I uC(c, yes; d) = λd − c and uC(c,no; d) = 0
uD(c, yes; d) = c and uD(c,no; d) = d,

I P is the uniform distribution on [0,1].

Is there a BNE?
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Adverse Selection (Cont.)

What is the best response of firm D to an action c ∈ [0,1] of firm C?

Such a best response must satisfy:

I say yes if d < c

I say no if d > c

So the expected value of the firm D (in the eyes of C) assuming that
D says yes is c/2.
Indeed, assuming that the firm D says yes, the value d is uniformly
distributed between 0 and c, so the average is c/2.

Therefore, the expected payoff of C is

λ(c/2) − c = c
(
λ
2
− 1

)
which is negative for λ ≤ 2. So it is not profitable (on average) for
the firm C to buy unless the target D more than doubles in value after
the takeover!
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Committe Voting

Consider a very simple model of a jury made up of two players
(jurors) who must collectively decide whether to acquit (A), or to
convict (C) a defendant who can be either guilty (G) or innocent (I).

Each player casts a sealed vote (A or C), and the defendant is
convicted if and only if both vote C.

A prior probability that the defendant is guilty is q > 1
2 (i.e., P(G) = q)

and is common knowledge.

Assume that each player gets payoff 1 for a right decision and 0 for
incorrect decision. We consider risk neutral players who maximize
their expected payoff.

We may model this situation using a strategic-form game:
A C

A 1 − q,1 − q 1 − q,1 − q
C 1 − q,1 − q q,q

Is there a dominant strategy?
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Committee Voting (Cont.)

Let’s make things a bit more complicated.

Assume that each juror has a different expertise and, when observing
the evidence, gets a private signal ti ∈ {θG , θI} that contains
a valuable piece of information. That is if the defendant is guilty, θG is
more probable, if innocent, θI is more probable. For i ∈ {1,2} :

P(ti = θG | G) = P(ti = θI | I) = p >
1
2

P(ti = θG | I) = P(ti = θI | G) = 1 − p <
1
2

We also assume that the players get their signals independently
conditional on the defendants condition:

P(t1 = θX ∧ t2 = θY | Z) = P(t1 = θX | Z) · P(t2 = θY | Z)

for all X ,Y ,Z ∈ {G, I}.

319



Committe Voting (Cont.)
We obtain a Bayesian game:
I N = {1,2}
I A1 = A2 = {A ,C}
I Ω = {(Z , θX , θY ) | Z ,X ,Y ∈ {G, I}}
I T1 = T2 = {θG , θI}

I τ1(Z , θX , θY ) = θX and τ2(Z , θX , θY ) = θY

I For arbitrary U,V ∈ {A ,C} and X ,Y ∈ {G, I} we have that

ui(U,V ; (G, θX , θY )) =

1 if U = V = C ,
0 otherwise.

ui(U,V ; (I, θX , θY )) =

0 if U = V = C ,
1 otherwise.

I P(Z , θX , θY ) = P(Z)P(t1 = θX | Z)P(t2 = θY | Z)

I.e., P(Z , θX , θY ) is the probability of choosing (Z , θX , θY ) as follows:
First, Z ∈ {G, I} is randomly chosen (Z = G has probability q). Then,
conditioned on Z , θX and θY are independently chosen.
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Committee Voting (Cont.)
Now consider just one player i. If the player i would be able to decide
by himself, how does his decision depend on his type ti ∈ {θG , θI}?

If ti = θG , then how probable is that the defendant is guilty?

P(G | ti = θG) =
P(ti = θG | G)P(G)

P(ti = θG)
=

pq
qp + (1 − q)(1 − p)

> q

so that the posterior probability of G is even higher.
If θI is received, then how probable is that the defendant is guilty?

P(G | ti = θI) =
P(ti = θI | G)P(G)

P(ti = θI)
=

(1 − p)q
q(1 − p) + (1 − q)p

< q

which means, clearly, that the player is less sure about G.
In particular, player i chooses I instead of G if

P(G | ti = θI) =
q(1 − p)

q(1 − p) + (1 − q)p
<

1
2

which holds iff p > q.
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Committee Voting (Cont.)
So if p > q each player would choose to vote according to his signal.

Denote by XY the strategy of player i in which he chooses X if ti = θG
and Y if ti = θI.

Question: Is (CA ,CA) BNE assuming that p > q ?

u1(CA ,CA ;θI) = P(I | t1 = θI)

= P(I | t1 = θI ∧ t2 = θG)P(t2 = θG | t1 = θI)

+ P(I | t1 = θI ∧ t2 = θI)P(t2 = θI | t1 = θI)

u1(CC ,CA ;θI) = P(G ∧ t2 = θG | t1 = θI) + P(I ∧ t2 = θI | t1 = θI)

= P(G | t1 = θI ∧ t2 = θG)P(t2 = θG | t1 = θI)

+ P(I | t1 = θI ∧ t2 = θI)P(t2 = θI | t1 = θI)

Note that the blue expressions are equal, so the payoff depends only on
the red ones, where player 2 is assumed to consider the defendant guilty.
Intuitively, if player 2 chooses A , then the decision of player 1 does
not have any impact. On the other hand, if player 2 chooses C, then
the decision is, in fact, up to player 1 (we say that he is pivotal).
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Committee Voting (Cont.)
So what is the probability that the defendant is guilty assuming that
the vote of player 1 counts? That is, assuming t2 = θG and t1 = θI ?

P(G | t1 = θI ∧ t2 = θG) =
P(t1 = θI ∧ t2 = θG | G)P(G)

P(t1 = θI ∧ t2 = θG)

=
(1 − p)pq
p(1 − p)

= q >
1
2
> (1 − q)

= P(I | t1 = θI ∧ t2 = θG)

which means that player 1 is more convinced that the defendant is
guilty contrary to the signal! This means that even though individual
decision would be "innocent", taking into account that the vote should
have some value gives "guilty".

Hence u1(CA ,CA ;θI) < u1(CC ,CA ;θI) and thus playing CC is
a better response to CA .
By the way, is (CC ,CA) a BNE?
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Winner’s Curse
An auction for a new oil field (of unknown size), assume only two
firms competing (two players).

The field is either small (worth $10 million), medium (worth $20
million), large (worth $30 million).

That is, the real value v of the field satisfies v ∈ {10,20,30}.

Assume some prior information about the size of the filed:

P(v = 10) = P(v = 30) =
1
4

P(v = 20) =
1
2

The government is selling the field in the second-price sealed-bid
auction, so that in the case of a tie, the winner is chosen randomly
(and pays his bid). That is, in effect, in case of a tie, the payoff of
each player is (v − b)/2 where v is the value, b the (common) bid.
Using the same argument as for the "ordinary" second-price auction with
private values one may show that playing the true private value weakly
dominates all other bids.
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Winner’s Curse (Cont.)
Each of the firms performs a (free) exploration that will provide
the type ti ∈ {L ,H} (low or high), correlated with the size as follows:
I If v = 10, then t1 = t2 = L
I If v = 30, then t1 = t2 = H
I If v = 20, then for i ∈ {1,2}, conditioned on v = 20,

the exploration results are uniformly distributed:
There are four possible results, (L ,L), (L ,H), (H,L), (H,H),
each with probability 1

4 .

Given the signal ti , player i may estimate the true value of the field:

P(v = 10 | ti = L) =
1
2

P(v = 10 | ti = H) = 0

P(v = 20 | ti = L) =
1
2

P(v = 20 | ti = H) =
1
2

P(v = 30 | ti = L) = 0 P(v = 30 | ti = H) =
1
2

Thus E(v | ti = L) = 1
2 10 + 1

2 20 = 15.
and E(v | ti = H) = 1

2 20 + 1
2 30 = 25
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Winner’s Curse (Cont.)
Is it a good idea to bid the expected value?

Define a strategy si for player i by

I si(L) = E(v | ti = L)

I si(H) = E(v | ti = H)

Is (s1, s2) a Nash equilibrium?

Consider t1 = L . Then player 1 bids 15. What is his expected payoff?

Note that if t2 = H, then player 2 bids 25 and wins, which means that
player 1 gets payoff 0. So player 1 can get a non-zero value only if
t2 = L . This implies that

u1(s1, s2; L) = P(v = 20 ∧ t2 = L | t1 = L) · (20 − 15)/2
+ P(v = 10 ∧ t2 = L | t1 = L) · (10 − 15)/2

= P(v = 20 ∧ t2 = L | t1 = L) · 5/2
+ P(v = 10 ∧ t2 = L | t1 = L) · (−5)/2
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Winner’s Curse (Cont.)
In what follows we show that

P(v = 20 ∧ t2 = L | t1 = L) =
1
4

(31)

P(v = 10 ∧ t2 = L | t1 = L) =
1
2

(32)

which means that

u1(s1, s2; L) = P(v = 20 ∧ t2 = L | t1 = L) · 5/2
+ P(v = 10 ∧ t2 = L | t1 = L) · (−5)/2

=
1
4

5
2

+
1
2

(−5)

2
=
−5
8
< 0

and player 1 would be better off by bidding 0 and always losing!!

Intuition: Player 1 wins only if the signal of player 2 is L , which in
effect means, that assuming win, the effective expected value of
the field is lower than the predicted expected value.

In the rest of the proof we heavily use the Bayes’ theorem and the law of total
probability.
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Winner’s Curse (Cont.) : Proof of Equation (31)
P(v = 20 ∧ t2 = L | t1 = L) =

= P(v = 20 ∧ t2 = L | t1 = L ∧ t2 = L) · P(t2 = L | t1 = L)

+ P(v = 20 ∧ t2 = L | t1 = L ∧ t2 = H) · P(t2 = H | t1 = L)

= P(v = 20 | t1 = L ∧ t2 = L) · P(t2 = L | t1 = L)

Here

P(t2 = L | t1 = L) =

= P(t2 = L | t1 = L ∧ v = 10) · P(v = 10 | t1 = L)

+ P(t2 = L | t1 = L ∧ v = 20) · P(v = 20 | t1 = L)

= 1 ·
1
2

+
1
2
·

1
2

=
3
4

(Here we used the fact that t1 and t2 are independent assuming a fixed v)
We show (see next slide) that

P(v = 20 | t1 = L ∧ t2 = L) =
1
3

and thus

P(v = 20 ∧ t2 = L | t1 = L) =
1
3
·

3
4

=
1
4 328



Winner’s Curse (Cont.) : Proof of Equation (31)
First, note that

P(t1 = L ∧ t2 = L | v = 10) = 1

P(t1 = L ∧ t2 = L | v = 20) =
1
4

Now by Bayes’ theorem

P(v = 20 | t1 = L ∧ t2 = L) =

= [ P(t1 = L ∧ t2 = L | v = 20) · P(v = 20) ] /P(t1 = L ∧ t2 = L) =

=
1
4 ·

1
2

P(t1 = L ∧ t2 = L)
=

1
8 · P(t1 = L ∧ t2 = L)

But by the law of total probability

P(t1 = L ∧ t2 = L) =

= P(t1 = L ∧ t2 = L | v = 10)P(v = 10)+

+ P(t1 = L ∧ t2 = L | v = 20)P(v = 20)

= 1 ·
1
4

+
1
4
·

1
2

=
3
8

which gives P(v = 20 | t1 = L ∧ t2 = L) = 1
3 .
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Winner’s Curse (Cont.) : Proof of Equation (32)

Finally, similarly as for (31),

P(v = 10 ∧ t2 = L | t1 = L) =

= P(v = 10 ∧ t2 = L | t1 = L ∧ t2 = L) · P(t2 = L | t1 = L)

+ P(v = 10 ∧ t1 = L | t1 = L ∧ t2 = H) · P(t2 = H | t1 = L)

= P(v = 10 | t1 = L ∧ t2 = L) · P(t2 = L | t1 = L)

=
2
3
·

3
4

=
1
2

Here P(v = 10 | t1 = L ∧ t2 = L) = 2
3 follows from

P(v = 20 | t1 = L ∧ t2 = L) = 1
3 and P(v = 30 | t1 = L ∧ t2 = L) = 0.
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Selfish Routing
Congestion Games

Potential Games
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Selfish Routing – Motivation

Many agents want to use
shared resources

Each of them is selfish
and rational
(i.e. maximizes his profit)

Examples: Users of a computer
network, drivers on roads

How they are going to behave?

How much is lost by letting
agents behave selfishly on their
own?
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Example: Routing in Computer Networks

Imagine a computer network, i.e., computers connected by links.

There are several users, each user wants to route packets from
a source computer zi to a target computer ti . For this, each user i
needs to choose a path in the network from zi to ti .

We assume that the more agents try to route their messages through
the same link, the more the link gets congested and the more costly
the transmission is.

Now assume that the users are selfish and try to minimize their cost
(typically transmission time). How would they behave?
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Atomic Routing Games
The network routing can be formalized using an atomic routing game
that consists of

I a directed multi-graph G = (V ,E, δ),
Here V is a set of vertices, E is a set of edges, δ : E → V × V so that if
δ(e) = (u, v) then e leads from u to v. The multigraph G models
the network.

I n pairs of source-target vertices (z1, t1), . . . , (zn, tn) where
z1, . . . , zn, t1, . . . , tn ∈ V ,
(Each pair (zi , ti) corresponds to a user who wants to route from zi to ti)

I for each e ∈ E a cost function ce :N→ R such that ce(m) is
the cost of routing through the link e if the amount of traffic
through e is m.

Each user i chooses a simple path from zi to ti and pays the sum of
the costs of the links on the path.

An atomic routing game is symmetric if z1 = · · · = zn and t1 = · · · = tn.
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Atomic Routing Games

Here we assume at most three users. Each edge is labeled by the cost if one,
two, or all three users route through the edge, respectively.

Here we consider a symmetric case with three users, each has
the source z and target t .
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Atomic Routing Games

Here, e.g., the red user pays 3 + 2 = 5 :

I 3 for the first step from z (he shares the edge with the blue one)

I 2 for the second step to t (he is the only user of the edge)

Atomic routing games are usually studied as a special case of
so called (atomic) congestion games.
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Congestion Games

A congestion game is a tuple G = (N,R , (Si)i∈N , (cr )r∈R) where
I N = {1, . . . ,n} is a set of players,
I R is a set of resources,
I each Si ⊆ 2R r {∅} is a set of pure strategies for player i,
I each cr :N→ R is a cost function for a resource r ∈ R.

Notation: S = S1 × · · · × Sn and c = (c1, . . . , cn).

Intuition:
I Each player allocates a set of resources by playing a pure

strategy si ⊆ R.
I Then each player "pays" for every allocated resource r ∈ si

based on cr and the number of other players who demand
the same resource r :
I If ` players use the resource r , then each of them pays cr (`)

for this particular resource r .
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Congestion Games: Payoffs and Nash Equilibria

Let # : R × S →N be a function defined for r ∈ R and
s = (s1, . . . , sn) ∈ S by #(r , s) = | {i ∈ N | r ∈ si} |.
I.e., #(r , s) is the number of players using the resource r in the strategy
profile s.

We define the payoff for player i by

ui(s) = −
∑
r∈si

cr (#(r , s)) (33)

Intuitively, the more congested a resource r ∈ si is, the more player i has to
pay for it.

Definition 94
Nash equilibria are defined as usual, a pure strategy profile
(s1, . . . , sn) ∈ S is a Nash equilibrium if for every player i and
every s′i ∈ Si we have ui(si , s−i) ≥ ui(s′i , s−i).
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Atomic Routing Games and Congestion Games

Given an atomic routing game we may model it as a congestion
game (N,R , (Si)i∈N , (cr )r∈R) :
I Players N = {1, . . . ,n} correspond to the pairs of

source-target vertices (z1, t1), . . . , (zn, tn),
I resources are edges in the multigraph G, i.e, R = E,
I the set of pure strategies Si of player i consists of all

simple paths (i.e., sets of edges) in the multigraph G from
his source zi to his target ti ,

I the cost function ce of each edge e ∈ E has to be
determined according to the properties of the network.
Often (but not always) a linear (affine) function ce(x) = aex + be is used
(here x is the number of players using the edge e).

Now each Nash equilibrium in G corresponds to a stable
situation where no user wants to change his behavior.
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Solving Congestion Games

We consider the following questions:

I Are there pure strategy Nash equilibria?

I Can the agents "learn" to use the network?

I How difficult is to compute an equilibrium?
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Learning: Myopic Best-Response
Given a pure strategy profile s = (s1, . . . , sn), suppose that some
player i has an alternative strategy s′i such that ui(s′i , s−i) > ui(si , s−i).
Player i can switch (unilaterally) from si to s′i improving thus his
payoff. Iterating such improvement steps, we obtain the following:

Myopic best response procedure:
I Start with an arbitrary pure strategy profile s = (s1, . . . , sn).
I While there exists a player i for whom si is not a best response

to s−i do
I s′i := a best-response by player i to s−i
I s := (s′i , s−i)

I return s

By definition, if the myopic best response terminates, the resulting
strategy profile s is a Nash equilibrium.

It may not terminate in general (see the green board).

Theorem 95
For every congestion game, the myopic best response terminates in
a Nash equilibrium for an arbitrary starting pure strategy profile.
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Potential Games
We prove Theorem 95 by reduction to the following potential games.

Definition 96
A strategic form game G = (N, (Si)i∈N , (ui)i∈N) is a potential game if
there exists a function P : S1 × · · · × Sn → R such that for all i ∈ N, all
s−i ∈ S−i and all si , s′i ∈ Si we have that

ui(si , s−i) − ui(s′i , s−i) = P(si , s−i) − P(s′i , s−i)

Theorem 97
For every finite potential game, the myopic best-response terminates
in a Nash equilibrium for an arbitrary starting pure strategy profile.

Proof.
Note that every iteration of the myopic best-response procedure
strictly increases ui(s) for some i, which in effect strictly increases
P(s) by the same amount.
As there are only finitely many strategy profiles, the procedure must
terminate. The resulting profile is clearly a Nash equilibrium. �
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Congestion Games as Potential Games

Theorem 98
Let G = (N,R , (Si)i∈N , (cr )r∈R) be a congestion game and for each
i ∈ N, let ui be the payoff of player i in G defined by the equation (33).
Then (N, (Si)i∈N , (ui)i∈N) is a potential game.
Recall that ui(s) = −

∑
r∈si

cr (#(r , s)) where #(r , s) is the number of players
using the resource r in the strategy profile s.

Note that we obtain Theorem 95 as a corollary of Theorem 98 and
Theorem 97.

Proof of Theorem 98. Given s ∈ S = S1 × · · · × Sn, define

P(s) = −
∑
r∈R

#(r ,s)∑
j=1

cr (j)

We show that P is a potential function, i.e., prove that for any two
strategy profiles (si , s−i) and (s′i , s−i) we have

P(si , s−i) − P(s′i , s−i) = ui(si , s−i) − ui(s′i , s−i)
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Illustration of the potential
Intuitively, the potential corresponds to the total cost paid by players
when they choose their strategies one after the other.
Consider two players:
I First, player 1 chooses a strategy s1 and pays

∑
r∈s1

cr (1)

I Then, player 2 chooses a strategy s2 and pays∑
r∈s2rs1

cr (1) +
∑

r∈s2∩s1

cr (2)

Summing we get∑
r∈s1

cr (1) +
∑

r∈s2rs1

cr (1) +
∑

r∈s2∩s1

cr (2)

=
∑

r∈s1rs2

cr (1) +
∑

r∈s2∩s1

cr (1) +
∑

r∈s2rs1

cr (1) +
∑

r∈s2∩s1

cr (2)

=
∑

r∈s1rs2

cr (1) +
∑

r∈s2rs1

cr (1) +
∑

r∈s2∩s1

cr (1) + cr (2)

=
∑
r∈R

#(r ,(s1,s2))∑
j=1

cr (j)
344



Illustration of Potential

Let us compute the potential P.
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Illustration of Potential

First, add the red player ...
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Illustration of Potential

The red player pays 2 + 2 = 4.

Second, add the green player ...
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Illustration of Potential

The green player pays 2 + 4 = 6.

Third, add the blue player ...
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Illustration of Potential

The blue player pays 3 + 1 + 6 = 10.

In total, they pay 4 + 6 + 10 = 20.

We get the same number by using the expression for P :

(2 + 3) + 2 + 1 + 2 + (4 + 6) = 20

The potential is thus P = −20.
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Illustration of Potential

⇒

The blue player changes his strategy. What is the change in
the potential?
Recall that on the left hand side, the blue player paid 10 which gave
the potential −20. Now he pays 3 + 3 = 6 on the right hand side. So
the potential on the right hand side is −16.
The difference between potentials is −20 − (−16) = −4.
The difference between payoffs for the blue player is −10− (−6) = −4.
(the right hand side is cheaper and thus better for the blue player)
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Illustration of Potential

⇒

The crucial observation is that we may consider players coming in
an arbitrary order. In particular, to prove

P(si , s−i) − P(s′i , s−i) = ui(si , s−i) − ui(s′i , s−i)

we may assume that player i came last.
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Proof of Theorem 98 (Cont.)

Let (si , s−i) and (s′i , s−i) be two strategy profiles. Recall that we need
to prove

P(si , s−i) − P(s′i , s−i) = ui(si , s−i) − ui(s′i , s−i)

By definition,

P(si , s−i) − P(s′i , s−i) =

∑
r∈R

#(r ,(s′i ,s−i))∑
j=1

cr (j)

 −
∑

r∈R

#(r ,(si ,s−i))∑
j=1

cr (j)


Note that

#(r , (si , s−i)) =

#(r , s−i) + 1 if r ∈ si

#(r , s−i) if r < si

We obtain ...
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Proof of Theorem 98 (Cont.)

−P(si , s−i) =
∑
r∈R

#(r ,(si ,s−i))∑
j=1

cr (j)

=
∑

r∈Rrsi

#(r ,(si ,s−i))∑
j=1

cr (j) +
∑
r∈si

#(r ,(si ,s−i))∑
j=1

cr (j)

=
∑

r∈Rrsi

#(r ,s−i)∑
j=1

cr (j) +
∑
r∈si

#(r ,s−i)+1∑
j=1

cr (j)

=
∑

r∈Rrsi

#(r ,s−i)∑
j=1

cr (j) +
∑
r∈si

#(r ,s−i)∑
j=1

cr (j) +
∑
r∈si

cr (#(r , s−i) + 1)

=
∑
r∈R

#(r ,s−i)∑
j=1

cr (j) +
∑
r∈si

cr (#(r , s−i) + 1)

Similarly,

−P(s′i , s−i) =
∑
r∈R

#(r ,s−i)∑
j=1

cr (j) +
∑
r∈s′i

cr (#(r , s−i) + 1)
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Proof of Theorem 98 (Cont.)

Now we can easily finish the proof of Theorem 98

P(si , s−i) − P(s′i , s−i) =

=

∑
r∈R

#(r ,s−i)∑
j=1

cr (j) +
∑
r∈s′i

cr (#(r , s−i) + 1)


−

∑
r∈R

#(r ,s−i)∑
j=1

cr (j) +
∑
r∈si

cr (#(r , s−i) + 1)


=

∑
r∈s′i

cr (#(r , s−i) + 1)) −
∑
r∈si

cr (#(r , s−i) + 1)

=
∑
r∈s′i

cr (#(r , (s′i , s−i))) −
∑
r∈si

cr (#(r , (si , s−i)))

= ui(si , s−i) − ui(s′i , s−i)

�
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Complexity of Congestion Games
For concreteness, assume cr (j) = ar · j + br where ar ,br are some
non-negative constants.

Myopic best response can be used to compute Nash equilibria but
how many steps it makes?
A naive bound would be the number of strategy profiles which is exponential
in the number of players.

Assume that the cost functions have values inN.
Then every step of the myopic best response increases P by at least
one, which means that the procedure starting in s stops after at most
−P(s) =

∑
r∈R

∑#(r ,s)

j=1 cr (j) steps. This gives a pseudo-polynomial
time procedure.

How many steps are really needed? On some instances any
sequence of improvement steps to NE is of exponential length.

In fact, the problem of computing NE in congestion games is PLS-complete.
PLS class (Polynomial Local Search) models the difficulty of finding a locally
optimal solution to an optimization problem (e.g. travelling salesman is
PLS-complete). 355



Complexity of Atomic Routing Games

Finding Nash equilibria in Atomic Routing Games is
PLS-complete even if the cost functions are linear.

There is a polynomial time algorithm for symmetric atomic
routing games with non-decreasing cost functions based on
a reduction to the minimum-cost flow problem.
Here symmetric means that all players have the same source z and the same
target t . Hence they also choose among the same simple paths.

⇒

For every edge in the routing graph G (left), there are n = 3 edges of
capacity one in the minimum-cost flow network (right), each with one of
the possible costs of the edge in G.
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Non-Atomic Selfish Routing

I So far we have considered situations where each player
(user, driver) has enough "weight" to explicitly influence
payoffs of others (so a deviation of one player causes
changes in payoffs of other players).

I In many applications, especially in the case of highway
traffic problems, individual drivers have negligible influence
on each other. What matters is a "distribution" of drivers on
highways.

I To model such situations we use non-atomic routing
games that can be seen as a limiting case of atomic selfish
routing with the number of players going to ∞.
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Non-Atomic Routing Games

A Non-Atomic Routing Game consists of
I a directed multigraph G = (V ,E, δ),
I n source-target pairs (z1, t1), . . . , (zn, tn),
I for each i = 1, . . . ,n, the amount of traffic µi ∈ R≥0 from zi

to ti ,
I for each e ∈ E a cost function ce : R≥0 → R such that

ce(x) is the cost of routing through the link e if the amount
of traffic on e is x ∈ R≥0.

For i = 1, . . . ,n, let Pi be the set of all simple paths from zi to ti .
Intuitively, there are uncountably many players, represented by [0, µi ], going
from zi to ti , each player chooses his path so that his total cost is minimized.

Assume that Pi ∩ Pj = ∅ for i , j.
(This also implies that for all i , j we have that either zi , zj , or ti , tj .)
Denote by P the set of all "relevant" simple paths

⋃n
i=1Pi .

Question: What is a "stable" distribution of the traffic among
paths of P ?
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Non-Atomic Routing Games
A traffic distribution d is a function d : P → R≥0 such that∑

p∈Pi
d(p) = µi . Denote by D the set of all traffic distributions.

Let us fix a traffic distribution d ∈ D.

Given an edge e ∈ E, we denote by g(d,e) the amount of congestion
on the edge e :

g(d,e) =
∑

p∈P : e∈p

d(p)

Given p ∈ P, the payoff for players routing through p ∈ P is defined by

u(d,p) = −
∑
e∈p

ce(g(d,e))

Definition 99
A traffic distribution d ∈ D is a Nash equilibrium if for every i = 1, . . . ,n
and every path p ∈ Pi such that d(p) > 0 the following holds:

u(d,p) ≥ u(d,p′) for all p′ ∈ Pi
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Price of Anarchy

Theorem 100
Every non-atomic routing game has a Nash equilibrium.
We define a social cost of a traffic distribution d by

C(d) =
∑
p∈P

d(p) · (−u(d,p)) =
∑
p∈P

d(p) ·
∑
e∈p

ce(g(d,e))

Theorem 101
All Nash equilibria in non-atomic routing games have the same
social cost.

A price of anarchy is defined by

PoA =
C(d∗)

mind C(d)
where d∗ is a (arbitrary) Nash equilibrium

Intuitively, PoA is the proportion of additional social cost that is
incurred because of agents’ self-interested behavior.
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Price of Anarchy

Theorem 102 (Roughgarden-Tardos’2000)
For all non-atomic routing games with linear cost functions holds

PoA ≤
4
3

and this bound is tight (e.g. the Pigou’s example).
The price of anarchy can be defined also for atomic routing games:

PoAnon−atom :=
maxs∗ is NE

∑n
i=1(−ui(s∗))

mins∈S
∑n

i=1(−ui(s))

(Intuitively,
∑n

i=1(−ui(s)) is the total amount paid by all players playing
the strategy profile s.)

Theorem 103 (Christodoulou-Koutsoupias’2005)
For all atomic routing games with linear cost functions holds

PoAnon−atom ≤
5
2

(which is again tight, just like 4
3 for non-atomic routing.) 361



Braess’s Paradox
For an example see the green board.

Real-world occurences (Wikipedia):

I In Seoul, South Korea, a speeding-up in traffic around the city was seen
when a motorway was removed as part of the Cheonggyecheon
restoration project.

I In Stuttgart, Germany after investments into the road network in 1969,
the traffic situation did not improve until a section of newly built road
was closed for traffic again.

I In 1990 the closing of 42nd street in New York City reduced the amount
of congestion in the area.

I In 2012, scientists at the Max Planck Institute for Dynamics and
Self-Organization demonstrated through computational modeling the
potential for this phenomenon to occur in power transmission networks
where power generation is decentralized.

I In 2012, a team of researchers published in Physical Review Letters
a paper showing that Braess paradox may occur in mesoscopic electron
systems. They showed that adding a path for electrons in a nanoscopic
network paradoxically reduced its conductance.
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IA168 Algorithmic Game Theory

Tomáš Brázdil
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Evaluation

I Oral exam
I Homework

(occasionally)

Strictly dominated strategies for the exam:
I No preparation (skim-through)
I Learn only a strict subset

THE strictly dominant strategy:

Learn all definitions, algorithms, theorems and proofs.
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What we did ...

Types of games:

I strategic-form games

I extensive-form games

I (strict) incomplete information games & Bayesian games

Types of strategies:

I pure

I mixed
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What we did ... strategic-form games
Solution concepts:

I strictly dominant strategy equilibrium

I iterated elimination of strictly dominated strategies

I rationalizability

I Nash equilibria

We studied all these concepts in both pure and mixed strategies.

We studied computational complexity of solving strategic-form games
w.r.t. all above concepts.

In particular, we considered classical algorithms for computing mixed
Nash equilibria for two-player games:

I support enumeration

I Lemke-Howson

For zero-sum two-player games a polynomial time algorithm based
on von Neumann’s theorem was presented.
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What we did ... extensive-form games

We considered three levels of expressiveness:
I perfect-information extensive-form games
I imperfect-information extensive-form games
I perfect and imperfect-information extensive-form games

with chance nodes
In all cases we considered the following types of strategies:
I pure
I mixed
I behavioral

Solution concepts:
I Nash equilibria
I subgame perfect equilibria (SPE)
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What we did ... extensive-form games ... results

For finite perfect-information extensive-form games:
I there always exists a pure strategy SPE (in pure as well as

behavioral strategies)
I backward induction for computing SPE (can be used also

for perfect-information games with chance nodes)
I equivalence of mixed and behavioral strategies

For finite imperfect-information extensive-form games:
I there always exists a behavioral strategy Nash equilibrium
I backward induction on "perfect information" nodes
I mixed and behavioral strategies are not equivalent in

general, they are equivalent for games with perfect recall
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What we did ... repeated games

Strategic-form games played repeatedly for either finitely many,
or infinitely many rounds.

Behavior of players may depend (arbitrarily) on the history of
the play.

They are a special case of imperfect-information extensive-form
games.

Solution concepts:
I For finitely repeated: average payoff (sum of payoffs)
I For infinitely repeated:

I discounted payoff
I long-run average payoff

We have considered only pure strategies.
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What we did ... repeated games ... results

For finitely repeated:
I Unique SPE if the strategic-form game has a unique pure

str. NE
I SPE obtained by iterating a NE from the strategic-form

game
I other SPE (punishing equilibria)

For infinitely repeated:
I discounted payoff:

I one-shot deviation property iff SPE
I grim trigger strategy profiles & simple Folk theorem for SPE

(for bounded payoff functions)
I an approximate version of general Folk theorem for SPE

(repeated finite strategic-form games only)
(feasible payoffs)

I long-run average payoff:
I (almost) general Folk theorems for SPE and NE (repeated

finite strategic-form games only)
(feasible and individually rational payoffs)
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What we did ... incomplete information games

I strict incomplete information games
I solution concepts: weak dominance, ex-post-Nash

equilibrium
I Bayesian games

I solution concepts: weak dominance, Bayesian Nash
equilibrium

Only pure strategies.

Auctions:
I Second-price auction:

I truth telling strategies are weakly dominant in both strict
imperfect information as well as Bayesian model

I First-price auction:
I Bayesian games needed to obtain a solution, solved for

uniform common prior

Revenue equivalence.
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