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ABSTRACT

Motivation: Non–small-cell lung cancer (NSCLC) is the leading cause

of cancer death in the United States. Targeted tyrosine kinase inhibi-

tors (TKIs) directed against the epidermal growth factor receptor

(EGFR) have been widely and successfully used in treating NSCLC

patients with activating EGFR mutations. Unfortunately, the duration

of response is short-lived, and all patients eventually relapse by

acquiring resistance mechanisms.

Result: We performed an integrative systems biology approach to

determine essential kinases that drive EGFR-TKI resistance in

cancer cell lines. We used a series of bioinformatics methods to ana-

lyze and integrate the functional genetics screen and RNA-seq data to

identify a set of kinases that are critical in survival and proliferation in

these TKI-resistant lines. By connecting the essential kinases to com-

pounds using a novel kinase connectivity map (K-Map), we identified

and validated bosutinib as an effective compound that could inhibit

proliferation and induce apoptosis in TKI-resistant lines. A rational

combination of bosutinib and gefitinib showed additive and synergistic

effects in cancer cell lines resistant to EGFR TKI alone.

Conclusions: We have demonstrated a bioinformatics-driven discov-

ery roadmap for drug repurposing and development in overcoming

resistance in EGFR-mutant NSCLC, which could be generalized to

other cancer types in the era of personalized medicine.

Availability and implementation: K-Map can be accessible at: http://

tanlab.ucdenver.edu/kMap.

Contact: aikchoon.tan@ucdenver.edu or finiganj@njhealth.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Genomic medicine has dramatically increased our knowledge

of the molecular changes that underpin disease states.

Understanding alterations in gene expression can identify

proteins and signaling pathways, which might serve as thera-

peutic targets. Moreover, recent technologic advances in next-

generation sequencing facilitate the rapid assessment of gene

expression changes in specific patients, allowing for individua-

lized treatment. Although personalized genomics heralds the age

of precision medicine, the comprehensive datasets obtained

through sequencing require sophisticated bioinformatics tools

to identify the critical genes that influence disease. Once these

critical genes are identified, the next challenge is to predict what

drugs would be useful in reversing the disease states.
The connectivity map represents the first attempt to provide a

computational framework to connect genes, drugs and diseases

based on gene expression signatures (Lamb et al., 2006). This

method assumes gene expression changes could be used as a

‘universal language’ to connect distinct biological states (e.g. dis-

eases), allowing for the successful repurposing of compounds

(Hieronymus et al., 2006; Wei et al., 2006). In short, drugs

known to be effective in one disease can serve as candidates

for use in other diseases marked by similar gene expression

changes. The power of this method has inspired other related

work (Chung et al., 2014; Li et al., 2009; Zhang and Gant,

2008, 2009) with the goal of improving the utility of the

connectivity map in drug repurposing and development.
Non–small-cell lung cancer (NSCLC) serves as an ideal disease

for a connectivity map-based approach. NSCLC accounts for

�85% of lung cancers, and is the leading cause of cancer-related

death in the United States (Siegel et al., 2013) and worldwide.

Comprehensive characterization of cancer genomes have

increased our understanding of cancer biology and moved

NSCLC beyond standard clinico-pathologic classifications and

staging to include molecular characterization based on newly

identified oncogenic drivers, such as the mutant epidermal

growth factor receptor gene (EGFR) (Pao and Chmielecki,

2010). Although therapies directed against EGFR, such as

gefitinib (Hirsch et al., 2003), have revolutionized NSCLC

care, the duration of response is short-lived, and all patients

eventually relapse through acquired resistance mechanisms
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(Cas�as-Selves et al., 2012; Engelman and J€anne, 2008; Ohashi

et al., 2013; Ware et al., 2013). Identification of new targeted

therapeutics is a priority, yet the ability to translate genomic

datasets into new drugs has been limited.

We devised an integrative systems biology approach using a

functional screen combined with RNA-seq expression data to

determine essential kinases other than EGFR that drive prolif-

eration and survival in EGFR-mutant NSCLC. We performed

an initial focused, functional genetic screen using short hairpin

RNAs (shRNAs) that target the kinome (�600 kinases) in the

H1650 lung cancer cell line. This line harbors an EGFR muta-

tion, yet is intrinsically resistant to EGFR TKIs. We used

Bioinformatics for Next-Generation Sequencing! (BiNGS!)

(Kim and Tan, 2012), a novel bioinformatics pipeline to analyze

and interpret functional genomic screening data by next-gener-

ation sequencing to identify essential kinases that drive the sur-

vival and proliferation signaling pathways of this EGFR-mutant

line. Next, we determined the differentially expressed kinases in

this cancer cell line by next-generation sequencing (RNA-seq).

Integrative analysis was performed to identify kinases that were

essential and dysregulated, and the list of essential and functional

kinases was connected to explore therapeutic opportunities using

the kinase connectivity map (K-Map) (Kim et al., 2013). The

efficacy of the K-map prediction of kinase inhibitors was then

validated in vitro (Fig. 1).

2 MATERIALS AND METHODS

Cell culture. H1650 and H1975 cells were obtained from the University of

Colorado Cancer Center (UCCC) Tissue Culture Core. All cell lines were

routinely cultured in RPMI-1640 growth medium supplemented with

10% fetal bovine serum (Sigma, St. Louis, MO, USA) at 37�C in a

humidified 5% CO2 incubator. Alveolar type II (ATII) cells are primary,

normal cells that were isolated and cultured in an air/liquid interface, as

previously described (Wang et al., 2007).

Kinome essential screen by next-generation sequencing. An essential

screen identifies genes critical for cell survival by knocking out individual

genes in cells (one gene deleted per individual cell). The essential screen is

a high-throughput assessment of gene function as opposed to expression.

A total of 3� 106 cells of H1650 were transduced with the short-hairpin

loop lentiviral kinome library (�3700 shRNAs targeting �600 kinases)

developed by the RNAi Consortium (TRC 1.0/1.5) and obtained from

the UCCC Functional Genomics Shared Resource Core. Cells were

transduced with the lentiviral shRNA library using conditions to result

in a single shRNA expressed in each infected cell. Cells were cultured and

harvested after 2, 7, 14 and 28 days of transduction. shRNAs from

surviving cells were extracted, reverse transcribed and barcoded for indi-

vidual replicates (four replicates per time point). The DNA was purified

and amplified, and Illumina adapters were added. The relative abundance

of the unique shRNA tags was quantified by the Illumina Genome

Analyzer, as previously described (Cas�as-Selves et al., 2012; Singleton

et al., 2013; Spreafico et al., 2013; Sullivan et al., 2012). Loss of

shRNAs represents essential kinases. See Supplementary Methods for

details.

BiNGS! analysis. We used BiNGS! for analyzing and interpreting the

essential screen (Kim and Tan, 2012). In brief, a preprocessing step fil-

tered out erroneous and low-quality reads. Filtered reads were mapped

against the shRNA reference library using Bowtie (Langmead et al.,

2009). Output from this step is a P�N matrix, where P and N represent

shRNA counts and samples, respectively. We also filtered out shRNAs

where the median raw count in the time-point group 1 is greater than the

maximum raw count in the time-point group 2 if the shRNA is enriched

in the time-point group 1, and vice versa. We then used a negative bino-

mial to model the count distribution in the sequencing data using edgeR

(Robinson et al., 2010). We computed the q-value of false discovery rate

(FDR) for multiple comparisons for these shRNAs, and carried out a

meta-analysis by combining adjusted P-values for all shRNAs represent-

ing the same gene using weighted Z-transformation (Whitlock, 2005). For

each gene, we computed a P-value P(wZ), and we used this P(wZ) to sort

the kinase list, as previously described (Cas�as-Selves et al., 2012;

Singleton et al., 2013). We performed pair-wise comparisons for each

of the time points, and we grouped the kinases into three classes using

the following rules based on the P(wZ) obtained from each gene (similar

Fig. 1. Workflow of the experimental and bioinformatics analyses of this study. Blue boxes represent bioinformatics analyses. The K-Map connectivity

results for validation (right)
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to the classification rules in Marcotte et al., 2012). In this study, we

considered kinases that, when deleted by shRNAs, induced cell death

in the first time point (day 7) as candidate kinases. These kinases were

‘essential’ for cell survival and they were never recovered in the later time

points (day 14 and day 28). See Supplementary Methods for details.

RNA-seq of kinome and bioinformatics analysis. Transcriptome

libraries were prepared following Applied BioSystems SOLiD Total

RNA-Seq protocol. The libraries were sequenced using the Applied

BioSystems SOLiD 5500 platform, using 75 base pair by 35 base

paired-end reads. Mapping of sequencing reads and quantification of

known RefSeq transcripts were performed using LifeScope v2.1 (ABI).

Expression values for each transcript were calculated as reads per

kilobase of exon model per million mapped reads (RPKM). RPKM is

a method of quantifying gene expression from RNA-seq data by normal-

izing for total read length and the number of sequencing reads obtained

within each sample (Mortazavi et al., 2008). See Supplementary Methods

and Supplementary Table S3 for details. To determine the differentially

expressed kinases, we computed a FDR on the P-values obtained by

t-test. We used FDR �5% and fold change 41.25 as thresholds for

determining differentially expressed kinases between cancer and normal

samples.

K-Map analysis. We have recently developed and implemented a

K-Map that systematically connects a kinase profile with a reference

kinase inhibitor database and predicts the most effective inhibitor for a

queried kinase profile (Kim et al., 2013) (Fig. 2). The K-Map is inspired

by the connectivity map concept (Lamb et al., 2006), where the main

assumption of this concept is that gene expression profiles could be

used as ‘universal language’ to connect between biological states, genes

and drugs. The connectivity map has three key components: (i) a refer-

ence database that contains a set of predefined gene expression profiles;

(ii) a query gene signature; and (iii) a pattern matching algorithm or

similarity metric defined between a query gene signature and a reference

gene expression profile to quantify the connection (or similarity) between

the two biological states. Instead of gene expression signatures, we used

the kinase activity profiles as the ‘language’ for connecting kinases with

small molecule kinase inhibitors in K-Map to reveal the interactions of

kinases and inhibitors (Kim et al., 2013). Figure 2 illustrates the concept

of K-Map. Reference Database. We built the reference database based on

two recently published comprehensive analyses of kinase inhibitor

selectivity (Anastassiadis et al., 2011; Davis et al., 2011). The first study

systematically interrogated 178 commercially available inhibitors against

a panel of 300 protein kinases using a radiometric phospho-transfer

method to assess the percent kinase inhibition (IC50) (Anastassiadis

et al., 2011). The second study measured the selectivity and potency of

72 inhibitors against 442 kinases using direct binding affinities between

inhibitors and kinases (Kd) (Davis et al., 2011). These datasets were con-

verted into rank-ordered lists according to the inhibitors’ potencies

against the kinases and used as the K-Map reference profiles for matching

query kinases. Query Signature. Kinases found to be differentially ex-

pressed and essential were used as the query kinase profile and connected

through the K-Map in this study. Pattern Matching Algorithm. We

implemented the K-Map pattern matching strategy based on the

Kolmogorov–Smirnov (KS) statistics. The KS-test is a non-parametric,

rank-based pattern-matching approach implemented in the connectivity

map (Lamb et al., 2006). The goal of the algorithm is to correlate kinase

inhibitors, based on kinase inhibition profiles in the reference database,

with a given query (i.e. a list of kinases). For every inhibitor in the ref-

erence database, the KS statistic is computed and a ‘connectivity score’ is

defined (see Supplementary Methods for details). K-Map will return a

ranked list of kinase inhibitors that best inhibit the list of queried kinases

based on their ‘connectivity score’. We used K-Map to connect the

differentially expressed and essential kinases with drugs in this study.

Drug Cytotoxicity/Proliferation assays. Bosutinib, gefitinib, sorafenib

and CI-1040 were obtained commercially (LC Laboratories, Woburn,

MA). Cytotoxic/proliferation effects were determined using WST-1

(Roche) assay. Water-soluble tetrazolium salt (WST-1) assay is a colori-

metric assay for the non-radioactive quantification of cellular prolifer-

ation, viability and cytotoxicity. WST-1 is added into cultured cells, and

the reading of absorbance correlates with the number of proliferating

cells. This assay was used to measure the inhibitory effect of drugs

used in this study on cell proliferation. The half maximal inhibitory

concentration (IC50) of individual drugs was determined from the cell

proliferation curves. See Supplementary Methods for details.

Immunoblot assays. Apoptosis markers, cleaved and total caspase-3

protein levels, in cells treated with drugs were measured by immunoblot-

ting. See Supplementary Methods for details.

Quantifying combination effects. To quantify the combination effects of

drugs used in this study, we used two standard models of additivism

(Borisy et al., 2002). The first approach is the highest single agent

(HSA) model that measures the larger of the effects produced by each

of the combination’s single agents at the same concentrations as in the

mixture. The combination effect can be classified as: (i) additive (if the dif-

ference between combination and HSA is 0); (ii) synergistic (if the differ-

ence between combination and HSA is40); or (iii) antagonistic (if the

difference between combination and HSA is50). The second approach is

the Bliss additivism model, which predicts the combined response C for

two single compounds, with effects A and B using the following equation:

C=(A+B)– (A�B), where each effect is expressed as fractional inhib-

ition between 0 (no effect, 0% inhibition) and 1 (maximal effect=100%

inhibition). By taking the difference between the observed combined

effects and the predicted C, we can classify the combination effect as:

(i) additive (if the difference is 0); (ii) synergistic (if the difference is40); or

(iii) antagonistic (if the difference is50).

3 RESULTS

Essential kinases identified by the BiNGS! analysis. To determine

essential kinases other than EGFR that drive the oncogenic sig-

naling pathways in NSCLC, we performed a functional kinome

genetic screen using H1650, an NSCLC line with an EGFR-

activating mutation (deletion exon 19), yet for unknown reasons

is relatively resistant to EGFR TKIs. From this kinome essential

Fig. 2. The K-Map concept. Query signature is derived from experimen-

tal study (left). Reference database of K-Map is based on kinase inhibitor

selectivity profiles (center). Pattern-matching algorithm provides a score

for each reference profile based on its enrichment of the query signature

(center). Kinase inhibitors are ranked by the ‘connectivity score’; those at

the top (‘strong connection’) and bottom (‘low connection’) are predicted

to have maximal and minimal efficacy against the query signature (right)
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screen, we identified 14 candidate kinases (CALM3, CDK1,

CDK6, DDR1, EGFR, EPHA4, GNE, IPMK, MARK3, PBK,

PKN1, ROCK1, RPRD1A and TBK1) as essential for survival

of this cell line (see Supplementary Fig. S1 and Supplementary

Methods for details). Importantly, EGFR was identified from

this functional genetic screen as essential in H1650. To determine

whether these kinases were mutated in this cell line, we queried

the comprehensive curated Catalogue Of Somatic Mutations In

Cancer (COSMIC) database (Forbes et al., 2011). According to

the COSMIC database, besides EGFR, no other known somatic

mutations have been reported in the 13 other essential kinases in

H1650.
Differentially expressed kinases identified by the RNA-seq

analysis. To determine the differentially expressed kinase genes

in H1650, we compared the expressed kinome of H1650 defined

by targeted RNA-seq with four normal, human ATII cells, the

putative cell of origin for lung adenocarcinomas, a histologic

subtype of NSCLC (Xu et al., 2012). From the RNA-seq data,

we focused on the 611 kinases that were the same kinases tar-

geted in the functional genetic screens. We identified 193 kinases

overexpressed and 131 underexpressed comparing the H1650

data with the normal ATII RNA-seq data (FDR �0.05, fold

change 41.25). Again, EGFR was the top overexpressed gene

in the list, supporting H1650’s dependence on this oncogene.

The heat map of this analysis is illustrated in Supplementary

Figure S2 and Supplementary Table S1.
Integrating a functional kinome genetic screen and RNA-seq

analysis. To refine the panel of identified key kinases driving

the survival and proliferation of H1650 cells, we sought to inte-

grate the candidate kinase genes identified from the essential

kinome screen with differential kinase transcriptional profiling,

two different yet complementary approaches. Transcriptional

profiling analysis identifies kinases that are differentially ex-

pressed compared with normal lung ATII cells, yet provides no

insight on kinase function. Conversely, the functional genetic

screen allows discovery of kinases required for cell survival, yet

provides no information specific to transformation. Therefore,

integrating these two analyses will provide a list of functionally

essential, potentially transformative kinases in H1650. By com-

paring the candidate gene lists obtained from the two approaches

(Fig. 1), seven kinases (CDK6, EGFR, MARK3, PBK, TBK1,

DDR1 and EPHA4) were found to be common to both lists.
Connecting the essential, potentially transformative kinases to

therapeutics using the K-Map. We next asked what compounds

could inhibit these essential and possibly transformative kinases

and serve as a potential therapy to inhibit proliferation of this

cell line. We queried the K-Map using the seven essential and

potentially transformative kinases to connect them to drugs

based on two different kinase activity assays (IC50 and Kd).

The top connection in both assays was staurosporine, a natural

product isolated from the bacterium Streptomyces staurosporeus.

Staurosporine is a potent, general ATP-binding site inhibitor

across kinases, lacking any specificity (Anastassiadis et al.,

2011; Davis et al., 2011). Interestingly, bosutinib, a Src and

Abl dual inhibitor, was also positively connected and ranked

#3 and #29 in the Kd and IC50 assays, respectively (Fig. 1 and

Supplementary Table S2). As expected, the two FDA-approved

EGFR-specific TKIs for treating NSCLC patients, gefitinib and

erlotinib, were not connected by the K-Map as effective therapy

for the queried essential kinases (Fig. 1).
Experimental validation of the compounds identified by K-map

analysis. To test whether compounds identified by the K-Map

could provide better growth inhibition of H1650 cells compared

with the current standard of care with EGFR-specific TKIs, we

selected bosutinib (Fig. 1) as the candidate compound prediction

of the K-map and validated its effect on cell survival. In com-

parison, we selected gefitinib, a drug approved for use in EGFR-

mutant NSCLC, which was not identified using our strategy and

therefore, we predicted, would be less efficacious in H1650 cells

(Fig. 1). To further test our algorithm and K-Map, we identified

sorafenib (connectivity scores of 0.234 and 0.226 in both kinase

assays, Fig. 1) as a compound which was predicted to be

ineffective against the H1650 cell line.

To evaluate the sensitivity of bosutinib, gefitinib and sorafe-

nib, H1650 NSCLC cells were exposed to increasing concentra-

tions of these individual drugs and assessed for proliferation. As

depicted in Figure 3A, bosutinib had the lowest IC50 among the

three tested compounds. Conversely, gefitinib and sorafenib had

higher IC50 values (IC50410mM), indicating both drugs were

less effective in inhibiting the growth of H1650 cells. As an add-

itional negative control, we validated CI-1040, a compound that

has a connectivity score of 0 (minimal effect and ranked #238 of

250 drugs) and was the least effective of the four drugs tested

(IC50 �34mM) in H1650 (Supplementary Fig. S3).

To estimate the statistical significance of the connection, we

used the connection testing proposed by Zhang and Gant (2008,

2009), where the two-tailed P-value associated with the observed

connection score is the number of times the connection score

obtained by a random gene signature with the same number of

Fig. 3. Experimental validation of bosutinib in H1650 and H1975.

Proliferation curves for bosutinib, gefitinib and sorafenib in (A) H1650

and (B) H1975. Combination of bosutinib and genfitinib in (C) H1650

and (D) H1975. Bosutinib and the combination induce apoptosis in

(E) H1650 and (F) H1975 cell lines
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genes when queried to the database. Given a reference database
and a query signature S withm kinases (here,m=7), the K-Map
connectivity score is KSS, and the two-tailed P-value is estimated

as: p=Prob {jKSrj � jKSSj}, where KSr is the connection score
obtained from the random query signature with m kinases. For
this particular study, we performed 500 permutations, and com-

puted the P-value of the bosutinib connection as p=0.052 (see
Supplementary Methods for details). As demonstrated by the
experimental validation, this indicates that the connection is

not a false positive identified by the method.
Generalizing the K-map prediction to acquired EGFR-TKI

resistance. Acquired resistance to EGFR TKIs after therapy is

universal in lung cancer patients limiting their usefulness as a
treatment of NSCLC. Drugs that can overcome this resistance
would dramatically impact lung cancer care. To explore whether

bosutinib can be extrapolated as an effective therapy for an
acquired mutation conferring resistance to EGFR TKIs, we

tested H1975, a NSCLC line that harbors EGFR T790M, a
gatekeeper mutation that is commonly acquired during treat-
ment with EGFR TKIs and renders standard EGFR TKIs inef-

fective. As illustrated in Figure 3B, the IC50 value of bosutinib on
H1975 was �3.7mM. As a negative control, we also determined
the IC50 value of gefitinib, sorafenib and CI-1040 for this

cell line as �12, �17 and �31mM, respectively (Fig. 3B and
Supplementary Fig. S3). Thus, bosutinib is effective in inhibiting
the proliferation of a NSCLC line with an acquired EGFR

resistance mutation.
Rational combination of bosutinib and gefitinib shows syner-

gistic effects in EGFR-mutant NSCLC cells. We further hypothe-

sized that the addition of bosutinib to gefitinib would be
synergistic in EGFR-mutant NSCLC cells resistant to single
agent EGFR-TKI treatment. Indeed, the combination of bosu-

tinib and gefitinib demonstrated additive or synergistic ef-
fects in both EGFR-mutant NSCLC lines (Fig. 3C and D).

Combination therapy was significantly improved in H1650 and
H1975 (P50.05, Welch two sample t-test) in inhibiting cell pro-
liferation when compared with individual drug alone (Fig. 3C

and D). Based on the additivism models, in H1650 combination
therapy was synergistic (HSA=0.34 and Bliss=0.10), whereas
in H1975 was additive (HSA=0.19 and Bliss=–0.04)

(see Supplementary Methods for details). Immunoblotting of
H1650 and H1975 revealed an increase of cleaved caspase-3
(Casp3), an apoptotic marker, in the bosutinib and combination

treated cells as compared with gefitinib alone and vehicle as early
as 48 h after treatment (Fig. 3E and F).

4 DISCUSSION

Functional genetic screens have the potential to identify genes

essential for cancer cell survival and proliferation, providing a
‘functional’ map of human cancer. Complementing the func-
tional genetic screen with comprehensive genomics studies such

as transcriptional profiling could reveal the ‘vulnerable targets’
for targeted treatment of cancer cells. Here, we performed a sys-
tematic and unbiased approach to determine essential kinases

driving survival mechanisms of EGFR-mutant NSCLC lines re-
sistant to EGFR TKIs. Using a series of novel bioinformatics
analyses, specifically connecting the essential kinases with small

molecules based on inhibition activities, we have identified that

bosutinib effectively inhibits the essential kinases in H1650

resulting in cell death. We validated bosutinib in H1650 (intrinsic

EGFR-TKI resistance) and H1975 (acquired gatekeeper T790M

mutation) and demonstrated that this compound inhibited cell

proliferation and induced apoptosis in these cancer cell lines that

are resistant to EGFR-specific TKIs better than standard care.
Our strategy combines high-throughput genetic screens with a

new computational technique (BiNGS!) to rapidly identify kin-

ases that are essential for cancer cell survival. As described ear-

lier, the H1650 cell line is driven by an activating EGFR

mutation; therefore, it was expected that EGFR would be one

of the seven essential kinases found in the overlapping gene lists.

Other differentially expressed and essential kinases identified in

this study have been previously reported to play an important

role in cancer cells. For example, MARK3 has been shown to

play a role in regulating cell cycle progression in cancer cells (Sha

et al., 2007). EPHA4 was recently identified as an inhibitor of cell

migration and invasion in lung cancer (Saintigny et al., 2012),

supporting our finding that the expression of this gene is lower

than that found in normal ATII cells, yet functionally important

in driving lung oncogenesis. DDR1 was identified as an essential

kinase across three different tumor types from a recent large-

scale functional genetic screen (Marcotte et al., 2012). Despite

these data, prior to our analyses there was no method for iden-

tifying these seven kinases as the functional vulnerabilities of

H1650, which could be targeted for therapeutic intervention.
By connecting the H1650 essential kinase profile through the

K-Map to existing kinase inhibitors, we could repurpose bosuti-

nib to treat EGFR-mutant NSCLC cell line resistant to EGFR

TKIs. Bosutinib is a Src/Abl dual TKI, which has recently been

approved by the FDA to treat CML patients. Our data suggest

that by using the connectivity map concept, we could ‘connect’

essential kinases to therapeutics, facilitating the translation from

in silico discovery to clinical trials. Recently, bosutinib has been

tested in a Phase I clinical trial of advanced solid tumors (Daud

et al., 2012). Among the 16 NSCLC patients treated with the

optimal dose of bosutinib, seven of the patients observed tumor

shrinkage and nine patients had stable disease. As concluded by

the authors (Daud et al., 2012), bosutinib might provide benefit

in combination with other drugs to result in better treatment

responses. In this study, we provide a biological rationale for

the effectiveness of bosutinib in NSCLC. Moreover, we con-

firmed that the combination of bosutinib with gefitinib has addi-

tive or synergistic effects in two gefitinib-resistant NSCLC cell

lines. Future experiments for the combination of bosutinib and

gefitinib are warranted to investigate this bioinformatics-driven

discovery in more cell lines and in animal models.

In summary, we have demonstrated a proof-of-concept, bio-

informatics-driven discovery roadmap for drug repurposing and

development in cancer research, which could be generalized to

other diseases in the era of personalized and precision medicine.
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