Advanced GPU Programing
with Unity3D

What is this course about ?

* Overview of Unity3D
* How to use Unity3D for advanced GPU programing
* Overview of a few CG techniques & implementaion in Unity

Course overview

e Unity3D 101

* Introduction to shader programing
* Custom shaders

* Post processing

* Compute shaders

* Volume rendering

Content may be subject to changes

Assessment

* 100 % project-based

* Reimplementation of a CG paper in Unity
(offered topic available soon)

e Deadline for topics 1st of November

e Lab hours every two weeks

Why Using a Game Engine ?

* Universal

* Ease of use

* High level scripting

* No maintenance costs

* Extensive documentation

* Many out-of-the-box features

* Develop once deploy everywhere (in theory)

Why Unity3D?

* Vanilla OpenGL is too cumbersome
* Other game engines are too high-level

* Right balance between flexibility & ease of use for graphics programing

Caution !

Game engines are not perfect all-in-one solutions.

For developing professional softwares or programs requiring heavy CPU
computation, Unity3D might not be the best choice.

Highly recommended for prototyping.

What is Unity3D ?

e Unity is a multi-platform, integrated IDE for developing games, and
working with 3D virtual worlds

* WYSWYG editor
* Asset manager
e C# Scripting integrated with Visual Studio

Unity Crash Course

4 <
o £

Scene
Hierarchy
Inspector
Game

Project

ST

&

[earvee | Stoce]

Scene
Teatured

1

I e s

> Il M)

om| = Metarcry |

I~

s

» M
Dwrlaght Water
Orrecnonal Back light
Ouectonal Sun loht

» HeronCohiders
» teronirefab
» Heronfrefad
» LeveDbpects
Performance
Seabor
Tertnn
Underwater Water Surface
| > Wives

Macinize oo Py | Giermes | Sty | | | Creee =

» CSArplancRuns
» Dibrec
> Zondges
» Safunkers
» Satcieor
» 1) Rirst Person Controler Prefab
» Safish
Slslands
PEmapPsD
! htmapWehrog
» Calonglioat NC_Untied
| » ™ New Terran
» 5o Sandard Assets
» S5S%rips

L » ZSSanderd Assers
» SiTervain Demo Assets
» Sawater

| Layers - | Layout - |

O Inspector =
& o First Person Controlker Mrefab

Tag Piw & Layer Detsann Y|
Ouscon oot Recorrnct Appy |
¥ . Trancform Lo
Posiien - =
X 1033066 Y 5110947 1z b3z.nz81
Rotvon - .
X0 ¥ 340433 zo
e
X 169211 v 169211 Z 169211
¥ | o PSWalker Geript) Lo

Scripe U iresivalionr

Speed 143

Jmo Speed &

Crinlty 20
v} Character Comtroier we.

Heght 2

Radiuy 04

Slope Lt 4

Step Offset 04

Shin Width 005

M More Distarce o
» Center
¥) o Mowse Look (Script) Lo

Seript _INouselook

Axer MouseX

Sensitwty X s

Sendltnity ¥ 0

M rsurs X -360

Madmum X 360

Memus Y]

Muomum Y]

Game Objects

e Everything is a Game Object (lights, cameras, characters,...)

e Contains components (mesh, audio, script, physics, etc.)

* Transform component by default

 Game Objects may contain other game objects (placeholders)

Game Object - Cube Example

= Hierarchy

| Create = | (arAll

Directional Light
Main Camera

= | 8 Inspector

> J Shader | Standard

o =
= M [Cube []static
Tag | Untagged ¢ | Layer | Default % |
¥ .~ Transform o,
Position X|575.5 ¥ 270 [¥]
Rotation X0 ¥ 0]
Scale X1 ¥l 1
¥ iy (M Box Collider Ll %,
EEIERIHET
Is Trigger -
Material Mone (Physic Material) @
Center ®o ¥ 0 [i]
Size w1 ¥l 1
¥ |:/ Cube (Mesh Filter) B,
Mesh Wl Cube o]
¥ [¥ Mesh Renderer B,
Cast Shadows | on $ |
Receive Shadows %)
¥ Materials
Size 1
Element 0 W Default-Material o]
Use Light Probes %)
Reflection Probes | Blend Probes #]
Anchor Override Mone (Transform) @
Default-Material & =

Scripting

* Scripts must be attached to a game object

to live

* Some game objects may only contain scripts

= O Inspector |

@

.=

M [cube | Clstatic «

Tag | Untagge d ™ Layer | Default ™|

¥ .~ Transform i
Position X[575.5 |Y (270 'zlo |
Rotat bl o |Z]o |
Scale x[1 [1 lz[1 |
YECustom Script (Script) ﬁ,
Script |- CustomScript =]
Peiﬂnx Collider 'ﬁv
.20 Cube (Mesh Filter) *
> u;.il‘“lesh Renderer *
Mew Material 1 &,

Shader | Legacy Shaders/Diffuse

[Add Component

Scripting

using UnityEngine;
using System.Collections;

public class CustomComponent: MonoBehaviour // The base class of all components
{

// Use this for initialization

void Start ()

{
}

// Update is called once per frame
void Update ()

{
}

Scripting

using UnityEngine;

using System.Collections;

public class CustomComponent: MonoBehaviour // The base class of all components

{
sy public int myValue;

void Start () // Use this for initialization

{
}

// Update is called once per frame
void Update ()

{
}

Scripting

i# Scene]

Shaded || 2D

Gizmos ~

(e All

& Inspector] =
Cube []sStatic «

Tag | Untagged | Layer | Default ™

¥ .~ Transform i,
Position X|575.5 |¥[270 |Z |0 |
Rotation X0 Y0 [Z]o |
Scale |1 |¥ |1 2|1 |
¥ |G| ¢ Custom Script {Script) L 8
Script - CustomScript | 2
My Value [32] |

b i M Box Collider [%
.20 Cube (Mesh Filter) *,
» | [MMesh Renderer *,
MNew Material 1 #*,

@

Shader | Legacy Shaders/Diffuse

[Add Component

Scripting

o Useful stuffs

this.gameObject; // The reference to the game object

this.transform; // Position, rotation, scale of the game object
this.GetComponent<Type>(); // Get component attached to game object
GameObject.Find(string name); // Find another game object in the scene

* Useful callbacks
void Start () {} // Called when the game starts to play

void Update() {} // Called every frame
void OnDestroy() {} // Called when the game object is destroyed
. many more, check the documentation

Scripting Demo

Rendering with Unity

Introduction to Shader Programing

Graphics Subsystem

CPU GPU
Inputs p (Central Processing A (Graphics Processing
Unit) Unit)
. -
; Main Memo Graphics Memo
Memory
——® Frame Buffer

System Memory

GPU (Hundreds of Cores)

Device Memory

Introduction to Shader Programing

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels Display
Vertex Fragment e
Processor , Rasterizer Processor . Mu p-u
(Programmable) (Programmable) erging -
g =
3D @@ . 3D ‘89 .50 2D array of
,’.:::i\\ P :ﬁ@‘ color-values
‘-l_"'-!!‘__\ ‘--""'-.':.:J.—".-_';-_-J\
Model World Camera Clipping-Volume Screen Display
Spaces Space Space Space Space
Model View Projection Viewport
Transform Transform Transform Transform
-
e e . - - e e e o 'q.____‘j____,_, -
Vertex Processing Rasterizer
Coordinates Transform Pipeline

Unity Rendering

* |n order to be rendered
Game Objects need:
 Mesh Filter
* Mesh Renderer

* Mesh Renderer contains a
reference to a material

* Materials are simply an
interface to the shader

program

e
[]static -
i)
@ %
FES
]
|
@ %,
FES
@ %
@
+J
28 Project] 2 © 1nspector | =
| Create -| (@ [&[% | * .NewMateriaIl @ =
YﬁFavorites Asset Shader | Legacy Shaders/Diffuse v
@AII Materials
©, All Models Main Color — 7
@AII Prefabs Base (RGB)
@AII Scripts e
Tiling x[1 v (1
(/~JrEEerea— [P Yo
b5 UnityWs

@) New Material 1.mat

Unity Rendering Pipeline

P ' ' Unity Legacy Post

Pipeline Processing

Final
Image

Unity Scene

Unity Legacy Shaders

* Wide variety of legacy
shaders

* Work out of the box,
no need to script them

* Interface with shader
parameters via the
material properties

Writing Custom Unity Shaders

e HLSL/CG — cross compiled to GLSL for certain platforms
e Out of date OpenGL version (update announced soon)

* Advanced GPU stuffs only with DX11
* Windows platforms (7,8,10) with recent GPU is prefered

Writing Custom Unity Shaders

 Surface Shaders
e Custom to Unity’s pipeline
* Specific syntax
* Desgined to interact with complex ligtings setups
(deffered lighting, shadows, global illumination)

* Vanilla Shaders

* Shaders as we know it, vertex, fragment, etc.
* More freedom, but no out-of-the box lighting

 Compute Shaders
* GPGPU computation made easy
* Simple interoperability with DX11

Useful Links

* HLSL Documentation
https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx

* Unity Shader Reference
http://docs.unity3d.com/Manual/SL-ShaderPrograms.html

https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx
http://docs.unity3d.com/Manual/SL-ShaderPrograms.html
http://docs.unity3d.com/Manual/SL-ShaderPrograms.html
http://docs.unity3d.com/Manual/SL-ShaderPrograms.html

Simple Color Shader

Shader "Custom/ColorShader"

{
SubShader
{
Pass
{

CGPROGRAM

#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"

float4 vert(appdata_base v) : POSITION
{

}

float4 frag(float4 position:POSITION) : COLOR
{

}

ENDCG

return mul (UNITY_MATRIX_MVP, v.vertex);

return float4(1,0,0,1);

scene
Shaded

Gizmos ~

8 [nspector

Mew Material 1

@ #

Shader | Custom/CustomShader

rJ

Standard

v CustomShader

Custom

FX

GUI
Maobile
Mature
Particles
Skybox
Sprites
LI

Unlit

Standard (Specular setup)

Legacy Shaders

Simple Color Shader

Shader "Custom/CustomShader"
{

Properties

{
}

SubShader
{

_MyColor("My Color", Color) = (1, 1, 1, 1)

Pass
{
CGPROGRAM

#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
float4 _MyColor;

float4 vert(appdata_base v) : POSITION
{

}

floatd4 frag(float4 position:POSITION) : COLOR
{

}

ENDCG

return mul(UNITY_MATRIX_MVP, v.vertex);

return _MyColor;

—

" # 5cene B 1 © inspector [Fri]
Shaded Gizmos =| (GvAl oW MataLSi @ &,
Shader | Custom/CustomShader v |

My Color D/

Brightness

Saturation

|
@

Shader Scripting Demo

Advanced GPU Programing
with Unity3D

Part 2

Overview

* High level drawing
 Compute Buffers

* Procedural Drawing
* [nstancing

* Billboards
 Compute Shaders

Unity Rendering Pipeline

P ' ' Unity Legacy Post

Pipeline Processing

Final
Image

Unity Scene

Hacking Unity‘s Pipeline

B <

Unity Scene

Unity Legacy

Pipeline \

Custom Geometries

Custom Draw
Calls

%

Compositing

Post
Processing

Final
Image

High-Level Drawing Functions

* Important Game Object Callbacks:
* OnRenderObject() // To draw stuffs
* OnRenderlmage() // For post-processing

* Important Drawing Functions
* Graphics.DrawMeshNow() // For drawing meshes stored in the project

* Graphics.DrawProcedural() // For drawing custom geometries, procedurals
meshes, lines, particles...

e Bind shader via Material.SetPass()

Code + Demo

e DrawMesh.cs

Compute Buffers

* GPU buffer to store generic information, ints, floats, vectors, matrices,
custom types

e Easy setup of the CPU side
e public ComputeBuffer(int count, int stride);
e public void SetData(Array data);
e public void SetBuffer(string propertyName, ComputeBuffer buffer);

* Easy setup on the GPU side
 StructuredBuffer<float> myBuffer;

* Must be cleared when terminating the program

http://docs.unity3d.com/ScriptReference/Array.html
http://docs.unity3d.com/ScriptReference/Array.html
http://docs.unity3d.com/ScriptReference/ComputeBuffer.html
http://docs.unity3d.com/ScriptReference/ComputeBuffer.html

Procedural Drawing

* Draws arbitrary geometries on the GPU
e Data must be uploaded on the GPU memory first
* Must specify topology before hand

y) 5 . 13 4 1 3 [1

__ ;) 2
o 7 . 2 5 0 2
GL_LINES GL_POINTS

. 2
GL_QUADS GL_TRIANGLES GL_LINE_STRIP

Code + Demo

* DrawRandomProcedural.cs
* DrawMeshProcedural.cs

Instancing

e Store all information on the GPU

* Reuse same geometry to draw
multiple times

* Position / rotation differ for each
Instance

* Drawing can be issued in a single
draw call

* Much faster than issuing one draw
call per instance

Code + Demo

e DrawMeshlnstanced.cs
* Drawlnstanced.cs

Textured Billboards

e Billboards are 2D elements incrusted in a 3D world
e Camera facing textured quads

» Usfeful in game for populating backgroud elements
* Must faster to render than meshes

up

CAMmera

abjToCamProj

Code + Demo

 DrawBillboards.cs

Compute Shaders

* GPU parallel computing for generic purposes
 Computation is done outside the rendering pipeline
 Similar to CUDA, OpenCL

* nteroperability with DX11

 Same HLSL syntax as shaders

Compute Shader Example

// test.compute

FillWithRed // Kernel declaration (entry point)
< > res; // Read-write Buffer
[numthreads(1,1,1)]
FillWithRed (uint3 id:)
{
res[id.xy] = (1,0,0,1);

}

Code + Demo

* DrawBillboardCompute.cs

Advanced GPU Programing
with Unity3D

Part 3

Suggested Topics

e Caustics Water simulation

Hair simulation
Cloth
Shadow Mapping

e Referactions

* Sub-surface scattering

e Ambient occlusion

* Translucent object with depth-peeling ¢ Smoke effects

Relief/parallax mapping Terrain real-time tessalation

Non-photorealistic Rendering * Any reseach paper from SIGGRAPH,
EGSR, EG, SIGGRAPH ASIA I3D GDC
SCA, IEEE Vis =]

Physics-particle system

Voxels

= Analagous to pixels (picture elements), voxels (volume elements)
are a discretised representation of 3D space

= Spatial subdivision of 3D environment

" Traditionally: environment discretised into homogeneous regular cubes i.e.
discrete scalar field

= Some extensions: object space discretisation, vector/tensor fields

Advantages

" Volumetric representation is arguably “real” 3D

= Physically more accurate e.g. For simulation, physics: destruction, finite elements,
fluids

= More structural information in models
= Interior details
* Transparency
* Fuzzy boundaries
= Participating media

= [l[luminationis not only a function of surface (e.g. Sub surface scattering)

= Potentially more appropriate discretization for rasterization:
= Voxel to pixel mapping better than triangle to pixel mapping or texel to pixel
= Can account for effects generated by parallax, displacement, bump-mapping

" Data more uniform — potentially more parallel

Volume Effects

Translucency and sub-surface detail

http://http.developer.nvidia.com/GPUGems/gpugems_ch39.html

Volume Effects

Volume Effects

Challenges

= More data (some of it redundant)
" 256° = 16Mb. What about animation?

= Large resolutions required to avoid looking blocky

= More complex operations for rendering
equation

" Traditional graphics hardware driven more
towards accelerating surface & texture models

= Difficult to manually model, edit

= Difficult to understand if not rendered carefully

Volume data

¥

CNCPC 3C 3 3¢ 3 =Sources of volume data:
B o'y ey sy a by adby ad

TR = Scanned: e.g. CT, MRI
W N 0 N @ (M O Mgt W

= Procedural or simulated

= Computed from surface: e.g. voxelised (baked

= Artist generated: simple volumes e.g. voxel
games: minecraft, voxatron

Volumetric Textures

= Texture mapping may be applied not only on
the surface

= Volumetric textures define mapping 3D
= Mostly procedural
* Generators e.g. turbulence hlsl, noise glsl

* More commonly used as textures in off-line
renderings

= For real-time, hardware support available. Several
hardware related advantages:

= direct 3D addressing

* tri-linear interpolation

= 3D coherent texture caching
= N.B. Memory limitations!

= 5123 3D texture with 1 byte values takes over
128MB

View Aligned Slices

.1

2.

3.
a)
b)
c)

Transform volume bounding box
vertices using the modelview matrix.

Compute view orthogonal sampling
planes, based on:

Distance between min and max z
of bounding box verts

Equidistant spacing scaled by
voxel size and sampling rate.

For each plane

Test for intersections with
bounding box. Generate a proxy
polygon (upto 6 sides).

Tessellate proxy polygon into
triangles and add the resulting
vertices to the output vertex array

Generate texture coordinates for
each triangle vertex

Volume Ray Casting

Ray casting. For each pixel of the final image, cast eye ray through the volume (usually enclosed within a
bounding box used to intersect the ray and volume).

Point Sampling. equidistant sampling points or samples are selected along ray. Sampling points usually will be
located in between voxels so tri-linearly interpolate values from surrounding voxels.

Point Shading. For each sampling point either:

= Apply some colour based on sampled value and a transfer function: classical Direct Volume Rendering (DVR)
OR

= (Calculate gradient (orientation of local surfaces) and calculate illumination using e.g. Phong

Compositing. Combine shaded samples to get the final colour value for the ray.

1) @ 3

i R

GPU Ray Marching

= Compute volume Entry Position
= Compute ray of sight direction
= While in Volume

= L ookup data value at ray position
= Accumulate Colour and Opacity

|
Rays of

Volume gt
Image —
Plane o .ﬁ.
-
Eye praeve e @
—
<:E —— S T e
"’" Sl -

Entry Positions Exit Positions N,

High-Level Drawing Functions

//

RenderTexture(int width, int height,int depth, RenderTextureFormat format);
RenderTexture.GetTemporary(int width, int height, int depth)

//
Graphics.SetRenderTarget(RenderTexture rt);

//

Graphics.Blit(Texture source, RenderTexture dest, Material mat, int pass = -1);

http://docs.unity3d.com/ScriptReference/Material.html

GPU Ray Marching in Unity

* Demo alpha blending

Transfer Function

" Transparent scalar field is difficult to
understand (information overload)

= Map scalar values to colours or opacity

" [nterpretive rendering

= Allows user to choose which levels are more visible
OR attach colors/alpha to specific voxel levels

= \/isualisation: make visual data easier to
understand

= |Less important for games

Transfer Function

Map Data Value f
to Color and Opacity

Shading, Compositing...

GPU Ray Marching in Unity

e Demo transfer function

Iso-surface rendering

* Do not aggregate value along the ray

 Stop ray marching at a given intensity value (iso)
 Faster than full traveersal & allows optimizations
* Also used to simulate fluid effects

Linear/Binary ray marching

* Too much small steps = too much time

* Split the ray casting in to parts
* Linear sampling first, with large steps
* Binary sampling afterwards to find the exact surface position

Secondary
Search Interval

N o o

(@) (b) ()

GPU Ray Marching in Unity

e Demo isosurface

Metaballs

* |so-surface rendering of density field
e Used in visualization and games

* Density field can be discretized in a texture
* Density threshold arbitrarily chosen

Metaballs and Isosurfaces with OpenGL - YouTube

https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCsQtwIwAmoVChMI3Zu2jp_EyAIVCwosCh3OqwPo&url=http://www.youtube.com/watch?v%3D_sxAzWADUMc&usg=AFQjCNEvcZz23kpc9clhfugUJLv7Re4kdw&sig2=duhY3hO9LAmEZJ1HEQQcnQ
https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCsQtwIwAmoVChMI3Zu2jp_EyAIVCwosCh3OqwPo&url=http://www.youtube.com/watch?v%3D_sxAzWADUMc&usg=AFQjCNEvcZz23kpc9clhfugUJLv7Re4kdw&sig2=duhY3hO9LAmEZJ1HEQQcnQ
https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCsQtwIwAmoVChMI3Zu2jp_EyAIVCwosCh3OqwPo&url=http://www.youtube.com/watch?v%3D_sxAzWADUMc&usg=AFQjCNEvcZz23kpc9clhfugUJLv7Re4kdw&sig2=duhY3hO9LAmEZJ1HEQQcnQ
https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCsQtwIwAmoVChMI3Zu2jp_EyAIVCwosCh3OqwPo&url=http://www.youtube.com/watch?v%3D_sxAzWADUMc&usg=AFQjCNEvcZz23kpc9clhfugUJLv7Re4kdw&sig2=duhY3hO9LAmEZJ1HEQQcnQ
https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCsQtwIwAmoVChMI3Zu2jp_EyAIVCwosCh3OqwPo&url=http://www.youtube.com/watch?v%3D_sxAzWADUMc&usg=AFQjCNEvcZz23kpc9clhfugUJLv7Re4kdw&sig2=duhY3hO9LAmEZJ1HEQQcnQ
https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCsQtwIwAmoVChMI3Zu2jp_EyAIVCwosCh3OqwPo&url=http://www.youtube.com/watch?v%3D_sxAzWADUMc&usg=AFQjCNEvcZz23kpc9clhfugUJLv7Re4kdw&sig2=duhY3hO9LAmEZJ1HEQQcnQ
https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCsQtwIwAmoVChMI3Zu2jp_EyAIVCwosCh3OqwPo&url=http://www.youtube.com/watch?v%3D_sxAzWADUMc&usg=AFQjCNEvcZz23kpc9clhfugUJLv7Re4kdw&sig2=duhY3hO9LAmEZJ1HEQQcnQ
https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCsQtwIwAmoVChMI3Zu2jp_EyAIVCwosCh3OqwPo&url=http://www.youtube.com/watch?v%3D_sxAzWADUMc&usg=AFQjCNEvcZz23kpc9clhfugUJLv7Re4kdw&sig2=duhY3hO9LAmEZJ1HEQQcnQ
https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCsQtwIwAmoVChMI3Zu2jp_EyAIVCwosCh3OqwPo&url=http://www.youtube.com/watch?v%3D_sxAzWADUMc&usg=AFQjCNEvcZz23kpc9clhfugUJLv7Re4kdw&sig2=duhY3hO9LAmEZJ1HEQQcnQ

GPU Ray Marching in Unity

* Demo metaballs + volume construction

Volumetric Billboards

e Uses 3D textures instead of traditional 2D for billboards
 Full-parallax effect, without artifacts
* Combine with mip-mapping for Level-of-Detail
e Low amount of vertex processing

GPU Ray Marching in Unity

* Demo instanced volumes

Indirect Volume Rendering

" There are some benefits to surface based techniques when it
comes to rendering

= More traditional pipeline optimizations
= Accurate reflections

= Clear boundary representation

" Indirect Volume Rendering techniques first extract one or
more iso-surfaces from the volume data

= Alternatively render one iso-surface and blend it with DVR

= Either:
= Implicitly/on-the fly

® |so-surface mesh extraction

Marching Cubes

(ij+1.k+1) (i+1,j+1.k+1)

(1,).k+1)

(i.j.K) (i+1.).k)

Marching Cubes

30

10

10

30

40

Marching Cubes

Marked vertex by @ = inside =1

Unmarked vertex = outside =0

index | S1[s2]s3|s4] ss]

56

5?\531

or

index 'f.s| 57| s6 |'1-‘.:'-"1-'.4|

53

-

fSl,

Forms the bits of a binary number between 0 and 255 for an 8-vertex cube

00011100

Marching Cubes

= Removing redundant cases e.g. completementary and
rotational symmetries: each voxel is identified as one of 15
cases:

i ¥
= U @ &
7S M @

Marching Cubes on the GPU

* http://scrawkblog.com/2014/10/16/marching-cubes-on-the-gpu-in-
unity/

Real-time Metaballs

Find density value for

each cell

T

Real-time Metaballs — Option 1

* For each voxel, evaluate each atoms and see if the density distance
field overlaps with the cell

e Complexity increases greatly with the number of atoms

* Possible to use efficient neighbouring search to only sample atoms
in neighboorhood of the cell, drawbacks complex to implement and to

somewhat the most efficient approach
=D
h TR
)

_/,
(%))
N

~

Real-Time Metaballs — Option 2

* For each atoms, update the density in the neighbouring grid cells
* Advantage: no need for neighbooring search
* Drawback: we must prevent concurrency issues

GPGPU Computing - Atomics

* In the parallel world, instructions are computed simulateneously

’
inta=0 ;

GPGPU Computing - Atomics

* Use atomics to prevent threads to access resources simultaneously

void

void

void

void

(in

(in

(in

R dest, in

R dest, in

(in R dest, in T

R dest, in

T value,

T value,

T value,

out T original value);

out T original value);
compare_value, in T value);

out T original value);

Other problems

* Atomic is only available for integers
* Density sampling required floats

 Solution: use two textures
* One for gathering density
* One for the rendering
* Copy density from int to floats

* Nasty solution (increase memory footprint)
 Alternative solution: implement custom atomic addition for floats

Demo

Sphere impostors

* Commonly used in molecular rendering

* Also use for other shapes like ,,sticks”
 ,Standard” billboards are simply 2D textures facing the camera
* No interaction with light & flat feeling

Sphere impostors

* An alternative is to raytrace the sphere in the fragment shader
e Custom lighting + custom depth output

Principle Q

e Use custom UV to solve the sphere equation

* First step is to cut a hole in the billboard via discard

* Second is to compute the normal vector of the sphere

* Finally output correct depth for blending with other spheres

1

Demo

References

= Simon Green “Volume Rendering for Games” nVidia GDC
2005 presentation

= http://developer.nvidia.com/object/gdc 2005 presentations.

html

= |kits et al “Volume Rendering Techniques” GPU Gems 2.
Chapter 39

= http://http.developer.nvidia.com/GPUGems/gpugems ch39.
html

Follow up topics

e Realtime volume convolution
* Realtime volume update (metaballs)

* Realtime marching cubes
* Post processing

