
Advanced GPU Programing
with Unity3D

What is this course about ?

• Overview of Unity3D

• How to use Unity3D for advanced GPU programing

• Overview of a few CG techniques & implementaion in Unity

Course overview

• Unity3D 101

• Introduction to shader programing

• Custom shaders

• Post processing

• Compute shaders

• Volume rendering

Content may be subject to changes

Assessment

• 100 % project-based

• Reimplementation of a CG paper in Unity

(offered topic available soon)

• Deadline for topics 1st of November

• Lab hours every two weeks

Why Using a Game Engine ?

• Universal

• Ease of use

• High level scripting

• No maintenance costs

• Extensive documentation

• Many out-of-the-box features

• Develop once deploy everywhere (in theory)

• ...

Why Unity3D?

• Vanilla OpenGL is too cumbersome

• Other game engines are too high-level

• Right balance between flexibility & ease of use for graphics programing

Caution !
Game engines are not perfect all-in-one solutions.

For developing professional softwares or programs requiring heavy CPU
computation, Unity3D might not be the best choice.

Highly recommended for prototyping.

What is Unity3D ?

• Unity is a multi-platform, integrated IDE for developing games, and
working with 3D virtual worlds

• WYSWYG editor

• Asset manager

• C# Scripting integrated with Visual Studio

Unity Crash Course

1 – Scene

2 – Hierarchy

3 – Inspector

4 – Game

5 – Project

Game Objects

• Everything is a Game Object (lights, cameras, characters,…)

• Contains components (mesh, audio, script, physics, etc.)

• Transform component by default

• Game Objects may contain other game objects (placeholders)

Game Object - Cube Example

Scripting

• Scripts must be attached to a game object to live

• Some game objects may only contain scripts

Scripting

using UnityEngine;

using System.Collections;

public class CustomComponent: MonoBehaviour // The base class of all components

{

// Use this for initialization

void Start ()

{

}

// Update is called once per frame

void Update ()

{

}

}

Scripting

using UnityEngine;

using System.Collections;

public class CustomComponent: MonoBehaviour // The base class of all components

{

public int myValue;

void Start () // Use this for initialization

{

}

// Update is called once per frame

void Update ()

{

}

}

Scripting

Scripting

• Useful stuffs
this.gameObject; // The reference to the game object

this.transform; // Position, rotation, scale of the game object

this.GetComponent<Type>(); // Get component attached to game object

GameObject.Find(string name); // Find another game object in the scene

• Useful callbacks
void Start () {} // Called when the game starts to play

void Update() {} // Called every frame

void OnDestroy() {} // Called when the game object is destroyed

... many more, check the documentation

Scripting Demo

Rendering with Unity

Introduction to Shader Programing

Introduction to Shader Programing

Unity Rendering

• In order to be rendered
Game Objects need:
• Mesh Filter

• Mesh Renderer

• Mesh Renderer contains a
reference to a material

• Materials are simply an
interface to the shader
program

Unity Rendering Pipeline

Unity Legacy
Pipeline

Unity Scene

Post
Processing

Final
Image

Unity Legacy Shaders

• Wide variety of legacy
shaders

• Work out of the box,
no need to script them

• Interface with shader
parameters via the
material properties

Writing Custom Unity Shaders

• HLSL/CG – cross compiled to GLSL for certain platforms

• Out of date OpenGL version (update announced soon)

• Advanced GPU stuffs only with DX11

• Windows platforms (7,8,10) with recent GPU is prefered

Writing Custom Unity Shaders

• Surface Shaders
• Custom to Unity‘s pipeline
• Specific syntax
• Desgined to interact with complex ligtings setups
(deffered lighting, shadows, global illumination)

• Vanilla Shaders
• Shaders as we know it, vertex, fragment, etc.
• More freedom, but no out-of-the box lighting

• Compute Shaders
• GPGPU computation made easy
• Simple interoperability with DX11

Useful Links

• HLSL Documentation

https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx

• Unity Shader Reference

http://docs.unity3d.com/Manual/SL-ShaderPrograms.html

https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx
http://docs.unity3d.com/Manual/SL-ShaderPrograms.html

Simple Color Shader

Shader "Custom/ColorShader"
{

SubShader
{

Pass
{

CGPROGRAM

#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"

float4 vert(appdata_base v) : POSITION
{

return mul(UNITY_MATRIX_MVP, v.vertex);
}

float4 frag(float4 position:POSITION) : COLOR
{

return float4(1,0,0,1);
}

ENDCG
}

}
}

Simple Color Shader
Shader "Custom/CustomShader"
{

Properties
{

_MyColor("My Color", Color) = (1, 1, 1, 1)
}

SubShader
{

Pass
{

CGPROGRAM

#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"

float4 _MyColor;

float4 vert(appdata_base v) : POSITION
{

return mul(UNITY_MATRIX_MVP, v.vertex);
}

float4 frag(float4 position:POSITION) : COLOR
{

return _MyColor;
}

ENDCG
}

}
}

Shader Scripting Demo

Advanced GPU Programing
with Unity3D

-
Part 2

Overview

• High level drawing

• Compute Buffers

• Procedural Drawing

• Instancing

• Billboards

• Compute Shaders

Unity Rendering Pipeline

Unity Legacy
Pipeline

Unity Scene

Post
Processing

Final
Image

Hacking Unity‘s Pipeline

Unity Legacy
Pipeline

Unity Scene

Custom Draw
Calls

Compositing
Post

Processing

Final
Image

Custom Geometries

High-Level Drawing Functions

• Important Game Object Callbacks:
• OnRenderObject() // To draw stuffs

• OnRenderImage() // For post-processing

• Important Drawing Functions
• Graphics.DrawMeshNow() // For drawing meshes stored in the project

• Graphics.DrawProcedural() // For drawing custom geometries, procedurals
meshes, lines, particles...

• Bind shader via Material.SetPass()

Code + Demo

• DrawMesh.cs

Compute Buffers

• GPU buffer to store generic information, ints, floats, vectors, matrices,
custom types

• Easy setup of the CPU side
• public ComputeBuffer(int count, int stride);

• public void SetData(Array data);

• public void SetBuffer(string propertyName, ComputeBuffer buffer);

• Easy setup on the GPU side
• StructuredBuffer<float> myBuffer;

• Must be cleared when terminating the program

http://docs.unity3d.com/ScriptReference/Array.html
http://docs.unity3d.com/ScriptReference/ComputeBuffer.html

Procedural Drawing

• Draws arbitrary geometries on the GPU

• Data must be uploaded on the GPU memory first

• Must specify topology before hand

Code + Demo

• DrawRandomProcedural.cs

• DrawMeshProcedural.cs

Instancing

• Store all information on the GPU

• Reuse same geometry to draw
multiple times

• Position / rotation differ for each
instance

• Drawing can be issued in a single
draw call

• Much faster than issuing one draw
call per instance

Code + Demo

• DrawMeshInstanced.cs

• DrawInstanced.cs

Textured Billboards

• Billboards are 2D elements incrusted in a 3D world

• Camera facing textured quads

• Usfeful in game for populating backgroud elements

• Must faster to render than meshes

Code + Demo

• DrawBillboards.cs

Compute Shaders

• GPU parallel computing for generic purposes

• Computation is done outside the rendering pipeline

• Similar to CUDA, OpenCL

• nteroperability with DX11

• Same HLSL syntax as shaders

Compute Shader Example

// test.compute

#pragma kernel FillWithRed // Kernel declaration (entry point)

RWTexture2D<float4> res; // Read-write Buffer

[numthreads(1,1,1)]

void FillWithRed (uint3 id: SV_DispatchThreadID)

{

res[id.xy] = float4(1,0,0,1);

}

Code + Demo

• DrawBillboardCompute.cs

