(1.)

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
16 & 14 & 38 \\
-9 & -7 & -18 \\
-4 & -4 & -11
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \begin{aligned}
& p(\lambda)=-(\lambda+1)(x-2)(\lambda+3)=0 \\
& \lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=-3
\end{aligned}
$$

metóda vlataých vektoron (neafaek. has. c̈'sla))

$$
\lambda_{1}=-1 \quad(A+I)=\left(\begin{array}{ccc}
17 & 14 & 38 \\
-9 & -6 & -18 \\
-4 & -4 & -10
\end{array}\right) \approx\left(\begin{array}{ccc}
0 & 0 & 0 \\
-9 & -6 & -18 \\
-4 & -4 & -10
\end{array}\right)
$$

$v=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ VLAST. VEKTOR

$$
\begin{aligned}
& \left(\begin{array}{ccc}
17 & 14 & 38 \\
-9 & -6 & -18 \\
-4 & -4 & -10
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \approx\left(\begin{array}{ccc}
0 & 0 & 0 \\
-9 & -6 & -18 \\
-4 & -4 & -10
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \\
& \therefore 9 a+6 b+18 c=0 \Rightarrow 3 a+2 b+6 c=0 \\
& +4 a+4 b+10 c=0 \Rightarrow \frac{2 a+2 b+5 c}{a}=0 \\
& b=-\frac{1}{2}(2 a+5 c)=-\frac{1}{2} \cdot 3 c=-\frac{3}{2} c \quad \cdots\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-c \\
-3 / 2 c \\
c
\end{array}\right) \\
& c=2 \cdots v=(-2,-3,2)^{\top} \cdots e^{-t} v=\left(-2 e^{-t},-3 e^{-t}, 2 e^{-t}\right)^{\top} \\
& \lambda_{2}=2 \quad(A-2 I)=\left(\begin{array}{ccc}
14 & 14 & 38 \\
-9 & -9 & -18 \\
-4 & -4 & -13
\end{array}\right) \approx\left(\begin{array}{ccc}
0 & 0 & 0 \\
-81 & -81 & -22 \\
-4 & -4 & -13
\end{array}\right) \\
& \left.v=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
-31 & -b & 1 \\
-4 & 2 \\
-4 & -4 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \quad \begin{array}{l}
a+b+2 c=0 \\
4 a+4 b+13 c=0
\end{array}\right) \begin{array}{l}
c=0 \\
a=-b
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& v=(-b, b, 0)^{\top} \ldots \text { pe } b=1 \ldots \quad b=(-1,1,0)^{\top} \\
& e^{2 t} \cdot \sim=\left(-e^{2 t}, e^{2 t}, 0\right)^{\top} \\
& \lambda_{3}=-3 \\
& (A+3-I)=\left(\begin{array}{ccc}
19 & 14 & 38 \\
-9 & -4 & -18 \\
-4 & -4 & -8
\end{array}\right) \sim\left(\begin{array}{ccc}
0 & 0 & 0 \\
-9 & -4 & -18 \\
+1 & +1 & +2
\end{array}\right) \\
& v=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \cdots\left(\begin{array}{ccc}
0 & 0 & 0 \\
-9 & -4 & -18 \\
1 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \cdots \begin{array}{l}
9 a+4 b+18 c=0 \\
a+b+2 c=0 \\
\hline 5 a+10 c=0
\end{array} \\
& b=-2 c-a=0 \\
& \text { 7) } a=-2 c \\
& v=(-2 c, 0, c)^{\top} \ldots c=1 \ldots \quad v=(-2,0,1)^{\top} \\
& e^{-3 t} \cdot v=\left|\left(-2 e^{-3 t}, 0, e^{-3 t}\right)^{T}\right|
\end{aligned}
$$

Fundamentillan matica: $Y(t)=\left(\begin{array}{ccc}-2 e^{-t} & -e^{2 t} & -2 e^{-3 t} \\ -3 e^{-t} & e^{2 t} & 0 \\ 2 e^{-t} & 0 & e^{-3 t}\end{array}\right)$
(2.)

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
4 & 3 & -4 \\
1 & 2 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \begin{aligned}
& \mu(\lambda)=-x \cdot(\lambda-1)^{2}=0 \\
& \lambda_{1}=0, \lambda_{2 / 3}=1
\end{aligned}
$$

metóna neurcitých koef.
adosidime a rukraitime e^{t}

$$
\begin{aligned}
& a+a t+b=c t+d \\
& c+c t+d=4(a t+b)+3 \cdot(c t+d)-4(f t+q) \\
& f+f t+q=a t+b+2(c t+d)-(f t+q)
\end{aligned}
$$

$t^{1}: \quad a=c$

$$
c=4 a+3 c-4 f
$$

$a=c ; \quad f=\frac{3}{2} c$

$$
f=a+2 c-f
$$

$$
\begin{aligned}
& \lambda_{1}=0 \quad \cdots\left(\begin{array}{l}
a \cdot e^{0 \cdot t} \\
b \cdot e^{0 \cdot t} \\
c \cdot e^{0 \cdot t}
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& x^{\prime}=y^{\prime}=s^{\prime}=0 \quad ; \quad 0=b \\
& b=0 \\
& 0=4 a+3 b-4 c \\
& 0=a+3 b-c-a=c \\
& \ldots a=c=1, b=0 \ldots(1,0,1)^{\top} \ldots 1 \text { LNZ RIESENE } \\
& \lambda_{2}=1 \quad \ldots\left(\begin{array}{c}
(a t+b) e^{t} \\
(c t+d) e^{t} \\
(f t+g) e^{t}
\end{array}\right)=\left(\begin{array}{l}
x \\
7 \\
2
\end{array}\right) \\
& \begin{aligned}
x^{\prime} & =a e^{t}+(a t+b) e^{t} \\
y^{\prime} & =c e^{t}+(c t+c) e^{t}
\end{aligned} \\
& s^{\prime}=f e^{t}+(f t+g) \cdot e^{t}
\end{aligned}
$$

t^{0}

$$
\begin{aligned}
& a+b=d \\
& c+d=4 b+3 d-4 g \rightarrow c=4 b+2 d-4 g \\
& f+g=b+2 d-g \rightarrow f=b+2 d-2 g
\end{aligned}
$$

DOSADIME $a=c, f=\frac{3}{2} c$

$$
\begin{array}{r}
c+b=d ; \quad c=4 b+2 a-4 g ; \frac{3}{2} c=b+2 d-2 g \\
\frac{1}{2} c=-3 b+2 g \quad \cdots g=\frac{3}{2} b+\frac{1}{4^{4}} c
\end{array}
$$

2 rolné premenne: b, c:

$$
a=c, d=b+c, f=\frac{3}{2} c, \quad g=\frac{3}{2} b+\frac{1}{4} c
$$

2 LNZ RIESÉNIA:

$$
\begin{aligned}
& b=\frac{1, c=0 \quad a=0, b=2, c=0, d=2, f=0, g=3}{\left(2 e^{t}, 2 e^{t}, 3 e^{t}\right)^{T}} \\
& b=0, c=4 \ldots a=4, \quad b=0, c=4, \quad d=4, \quad f=6 \text {, } \\
& q=1 \\
& \left.\left(e_{4} t e^{t}, \underset{4}{(1) t+}\right)_{4}^{t}, e^{t}(t+1) e^{t}\right)^{T} \\
& \text { FUND. MATKCA: } Y(t)=\left(\begin{array}{ccc}
1 & 2 e^{t} & 4 \\
0 & 4 e^{t} \\
0 & 2 e^{t} & (1+t) e^{t} \\
1 & 3 e^{t} & 6 t+1) e^{t}
\end{array}\right)
\end{aligned}
$$

(3.)

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
-2 & 1 & -2 \\
1 & -2 & 2 \\
1 & -1 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
2
\end{array}\right) \quad \begin{aligned}
& \mu(\lambda)=-(\lambda+1)^{3} \\
& \lambda_{1,2,3}=-1
\end{aligned}
$$

METÓDA ZOVSEOBEC. ILAST. VEKTOROV (WEYR)

$$
\begin{aligned}
& \lambda=-1 \\
& x=3, m(x)=3 \quad \cdots \quad 3-3=0 \\
& (4+I)^{0}=I \quad \ell_{0}=3 \\
& (A+I)^{1}=\left(\begin{array}{rrr}
-1 & 1 & -2 \\
1 & -1 & 2 \\
1 & -1 & +2
\end{array}\right) \quad \ldots \quad k_{1}=1 \\
& (A+I)^{2}=\left(\begin{array}{ccc}
-1 & 1 & -2 \\
1 & -1 & 2 \\
1 & -1 & 2
\end{array}\right)\left(\begin{array}{ccc}
-1 & 1 & -2 \\
1 & -1 & 2 \\
1 & -1 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdots \underline{=} \\
& k=2
\end{aligned}
$$

mulity $\nu_{0}=0<\nu_{1}=2<\nu_{2}=3$
Weywre chavableridicy

$$
\begin{aligned}
& r_{1}=v_{1}-v_{0}=2 \\
& r_{2}=v_{2}-v_{1}=1
\end{aligned}
$$

Wegrova tabalia:

$$
\begin{aligned}
& k \\
& 11 \\
& 2
\end{aligned} \begin{aligned}
& v_{\sigma_{1}} \\
& v_{r_{1}} \\
& \cdots \\
& r_{2}
\end{aligned}=1
$$

$$
\begin{aligned}
& \cdots v_{21}:(A+I)^{2} \cdot v_{21}=0 ;(A+I) v_{21} \neq 0 \\
& v_{11}: v_{11}=(A+I) \cdot v_{2_{1}} \\
& v_{12}: \quad(A+I) v_{12}=0 ; v_{12} \neq 0
\end{aligned}
$$

$$
v_{11}=(A+I) \cdot v_{21}=\left|(-1,1,1)^{\top}\right|
$$

$$
v_{12}=\left(\begin{array}{l}
w \\
v \\
w
\end{array}\right) \cdots(A+I) \cdot v_{12}=0 \cdots\left(\begin{array}{ccc}
-1 & 1 & -2 \\
1 & -1 & 2 \\
1 & -1 & 2
\end{array}\right) \cdot\left(\begin{array}{l}
w \\
w \\
w
\end{array}\right)=0
$$

$$
\Leftrightarrow u-v+2 w=0
$$

nap. $w=1, \mu=+1, w=1$

$$
v_{12}=(1,1,0)^{\top}
$$

$\left(v_{12}, v_{11}\right.$ musia byc LNZ !!!)

$$
\begin{aligned}
& v_{21}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \quad \cdots \quad(A+I)^{2} \cdot v_{21}=0 \\
& \text { O. }\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \text {... pladi' pe } t\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& (4+I) \cdot v_{2_{1}}=\left(\begin{array}{ccc}
-1 & 1 & -2 \\
1 & -1 & 2 \\
1 & -1 & 2
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-a+b-2 c \\
a-b+2 c \\
a-b+2 c
\end{array}\right) \neq 0 \\
& \cdots-a+b-2 c \neq 0 \text { napm. } a=1, b=c=0 \\
& \overline{v_{21}=(1,0,0)^{\top}}
\end{aligned}
$$

*) $L N Z$ niesenia:

$$
\begin{aligned}
& e^{-t} \cdot v_{11}=\left(\begin{array}{c}
-e^{-t} \\
e^{-t} \\
e^{-t}
\end{array}\right) \quad i \\
& e^{-t} \cdot\left[v_{21}+t \cdot v_{11}\right]=\left(\begin{array}{c}
(1-t) e^{-t} \\
t e^{-t} \\
t e^{-t}
\end{array}\right) \\
& e^{-t} \cdot v_{12}=\left(\begin{array}{c}
e^{-t} \\
e^{-t} \\
0
\end{array}\right)
\end{aligned}
$$

FUND. MATICA: $Y(t)=\left(\begin{array}{ccc}-e^{-t} & (1-t) e^{-t} & e^{-t} \\ e^{-t} & t e^{-t} & e^{-t} \\ e^{-t} & t e^{-t} & 0\end{array}\right)$

