Statistics for Computer Sciences

Lecture 10 to Lecture 12 Testing of Statistical Hypotheses

Stanislav Katina¹

¹Institute of Mathematics and Statistics, Masaryk University Honorary Research Fellow, The University of Glasgow

December 2, 2015

Testing of Statistical Hypotheses

Null and alternative hypothesis

- a 'hypothesis' is a theory which is assumed to be true unless evidence is obtained which indicates otherwise
- 'null' means 'nothing' and the term 'null hypothesis' (H₀) means a 'theory of no change' – that is 'no change' from what would be expected from past experience
- 'alternative hypothesis' (H₁) means a 'theory of change' that is 'change' from what would be expected from past experience
- the procedure which is used to decide between these two opposite theories is called 'hypothesis test' or sometimes 'significance test'
- one-tail test test in which thy alternative hypothesis proposes a change in parameter in only one direction – increase or decrease
- two-tail test- test in which the alternative hypothesis suggests a difference in parameter in either direction

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Testing of Statistical Hypotheses

Test statistic, rejection and acceptance region, critical value and quantile

- the test statistic is calculated from the sample its value is used to decide whether the null hypothesis should be rejected
- the rejection (or critical) region gives the values of the test statistic for which the null hypothesis is rejected
- the acceptance region gives the values of the test statistic for which the null hypothesis is not rejected
- the boundary value(s) of the rejection region is (are) called the critical value(s) or quantile(s)
- the significance level α of a test gives the probability of the test statistic falling in the rejection region when null hypothesis is true

Testing of Statistical Hypotheses

Hypothesis testing procedure

- a hypothesis is a statement about a population parameter base on a sample from this population
- *H*₀ and *H*₁ are two complementary hypotheses in a hypothesis testing problem
- a hypothesis testing procedure or hypothesis test is a rule that specifies – for which sample values the decision is made to accept null hypothesis as true – and for which sample values H₀ is rejected
- the subset of sample space for which H₀ will be rejected is called rejection region (critical region)
- the complement of the rejection region is called the acceptance region

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Testing of Statistical Hypotheses Four possibilities

Four choices:

- A H_0 is true our decision is to reject H_0
- B H_0 is true our decision is not to reject H_0
- C H_1 is true our decision is not to reject H_0
- D H_1 is true our decision is to reject H_0

Decision-reality table:

decision/reality	H ₀ is true	H ₀ is not true
		true decision
not to reject H_0	true decision	Type II error

Testing of Statistical Hypotheses Four possibilities

Four choices:

- A) $Pr(A) = Pr(Type \ I \ error) \le \alpha \ [significance \ level]$
- B) $Pr(B) \ge 1 \alpha$ [coverage probability, confidence coefficient (level)]
- C) $Pr(C) = Pr(Type \ II \ error) \le \beta$
- D) $Pr(D) \ge 1 \beta$ [power]

Four choices (formalised):

- A) $1 \alpha \leq \Pr(\operatorname{don't} \operatorname{reject} H_0 | H_0 \text{ is true})$
- B) $\alpha \geq \Pr(\text{CHPD}) = \Pr(\text{reject } H_0 | H_0 \text{ is true})$
- C) $\beta = Pr(CHDD) = Pr(don't reject H_0|H_0 isn't true)$
- D) $1 \beta = \Pr(\text{reject } H_0 | H_0 \text{ isn't true})$

・ロ・・母・・中・・中・・ しょうくろ

Testing of Statistical Hypotheses

Empirical 100 × $(1 - \alpha)$ % confidence intervals for parameter θ

Relationship of confidence interval and statistical test

- Empirical $100(1 \alpha)\%$ confidence interval (CI) for parameter θ
- α -level hypothesis test about θ

Three types of intervals:

- two-tailed Cl $Pr(LB(X) < \theta < UB(X)) = 1 \alpha$
- one-tailed (right-tailed) $CI Pr(\theta < UB^*(X)) = 1 \alpha$
- ▶ one-tailed (left-tailed)– $CI Pr(LB_*(X) < \theta) = 1 \alpha$

Testing of Statistical Hypotheses

Acceptance region

Definition (Acceptance region of H_0)

Let *X* be a random variable with certain distribution (probabilistic model) dependent on parameter $\theta \in \Theta$, $g(\theta)$ is parametric function. We are testing null hypothesis $H_{01}: g(\theta) = g(\theta_0)$ against two-sided alternative $H_{11}: g(\theta) \neq g(\theta_0)$. Let (*LB*, *UB*) be interval estimate of parametric function $g(\theta)$ with coverage probability $1 - \alpha$. Then

$$\mathcal{A}_{\mathsf{IS},\mathsf{1}} = \{ LB, UB; g(\theta_0) \in (LB, UB) \}$$

is acceptance region of a test H_{01} against H_{11} on significance level α . If we are testing $H_{02} : g(\theta) \le g(\theta_0)$ against <u>one-sided (right) alternative</u> $H_{12} : g(\theta) > g(\theta_0)$ and if LB_* be lower estimate of $g(\theta)$ with coverage probability $1 - \alpha$, then

 $\mathcal{A}_{\mathsf{IS},2} = \{ LB_*; LB_* < g(\theta_0) \}$

is acceptance region of a test H_{02} against H_{12} on significance level α . If we are testing $H_{03} : g(\theta) \ge g(\theta_0)$ against <u>one-sided (left) alternative</u> $H_{13} : g(\theta) < g(\theta_0)$ and if UB^* is upper estimate of $g(\theta)$ with coverage probability $1 - \alpha$, then

 $\mathcal{A}_{\mathsf{IS},3} = \{\textit{UB}^*;\textit{UB}^* > \textit{g}(\theta_0)\}$

is acceptance region of a test H_{03} against H_{13} on significance level α .

▲□▶▲□▶▲□▶▲□▶ □ のQで

Rejection region

Definition (Rejection (critical) region of H_0)

Let *X* be a random variable with certain distribution (probabilistic model) dependent on parameter $\theta \in \Theta$, $g(\theta)$ is parametric function. We are testing null hypothesis $H_{01} : g(\theta) = g(\theta_0)$ against two-sided alternative $H_{11} : g(\theta) \neq g(\theta_0)$. Let (*LB*, *UB*) be interval estimate of parametric function $g(\theta)$ with coverage probability $1 - \alpha$. Then

 $\mathcal{W}_{\mathsf{IS},1} = \{ \mathsf{LB}, \mathsf{UB}; \mathsf{g}(\theta_0) \notin (\mathsf{LB}, \mathsf{UB}) \}$

is critical region of a test H_{01} against H_{11} on significance level α . If we are testing $H_{02}: g(\theta) \leq g(\theta_0)$ against <u>one-sided (right) alternative</u> $H_{12}: g(\theta) > g(\theta_0)$ and if LB_* be lower estimate of $g(\theta)$ with coverage probability $1 - \alpha$, then

$$\mathcal{W}_{\mathsf{IS},2} = \{ LB_*; LB_* \geq g(\theta_0) \}$$

is **critical region of a test** H_{02} **against** H_{12} **on significance level** α . If we are testing $H_{03} : g(\theta) \ge g(\theta_0)$ against <u>one-sided (left) alternative</u> $H_{13} : g(\theta) < g(\theta_0)$ and if UB^* is upper estimate of $g(\theta)$ with coverage probability $1 - \alpha$, then

$$\mathcal{W}_{\mathsf{IS},3} = \{ UB^*; UB^* \leq g(\theta_0) \}$$

is critical region of a test H_{03} against H_{13} on significance level α .

・ロト・4回ト・ヨト・ヨー・シック

Testing of Statistical Hypotheses

To carry out a hypothesis test

- Step 1 define the null and alternative hypothesis (H_0 and H_1)
- Step 2 decide on a significance level $\alpha = 0.1, 0.05, 0.01$
- Step 3 calculate the test statistic (test criterion) T_0
- Step 3 determine the critical value(s)
- Step 5 decide on the outcome of the test (reject/don't reject H_0) depending on one of the following ways:
 - ▶ base on critical region $W = W_T$ (observed test statistic $t_0 = t_{obs}$ and critical values $t_{\alpha/2}$ and $t_{1-\alpha/2}$, resp. t_{α} and $t_{1-\alpha}$),
 - base on critical region W_{IS}, t.j. empirical confidence interval (and g(θ₀)),
 - base on p-value.

Step 6 state the conclusion in words

Testing of Statistical Hypotheses Test criterion

Definition (Test criterion)

A **test criterion** is a test statistic $T = T_0 = T_0(X_1, X_2, ..., X_n)$, with known asymptotic distribution if H_0 is known. The set of possible values of T_0 is divided to two subsets, i.e. **acceptance region** H_0 (notation A) and **critical region** H_0 (notation W). These two regions are divided by **critical values** $t_{\alpha/2}$ and $t_{1-\alpha/2}$, resp. t_{α} and $t_{1-\alpha}$ (for particular H_0 and H_1) of the distribution of test statistics T_0 (if H_0 is true).

Definition (Confidence interval)

A **confidence interval** (CI) is a type of interval estimate of a population parameter θ . It is an observed, often called **empirical**, interval (i.e., it is calculated from the observations) that includes the value of an unobservable parameter θ if the experiment is repeated. The frequency that observed interval contains the parameter is determined by the **confidence coefficient** $1 - \alpha$ (i.e. **confidence level**, **coverage probability**).

・ロト・日本・モート・モー うくぐ

Testing of Statistical Hypotheses

To carry out a hypothesis test – based on test statistic and critical value

Definition (Testing based on critical region \mathcal{W})

Rejecting H_0 . If observed test statistic (realisation of test statistic) t_0 of test statistic T_0 is within a critical region \mathcal{W} (equivalently is not from an acceptance region \mathcal{A}), H_0 is rejected at a significance level α , i.e. we do have sufficiently enough evidence to reject H_0 .

Not rejecting H_0 . If observed test statistic t_0 of test statistic T_0 is within an acceptance region \mathcal{A} (equivalently, it is not from a critical region \mathcal{W}), H_0 is not rejected at a significance level α , i.e. we don't have sufficiently enough evidence to reject H_0 .

Let t_{min} be the smallest possible value of a test criteria T_0 and t_{max} be the highest possible value of a test criteria T_0 , then

- 1. **two-sided alternative** critical region $\mathcal{W}_1 = (t_{\min}, t_{1-\alpha/2}) \cup (t_{\alpha/2}, t_{\max}),$
- 2. **one-sided (right) alternative** critical region $W_2 = (t_{\alpha}, t_{\text{max}})$,
- 3. **one-sided (left) alternative** critical region $W_3 = (t_{\min}, t_{1-\alpha})$.

To carry out a hypothesis test – based on CI

Definition (Testing based on CI)

Rejecting H_0 : If $g(\theta) = g(\theta_0)$ is within CI (H_0 is valid), H_0 is rejected at the significance level α , i.e. we do have sufficiently enough evidence to reject H_0 .

Not rejecting H_0 : If $g(\theta) = g(\theta_0)$ is not within CI (H_0 is valid), H_0 isn't rejected at a significance level α , i.e. we don't have sufficiently enough evidence to reject H_0 .

Relationship of confidence interval and statistical test

- ▶ hypothesis testing ≡ CIs
- α -level hypothesis test $\equiv 100(1 \alpha)\%$ Cl
- one-tail test ≡ one-sided CI (left-sided CI ≡ right-sided alternative, right-sided CI ≡ left-sided alternative
- ▶ two-tail test = two-sided Cl
- parameter(s) \in CI \equiv not reject H_0
- parameter(s) \notin CI \equiv reject H_0

Testing of Statistical Hypotheses

To carry out a hypothesis test - based on p-value (observed significance level)

Definition (Testing based on p-value)

Minimal significance level α (for some test statistic T_0), base on which $H_{02}: g(\theta) \leq g(\theta_0)$ is rejected (tested against $H_{12}: g(\theta) > g(\theta_0)$), is called **observed significance level** or **p-value**, i.e.

$$p-value = \alpha_{obs} = \sup_{\theta \in \Theta_0} \Pr\left(T(X_1, X_2, \dots, X_n) \ge T(x_1, x_2, \dots, x_n); \theta\right).$$

This could be written less formally as p-value = $Pr(any \text{ test statistics equal or greater than observed } |H_0 \text{ is true}).$

The closer α_{obs} is to zero, the smaller is the probability that any test statistic $T(X_1, X_2, \ldots, X_n)$ produces a p-value (under H_0) equal to or smaller than that observed, while the probability is higher under H_1 . Therefore, p-value could be understood as an indicator of credibility of H_0 .

・ロト・西ト・ヨト・ヨー うへぐ

Testing of Statistical Hypotheses

To carry out a hypothesis test – based on p-value (observed significance level)

- Usually, if α_{obs} < α = 0.05, there is sufficiently enough evidence to reject H₀ and the result of a test is statistically significant.
- While α_{obs} > α = 0.1, there is sufficiently enough evidence to reject H₀ and the result of a test is not statistically significant.
- ► The values between 0.05 and 0.1 should be taken as reference points in a broad sense. As α_{obs} gets closer to either boundary point of the interval $\langle 0.05, 0.1 \rangle$, so this is taken as increasing evidence for one or other alternative.
- Situation with α_{obs} ∈ (0.05, 0.1) are usually most difficult to handle and the result is here marginally statistically significant.

Testing of Statistical Hypotheses

To carry out a hypothesis test - based on p-value (observed significance level)

Wording of the results of a statistical test:

range for p-v	alue star	s of significance	e wording of the result
(0, 0.001)	***	extremely highly statistically significant
(0.001, 0.0	1)	**	high statistically significant
(0.01, 0.0	5)	*	statistically significant
(0.05, 0.1)		marginally statistically significant
$\langle 0.1, 1 \rangle$			non-significant

To carry out a hypothesis test – based on p-value (observed significance level)

Interpretation of p-values:

- p-value < 0.001: the *prevalence* of an estimated effect is smaller than one to one thousand (the *odds* of estimated effect is smaller than 1 : 999), if an effect is not present in a population (the presence of such an effect is highly improbable, if an effect is not present in a population and the presence of such an effect is highly probable, if an effect is highly probable, if an effect is present in a population)
- p-value < 0.01: the *prevalence* of an estimated effect is smaller than one to one hundred (the *odds* of estimated effect is smaller than 1 : 99), if an effect is not present in a population (the presence of such an effect is very improbable, if an effect is not present in a population and the presence of such an effect is very probable, if an effect is present in a population)
- p-value < 0.05: the *prevalence* of an estimated effect is smaller than one to one hundred (the *odds* of estimated effect is smaller than 5 : 95 or 1 : 19), if an effect is not present in a population (the presence of such an effect is sufficiently improbable, if an effect is not present in a population and the presence of such an effect is sufficiently probable, if an effect is present in a population)
- p-value ≥ 0.05: the prevalence of an estimated effect is five to one hundred or greater (5 % or more);
- ▶ p-value = $k, k \in (0.05, 1)$: the prevalence of an estimated effect is $100 \times k$ to one hundred ($100 \times k$ % or more).

Testing of Statistical Hypotheses

To carry out a hypothesis test - based on p-value (observed significance level)

How is the p-value (mostly) calculated?

- 1. two-sided alternative
 - p-value = 2 min(Pr($T_0 \le t_0|H_0$), Pr($T_0 \ge t_0|H_0$)), e.g. for normal and Student distribution of test statistic (symmetric distributions) and for χ^2_{df} and F_{df_1,df_2} distribution of test statistic (asymmetric distributions) or p-hodnota = min(Pr($T_0 \le t_0|H_0$), Pr($T_0 \ge t_0|H_0$)), e.g. for χ^2_{df} and F_{df_1,df_2} distribution of test statistic (asymmetric distributions)
- 2. one-sided (right) alternative p-value = $Pr(T_0 \ge t_0 | H_0)$
- 3. one-sided (left) alternative p-value = $Pr(T_0 \le t_0 | H_0)$

▲□▶▲□▶▲□▶▲□▶ □ うへぐ

Testing of Statistical Hypotheses

On a philosophical level

- distinction between 'rejecting H_0 ' and 'accepting H_1 '
- 'rejecting H₀' nothing implies about what state the experimenter *is* accepting, only that the state defined by H₀ is being rejected
- distinction between 'accepting H₀' and 'not rejecting H₀'
- 'accepting H₀' the experimenter is willing to assert the state of nature specified by H₀
- 'not rejecting H₀' the experimenter really does not believe H₀ but does not have the evidence to reject it

Testing of Statistical Hypotheses

Conservative and liberal test and CI

Definition (Conservative and liberal test)

A test with **actual/observed significance level** smaller than **nominal significance level** α , is called **conservative** (the test should theoretically be "rejecting quickly" H_0 , but, in reality, it is the opposite, i.e. the test is "rejecting slowly").

A test with **actual/observed significance level** greater than **nominal significance level** α , is called **liberal** (the test should theoretically be "rejecting slowly" H_0 , but, in reality, it is the opposite, i.e. the test "rejecting quickly").

Definition (Conservative and liberal CI)

CI with actual/real coverage probability greater than nominal coverage probability $1 - \alpha$, is called conservative (i.e. the probability that θ_0 is within CI is greater that expected). CI with actual/real coverage probability smaller than nominal coverage probability $1 - \alpha$, is called liberal (i.e. the probability that θ_0 is within CI is smaller that expected).

Likelihood ratio – generalised relative likelihood

Two types of hypotheses:

1. simple hypothesis – $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, then simple likelihood ratio is equal to

$$\lambda(\mathbf{x}) = \lambda = \frac{L(\theta_0 | \mathbf{x})}{\sup_{\theta \in \Theta} L(\theta | \mathbf{x})} = \frac{L(\theta_0 | \mathbf{x})}{L(\widehat{\theta} | \mathbf{x})},$$

where $\lambda(\mathbf{x}) = \mathcal{L}(\theta_0 | \mathbf{x})$ is test statistic and $L(\theta | \mathbf{x})$ is continuous for all \mathbf{x} .

2. composite hypothesis – $H_0 : \theta \in \Theta_0$ against $H_1 : \theta \in \Theta_1$, then generalised likelihood ratio is equal to

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Theta_0} L(\theta | \mathbf{x})}{\sup_{\theta \in \Theta} L(\theta | \mathbf{x})}$$

Testing of Statistical Hypotheses

Likelihood ratio test statistic

Subsets of Θ , Θ_0 and Θ_1 , remain the same after monotone transformation of $\lambda(\mathbf{x})$, i.e. the statistical tests before and after transformation are equivalent. Therefore, **likelihood ratio test statistic** is equal to

$$U_{LR} = -2 \ln \lambda(\mathbf{X}).$$

Its realisation, **observed likelihood ratio test statistic**, is equal to $u_{LR} = -2 \ln \lambda(\mathbf{x})$, where $u_{LR} \in (0, \infty)$.

▲□▶▲□▶▲≣▶▲≣▶ ■ のへで

Testing of Statistical Hypotheses

Three test statistics

Geometrical interpretation:

- 1. U_{LR} is measuring properly standardised difference between log-likelihoods in $\hat{\theta}$ and θ_0 (i.e. in direction of *y* axis)
- 2. U_W is measuring properly standardised absolute value of a difference of $\hat{\theta}$ a θ_0 (in direction of *x* axis)
- 3. $U_{\rm S}$ is measuring properly standardised slope of log-ratio in θ_0

Example (normal distribution)

Let $X \sim N(\mu, \sigma^2)$, where σ^2 is known, $H_0 : \theta = \theta_0$ against $H_1 : \theta \neq \theta_0$, where $\theta = \mu$. Then

1.
$$U_{LR} = -2(I(\theta_0|\mathbf{X}) - I(\widehat{\theta}|\mathbf{X})) = -\sum_{i=1}^{n} (X_i - \overline{X})^2 / \sigma^2 + \sum_{i=1}^{n} (X_i - \mu_0)^2 / \sigma^2 = n \frac{(\overline{X} - \mu_0)^2}{\sigma^2},$$

2.
$$U_{W} = (\overline{X} - \mu_0)^2 \mathcal{I}(\overline{X}) = n \frac{(\overline{X} - \mu_0)^2}{\sigma^2},$$

3.
$$U_{S} = \frac{(S(\mu_{0}))^{2}}{\mathcal{I}(\mu_{0})} = \frac{(n(\overline{X}-\mu_{0})/\sigma^{2})^{2}}{n/\sigma^{2}} = n \frac{(\overline{X}-\mu_{0})^{2}}{\sigma^{2}}.$$

All three test statistics are equal, i.e. $U_{LR} = U_W = U_S$.

Testing of Statistical Hypotheses Three test statistics

- If θ is a scalar, three test statistics are defined as:
 - 1. $U_{\mathsf{LR}} = -2(I(\theta_0|\mathbf{X}) I(\widehat{\theta}|\mathbf{X})) \overset{\mathcal{D}}{\sim} \chi_1^2,$
 - 2. $U_{W} = (\hat{\theta} \theta_{0})^{2} \mathcal{I}(\hat{\theta}) \stackrel{\mathcal{D}}{\sim} \chi_{1}^{2}$ and equivalently $U_{W}^{1/2} = Z_{W} \stackrel{\mathcal{D}}{\sim} N(0, 1)$,
 - 3. $U_{S} = \frac{(S(\theta_{0}))^{2}}{\mathcal{I}(\theta_{0})} \overset{\mathcal{D}}{\sim} \chi_{1}^{2}$ and equivalently $U_{S}^{1/2} = Z_{S} \overset{\mathcal{D}}{\sim} N(0, 1)$,

If θ is a vector, three test statistics are defined as:

- 1. $U_{LR} = -2(I(\theta_0|\mathbf{X}) I(\widehat{\theta}|\mathbf{X})) \overset{\mathcal{D}}{\sim} \chi_k^2,$ 2. $U_W = (\widehat{\theta} - \theta_0)^T \mathcal{I}(\widehat{\theta}) (\widehat{\theta} - \theta_0) \overset{\mathcal{D}}{\sim} \chi_k^2,$
- 2. $U_{W} = (U U_{0}) L(U)(U U_{0}) \sim \chi_{k},$
- 3. $U_{\mathsf{S}} = (\mathsf{S}(\theta_0))^{\mathsf{T}} (\mathcal{I}(\theta_0))^{-1} \mathsf{S}(\theta_0) \stackrel{\mathcal{D}}{\sim} \chi_k^2.$

Three test statistics and related confidence intervals

If θ is a scalar, three confidence intervals are defined as follows:

1. likelihood ratio empirical $(1 - \alpha) \times 100\%$ Cl for θ is defined as

$$\mathcal{CS}_{1-a} = \left\{ \theta : U_{\mathsf{LR}}(\theta) < \chi_1^2(\alpha) \right\},$$

where $U_{LR}(\theta) = -2 \ln \frac{L(\theta | \mathbf{x})}{L(\hat{\theta} | \mathbf{x})}$.

- 2. Wald empirical $(1 \alpha) \times 100\%$ Cl for θ is defined based on a pivot (pivotal statistics) $T_{piv} = U_W(\theta)$
- 3. Score empirical $(1 \alpha) \times 100\%$ Cl for θ is defined based on a pivot $T_{piv} = U_{S}(\theta)$
- If θ is a vector, CIs can be generalized to **confidence set** CS_{1-a} .
 - If k = 2, CS_{1-a} is an **confidence ellipse**.
 - If k > 2, CS_{1-a} is an **confidence ellipsoid**.

Additionally, if k = 1, CS_{1-a} is an **confidence interval**.

Testing of Statistical Hypotheses

Likelihood confidence intervals - bisection method

Bisection method

Let $\theta_{01}, \theta_{02} \in \langle \theta_L, \theta_U \rangle$ and $f(\theta_{01})f(\theta_{02}) < 0$, $f(\cdot)$ is continuous with at least one root within the interval $\langle \theta_{01}, \theta_{02} \rangle$, where

$$f(\theta) = -2 \ln \mathcal{L}(\theta | \mathbf{x}) - \chi_1^2(\alpha) = 0.$$

If the first derivative of $f(\cdot)$ is having constant sign, then exactly one root $\theta^* \in \langle \theta_{01}, \theta_{02} \rangle$ of $f(\theta) = 0$ exists.

The iterative process is defined as follows:

1. initialisation step – starting point $\theta^{(0)} = (\theta_{01} + \theta_{02})/2$ and i = 1,

2. updating equations – substitution of the boundaries θ_{01} and θ_{02} is defined as

$$\langle heta_{i1}, heta_{i2}
angle = egin{cases} \langle heta_{i-1,1}, heta^{(i-1)}
angle, & ext{if } f(heta_{i-1,1}) f(heta^{(i-1)}) < 0 \ \langle heta^{(i-1)}, heta_{i-1,2}
angle, & ext{if } f(heta_{i-1,1}) f(heta^{(i-1)}) > 0 \end{cases},$$

if $f(\theta^{(i-1)}) = 0$, then *end*, if not,

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�?

Testing of Statistical Hypotheses

Confidence intervals

Wald empirical $(1 - \alpha) \times 100\%$ Cl for θ is defined as

$$(\boldsymbol{d},\boldsymbol{h}) = \left(\widehat{\theta} - \boldsymbol{t}_{\alpha/2}\widehat{\boldsymbol{SE}[\widehat{\theta}]}, \widehat{\theta} + \boldsymbol{t}_{\alpha/2}\widehat{\boldsymbol{SE}[\widehat{\theta}]}\right),$$

where the critical value $t_{\alpha/2}$ depends on the choice of $\hat{\theta}$.

Likelihood ratio empirical $(1 - \alpha) \times 100\%$ **CI for** θ is defined by its lower and upper bounds as k% cut-offs of standardized relative log-likelihood as follows

$$\Pr\left(\frac{L(\theta|\mathbf{x})}{L(\widehat{\theta}|\mathbf{x})} > c_{\alpha}\right) = \Pr\left(-2\ln\frac{L(\theta|\mathbf{x})}{L(\widehat{\theta}|\mathbf{x})} < -2\ln c_{\alpha}\right) = 1 - \alpha,$$

where $\boldsymbol{c}_{\alpha} = \boldsymbol{e}^{-\frac{1}{2}\chi_{1}^{2}(\alpha)}$. Then

- if $1 \alpha = 0.95$, then $c_{\alpha} = 0.1465001 \doteq 0.15$ (15% cut-off),
- ▶ if $1 \alpha = 0.90$, then $c_{\alpha} = 0.2585227 \doteq 0.26$ (26% cut-off),
- ► if $1 \alpha = 0.99$, then $c_{\alpha} = 0.0362452 \doteq 0.04$ (4% cut-off).

Testing of Statistical Hypotheses

Likelihood confidence intervals - Brent-Dekker method

Example (Brent-Dekker method)

Let $X \sim Bin(N, p)$, where N = 10 and n = x = 8. Estimate the boundaries of empirical $100 \times (1 - \alpha)$ % CI for (1) p and (2) odds $\frac{p}{1-p}$. The empirical CI are of the two types (A) likelihood and (B) Wald. Draw the log-likelihood function and its quadratic approximation with the lower and upper boundary of CI.

Solution (partial)

Wald empirical 100 ×
$$(1 - \alpha)$$
% Cl for *p*:
 $\hat{p} = \frac{8}{10} = 0.8$; $\widehat{SE[\hat{p}]} = \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} = 0.13$.
 $(d, h) = (\hat{p} - u_{\alpha/2}\widehat{SE[\hat{p}]}, \hat{p} + u_{\alpha/2}\widehat{SE[\hat{p}]}) = (0.55, 1.05)$.
Likelihood empirical 100 × $(1 - \alpha)$ % Cl for *p*:
 $CS_{1-\alpha} = \left\{ p : -2\ln \frac{L(p|\mathbf{x})}{L(\hat{p}|\mathbf{x})} \le 3.84 \right\}$, where $(d, h) = (0.50, 0.96)$,
Wald empirical 100 × $(1 - \alpha)$ % Cl for *g*(*p*):
 $g(\hat{p}) = \ln \frac{\hat{p}}{1-\hat{p}} = \log \frac{0.8}{0.2} = 1.39$.
 $\frac{\partial}{\partial p}g(p) = \frac{1}{p} + \frac{1}{1-\hat{p}}$;
 $S\widehat{E[g(\hat{p})]} = \widehat{SE[\hat{p}]} \left(\frac{1}{\hat{p}} + \frac{1}{1-\hat{p}}\right) = \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} \left(\frac{1}{\hat{p}} + \frac{1}{1-\hat{p}}\right) = \sqrt{\frac{1}{n} + \frac{1}{N-n}} = 0.79$.
Then $(d_g, h_g) = (-0.16, 2.94)$ and back-transformed $(d, h) = (0.46, 0.95)$.

```
Likelihood confidence intervals – Brent-Dekker method
  |x <- 8; N <- 10
 1
 2
    probs <- seq(0.4,.99,length=1000)</pre>
 3
   like <- dbinom(8,10,probs)</pre>
    rellike <- like/max(like)</pre>
 4
 5
   relloglike
                <- -2*log(rellike)
 6
    cutoff <- exp(-1/2*qchisq(0.95,df=1)) #0.1465001
 7
   like.CI.p <- range(probs[rellike>cutoff]) #0.5009910 0.9634234
 8
    cutoff <- gchisg(0.95,df=1) #3.841459
 9
    like.CI.p <- range(probs[relloglike<cutoff]) #0.500991 0.9634234</pre>
10
11
    p.hat <-x/N
12
    i.hat <- N/p.hat/(1-p.hat)
13
   loglikeapprox <- -i.hat/2*(probs-p.hat)^2
14
    ra <- range(log(rellike))</pre>
15
    wald.is.p <- p.hat + c(-1,1)*gnorm(0.975)*sgrt(1/i.hat)
    wald.is.p # 0.552082 1.047918
16
17
18
    gprobs <- log(probs) - log(1-probs)
19
    qp.hat <- log(p.hat) - log(1-p.hat)</pre>
20
   i.hat <-x*(N-x)/N
21
  lqp <- -i.hat/2*(qprobs-qp.hat)^2</pre>
22
  x <- (gp.hat+c(-1,1)*qnorm(0.975)*sqrt(1/i.hat)) #-0.1632 2.9358
23
    wald.is.gp <- \exp(x)/(1+\exp(x))
24 wald.is.qp # 0.4592920 0.9495872
                                                 ▲口▶▲御▶▲注▶▲注▶ 注 のQの
```

Testing of Statistical Hypotheses

Likelihood confidence intervals - other numerical method

Figure: Log-likelihood of p and its quadratic approximation

Testing of Statistical Hypotheses

To carry out a hypothesis test

Number of (in)dependent samples for θ , $g(\theta)$, θ and $g(\theta)$:

- one-sample problem about mean, variance, probability distribution, correlation coefficient, probability
- two-sample problem about difference in means, ratio of variances, difference in probability distributions, difference in correlation coefficients, difference in probabilities
- multiple sample problem about means, variances, probability distributions, correlation coefficients, probabilities
- paired problem the mean of the differences

Dimension:

- univariate problem
- multivariate problem

Testing of Statistical Hypotheses

One-sample problems

- one-sample Z-test for the mean of one population
- one-sample Student t-test for the mean of one population
- **one-sample** χ^2 **-test** for the variance of one population
- one-sample Kolmogorov-Smirnov test for the empirical probability distribution function of one population
- one-sample Z-test for the population proportion of one population
- one-sample T-test for the correlation coefficient of one population

Two-sample problems

- two-sample Z-test for the difference between the means of two populations
- two-sample Student t-test for the difference between the means of two populations
- two-sample F-test for the ratio of the variances of two populations
- two-sample Kolmogorov-Smirnov test for the difference between two empirical probability distribution functions
- two-sample Z-test for the difference between two population proportions
- two-sample T-test for the difference between correlation coefficients of two populations