Statistics for Computer Sciences

Lecture ¹⁰ to Lecture ¹² Testing of Statistical Hypotheses

Stanislav Katina¹

¹Institute of Mathematics and Statistics, Masaryk University Honorary Research Fellow, The University of Glasgow

December 2, ²⁰¹⁵

Testing of Statistical Hypotheses

Null and alternative hypothesis

- ► a **'hypothesis'** is a theory which is assumed to be true unless evidence is obtained which indicates otherwise
- ◮ **'null'** means 'nothing' and the term **'null hypothesis'** (*H*0) means ^a 'theory of no change' – that is 'no change' from what would be expected from past experience
- ◮ **'alternative hypothesis'** (*H*1) means ^a 'theory of change' that is 'change' from what would be expected from past experience
- \triangleright the procedure which is used to decide between these two \cdot opposite theories is called **'hypothesis test'** or sometimes **'significance test'**
- **► one-tail test** test in which thy alternative hypothesis proposes

 express in perspected in each case direction since

 express of ^a change in parameter in only one direction – increase or decrease
- ► **two-tail test** test in which the alternative hypothesis suggests a
difference in narameter in either direction difference in parameter in either direction

KOX (@XXEXXEX) E 1090

Testing of Statistical Hypotheses

Test statistic, rejection and acceptance region, critical value and quantile

- **the test statistic** is calculated from the sample its value is
 used to decide whether the null hypothesis should be rejected
- ◮ the **rejection** (or **critical**) **region** gives the values of the test statistic for which the null hypothesis is rejected
- ► the **acceptance region** gives the values of the test statistic for which the null hypothesis is not rejected
- ► the boundary value(s) of the rejection region is (are) called the
califical value(s) as supertifie(s) **critical value**(**s**) or **quantile**(**s**)
- \triangleright the **significance level** α of a test gives the probability of the test

atoticie felling in the rejection region when mull bunethesia is two statistic falling in the rejection region when null hypothesis is true

Testing of Statistical Hypotheses

Hypothesis testing procedure

- ► a **hypothesis** is a statement about a population parameter base on ^a sample from this population
- H_0 and H_1 are two complementary hypotheses in a hypothesis
testing arablem testing problem
- ▶ a hypothesis testing procedure or hypothesis test is a rule
 that angelian *for which genuals values* the designs is mode that specifies – for which sample values the decision is made to accept null hypothesis as true – and for which sample values H_0 is rejected
- ► the subset of sample space for which H_0 will be rejected is called **rejection region** (**critical region**)
- ► the complement of the rejection region is called the **acceptance region**

HELMERKERKER SORA

Testing of Statistical Hypotheses Four possibilities

Four choices:

- A H_0 is true our decision is to reject H_0
- B H_0 is true our decision is not to reject H_0
- \texttt{C} $\texttt{H}_{\texttt{1}}$ is true our decision is not to reject $\texttt{H}_{\texttt{0}}$
- D H_1 is true our decision is to reject H_0

Decision-reality table:

Testing of Statistical Hypotheses Four possibilities

Four choices:

- A) Pr (A) = Pr $(T$ ype I error) $\leq \alpha$ [significance level]
- B) Pr(B) \geq 1 α [coverage probability, confidence coefficient (level)]
- C) Pr (C) = Pr $(T$ ype II error) $\leq \beta$
- D) Pr $(D) \ge 1 \beta$ [power]

Four choices (formalised):

- A) 1 $\alpha \leq \text{Pr}(\text{don't reject } H_0 | H_0 \text{ is true})$
- B) $\alpha \geq \text{Pr}(\text{CHPD}) = \text{Pr}(\text{reject } H_0 | H_0 \text{ is true})$
- (C) $\beta = \text{Pr}(\text{CHDD}) = \text{Pr}(\text{don't reject } H_0 | H_0 \text{ isn't true})$
- D) 1 − β = Pr(reject $H_0|H_0$ isn't true)

メロメメ タメメミメメミメー ミー りぐぐ

Testing of Statistical Hypotheses

Empirical 100 \times (1 α)% confidence intervals for parameter θ

Relationship of confidence interval and statistical test

- ► Empirical 100 $(1 \alpha) \%$ confidence interval (CI) for parameter θ
- \blacktriangleright α -level hypothesis test about θ

Three types of intervals:

- $▶$ **two-tailed** CI Pr($LB(X) < θ < UB(X)) = 1 α$
- $▶$ one-tailed (right-tailed) CI Pr($θ < UB^*(X)$) = 1 $α$
- $▶$ one-tailed (left-tailed)– CI Pr $(LB_*(X) < θ) = 1 α$

Testing of Statistical Hypotheses

Acceptance region

Definition (Acceptance region of H_0)

Let *X* be ^a random variable with certain distribution (probabilistic model) dependent on parameter $\theta \in \Theta$, $g(\theta)$ is parametric function. We are testing null hypothesis $U = \pi(\theta) + \pi(\theta) + \sigma(\theta)$ *H*₀₁ : *g*(θ) = *g*(θ ₀) against <u>two-sided alternative</u> *H*₁₁ : *g*(θ) \neq *g*(θ ₀). Let (*LB*, *UB*) be interval estimate of parametric function $g\left(\theta\right)$ with coverage probability 1 $\alpha.$ Then

$$
\mathcal{A}_{\mathsf{IS},1} = \{\mathsf{LB},\mathsf{UB};\allowbreak g(\theta_0)\in(\mathsf{LB},\mathsf{UB})\}
$$

is **acceptance region of a test** H_{01} **against** H_{11} **on significance level** α . If we are testing H_{02} : $g(\theta) \leq g(\theta_0)$ against <u>one-sided (right) alternative</u> H_{12} : $g(\theta) > g(\theta_0)$ and if *LB*_∗ be lower estimate of $g\left(\theta\right)$ with coverage probability 1 α , then

 $A_{\text{IS},2} = \{LB_*; LB_* < g(\theta_0)\}$

is **acceptance region of ^a test** *^H*⁰² **against** *^H*¹² **on significance level** ^α. If we are testing H_{03} : $g(\theta) \ge g(\theta_0)$ against <u>one-sided (left) alternative</u> H_{13} : $g(\theta) < g(\theta_0)$ and
if H^{2*} is upper estimate of $g(\theta)$ with coverage probability 1, surface if *UB*∗ is upper estimate of $g\left(\theta\right)$ with coverage probability 1 α , then

 $A_{\mathsf{IS},3} = \{ \mathsf{UB}^* ; \mathsf{UB}^* > \mathsf{g}(\theta_0) \}$

 \bf{a} s acceptance \bf{r} egion of a test H_{03} against H_{13} on significance level α .

メロトメタトメミトメミト (ミ) の女の

Rejection region

Definition (Rejection (critical) region of *H*₀)

Let *X* be ^a random variable with certain distribution (probabilistic model) dependent on parameter $\theta \in \Theta$, $g(\theta)$ is parametric function. We are testing null hypothesis $U = \pi(\theta) + \pi(\theta) + \sigma(\theta)$ *H*₀₁ : *g*(θ) = *g*(θ ₀) against <u>two-sided alternative</u> *H*₁₁ : *g*(θ) \neq *g*(θ ₀). Let (*LB*, *UB*) be interval estimate of parametric function $g\left(\theta\right)$ with coverage probability 1 $\alpha.$ Then

 $W_{\text{IS},1} = \{\text{LB}, \text{UB}; g(\theta_0) \notin (\text{LB}, \text{UB})\}$

is **critical region of ^a test** *^H*⁰¹ **against** *^H*¹¹ **on significance level** ^α. If we are testing *H*₀₂ : *g*(θ) \le *g*(θ ₀) against <u>one-sided (right) alternative</u> *H*₁₂ : *g*(θ) $>$ *g*(θ ₀) and if *LB*_{*} be lower estimate of $\bm{g}\left(\theta\right)$ with coverage probability 1 $-\alpha$, then

$$
\mathcal{W}_{IS,2}=\{LB_*;LB_*\geq\,g(\theta_0)\}
$$

is **critical region of ^a test** *^H*⁰² **against** *^H*¹² **on significance level** ^α. If we are testing H_{03} : $g(\theta) \ge g(\theta_0)$ against <u>one-sided (left) alternative</u> H_{13} : $g(\theta) < g(\theta_0)$ and if UB^* is upper estimate of $g\left(\theta\right)$ with coverage probability 1 $\alpha,$ then

$$
\mathcal{W}_{IS,3}=\{UB^*;UB^*\leq\,g(\theta_0)\}
$$

is critical region of a test H_{03} against H_{13} on significance level α .

イロト イ母 トイミト イミト ニヨー りんぴ

Testing of Statistical Hypotheses

To carry out ^a hypothesis test

- Step 1 define the null and alternative hypothesis $(H_0$ and $H_1)$
- Step 2 $\,$ decide on a significance level $\alpha = 0.1, 0.05, 0.01$
- Step 3 calculate the test statistic (test criterion) T_0
- Step ³ determine the critical value(s)
- Step 5 decide on the outcome of the test (reject/don't reject H₀) depending on one of the following ways:
	- ► base on critical region $W = W_T$ (observed test statistic
 $t_0 = t_1$, and critical values t_1 is and t_2 is resp. t_3 and $t_0 = t_{\rm obs}$ and critical values $t_{\alpha/2}$ and $t_{1-\alpha/2}$, resp. t_α and $t_{1-\alpha}$),
	- base on critical region W_{IS} , t.j. empirical confidence interval (and $g(\theta_0)$),
	- ► base on p-value.

Step ⁶ state the conclusion in words

ting of Statistical Hypotheses

Definition (Rejection (critical) region of H_0)

Definition (Rejection (critical) region of H_0)

Definition (Rejection (critical) region of H_0)
 $\frac{4}{5}$, $\frac{1}{5}$ ($\frac{1}{9}$ is p

メロトメタトメミトメミト (ミ) の女の

Testing of Statistical Hypotheses

To carry out ^a hypothesis test – based on test statistic and critical value

Definition (Testing based on critical region W)

Rejecting *^H*0. If observed test statistic (realisation of test statistic) *^t*⁰ of test statistic \mathcal{T}_0 is within a critical region $\mathcal W$ (equivalently is not from
an accentance region, Λ), He is rejected at a significance level α i.e. an acceptance region A), H_0 is rejected at a significance level α , i.e. we do have sufficiently enough evidence to reject H_0 . **Not rejecting** H_0 . If observed test statistic t_0 of test statistic T_0 is within an acceptance region A (equivalently, it is not from a critical
region M). He is not rejected at a cignificance layel ϵ , i.e. we don't region W), H_0 is not rejected at a significance level α , i.e. we don't
have auffaint the analysis and the said that the

Let *t*min be the smallest possible value of ^a test criteria *^T*⁰ and *^t*max be the highest possible value of a test criteria T_0 , then

1. **two-sided alternative** – critical region $\mathcal{W}_1 = (t_{\textsf{min}}, t_{1-\alpha/2}) \cup (t_{\alpha/2}, t_{\textsf{max}}),$

have sufficiently enough evidence to reject H₀.

- 2. **one-sided (right) alternative** critical region $\mathcal{W}_2 = (t_\alpha, t_{\text{max}})$,
- 3. **one-sided (left) alternative** critical region $\mathcal{W}_3 = (t_{\text{min}}, t_{1-\alpha})$.

To carry out ^a hypothesis test – based on CI

Definition (Testing based on CI)

Rejecting H_0 : If $g(\theta) = g(\theta_0)$ is within CI (H_0 is valid), H_0 is rejected
of the eignificance lavel \cdot i.e. we de hove evificiantly enough at the significance level α , i.e. we do have sufficiently enough evidence to reject H_0 .

evidence to reject *^H*0. **Not rejecting** *^H*0: If *^g*(θ) ⁼ *^g*(θ0) is not within CI (*H*⁰ is valid), *^H*⁰ isn't rejected at a significance level α , i.e. we don't have sufficiently enough evidence to reject H_0 .

Relationship of confidence interval and statistical test

- $▶$ hypothesis testing \equiv CIs
- $▶ \alpha$ -level hypothesis test $\equiv 100(1-\alpha)\%$ CI
- ◮ **one-tail test** [≡] one-sided CI (left-sided CI [≡] right-sided alternative, right-sided CI \equiv left-sided alternative
- ◮ **two-tail test** [≡] two-sided CI
- ◮ parameter(s) [∈] CI [≡] not reject *^H*⁰
- ► parameter(s) \notin CI \equiv reject H_0

Testing of Statistical Hypotheses

To carry out ^a hypothesis test – based on p-value (observed significance level)

Definition (Testing based on p-value)

Minimal significance level α (for some test statistic T_0), base on which H_{02} : $g(\theta) \le g(\theta_0)$ is rejected (tested against H_{12} : $g(\theta) > g(\theta_0)$), is called **observed significance level** or **p-value**, i.e.

$$
\text{p-value} = \alpha_{\text{obs}} = \sup_{\theta \in \Theta_0} \text{Pr}\left(\mathcal{T}(X_1, X_2, \ldots, X_n) \geq \mathcal{T}(x_1, x_2, \ldots, x_n); \theta\right).
$$

This could be written less formally as p -value $=$ Pr(any test statistics equal or greater than observed $|H_0$ is true).

The closer $\alpha_{\rm obs}$ is to zero, the smaller is the probability that any test statistic *^T*(*X*1,*X*2,..., *^Xn*) produces ^a p-value (under *^H*0) equal to or smaller than that observed, while the probability is higher under H_1 . Therefore, p-value could be understood as an indicator of credibility of *H*0.

イロト (母) (ミ) (ミ) (ミ) ミーのぐぐ

Testing of Statistical Hypotheses

To carry out ^a hypothesis test – based on p-value (observed significance level)

- ► Usually, if $\alpha_{\text{obs}} < \alpha = 0.05$, there is sufficiently enough evidence to reject H_0 and the result of a test **is statistically significant**.
- \triangleright While $\alpha_{\text{obs}} > \alpha = 0.1$, there is sufficiently enough evidence to receive the result of a test is not of atotically eigenties. reject *H*⁰ and the result of ^a test **is not statistically significant**.
- ► The values between 0.05 and 0.1 should be taken as reference
mainta in a brand cance. As a rate closente either beundary points in a broad sense. As α_{obs} gets closer to either boundary point of the interval $(0.05, 0.1)$, so this is taken as increasing evidence for one or other alternative.
- ► Situation with $\alpha_{\text{obs}} \in (0.05, 0.1)$ are usually most difficult to handle and the result is here **marginally statistically significant**.

Testing of Statistical Hypotheses

To carry out ^a hypothesis test – based on p-value (observed significance level)

Wording of the results of ^a statistical test:

KED KAP KED KED E 1990

To carry out ^a hypothesis test – based on p-value (observed significance level)

Interpretation of p-values:

- ► p-value < 0.001: the *prevalence* of an estimated effect is smaller than one to
can the use of the **adde of ostimated effect** is a maller than 1,000) if an effect one thousand (the *odds* of estimated effect is smaller than ¹ : 999), if an effect is not present in ^a population (the presence of such an effect is **highly improbable**, if an effect is not present in ^a population – and – the presence of such an effect is **highly probable**, if an effect is present in ^a population)
- ◮ p-value < ⁰.01: the *prevalence* of an estimated effect is smaller than one to one hundred (the *odds* of estimated effect is smaller than ¹ : 99), if an effect is not present in ^a population (the presence of such an effect is **very improbable**, if an effect is not present in ^a population – and – the presence of such an effect is **very probable**, if an effect is present in a population)
- ◮ p-value < ⁰.05: the *prevalence* of an estimated effect is smaller than one to one hundred (the *odds* of estimated effect is smaller than ⁵ : ⁹⁵ or ¹ : 19), if an effect is not present in ^a population (the presence of such an effect is **sufficiently improbable**, if an effect is not present in ^a population – and – the presence of such an effect is **sufficiently probable**, if an effect is present in ^a population)
- ► p-value \geq 0.05: the prevalence of an estimated effect is five to one hundred or greater (5 % or more);
- ► p-value = $k, k \in \langle 0.05, 1 \rangle$: the prevalence of an estimated effect is 100 \times *k* to and hundred (100 \times *k* % or more) one hundred (100 \times k $\%$ or more).

イロメイタメイミメイミメーミー りくび

Testing of Statistical Hypotheses

To carry out ^a hypothesis test – based on p-value (observed significance level)

How is the p-value (mostly) calculated?

1. two-sided alternative -

two-sided alternative –

p-value = 2 min(Pr($T_0 \le t_0|H_0$), Pr($T_0 \ge t_0|H_0$)), e.g. for normal

and Student distribution of test statistic (or monotric distributions) and Student distribution of test statistic (symmetric distributions) and for $\chi^2_{\rm eff}$ and $F_{\rm df_1, df_2}$ distribution of test statistic (asymmetric distributions) or p-hodnota $=$ min(Pr($T_0 \le t_0|H_0$), Pr($T_0 \ge t_0|H_0$)), e.g. for χ^2_{cf} and $\mathcal{F}_{\mathit{df}_1,\mathit{df}_2}$ distribution of test statistic (asymmetric distributions)

- 2. **one-sided (right) alternative** p-value $= Pr(T_0 \ge t_0 | H_0)$
- 3. **one-sided (left) alternative** p-value $=$ Pr($T_0 \le t_0|H_0$)

メロトメタトメミトメミト (ミ) の女の

Testing of Statistical Hypotheses

On ^a philosophical level

- \blacktriangleright distinction between 'rejecting H_0 ' and 'accepting H_1 '
- \triangleright *'rejecting* H_0' nothing implies about what state the experimenter *is* accepting, only that the state defined by *^H*⁰ is being rejected
- \blacktriangleright distinction between 'accepting H_0 ' and 'not rejecting H_0 '
- ► 'accepting *H*₀' the experimenter is willing to assert the state of nature specified by H_0
- \triangleright '*not rejecting* H_0' the experimenter really does not believe H_0
but does not be used the suidence to reject it. but does not have the evidence to reject it

Testing of Statistical Hypotheses

Conservative and liberal test and CI

Definition (Conservative and liberal test)

^A test with **actual/observed significance level** smaller than **nominal significance level** ^α, is called **conservative** (the test should theoretically be "rejecting quickly" H_0 , but, in reality, it is the opposite, i.e. the test is "rejecting slowly").

^A test with **actual/observed significance level** greater than **nominal significance level** ^α, is called **liberal** (the test should theoretically be "rejecting slowly" H_0 , but, in reality, it is the opposite, i.e. the test "rejecting quickly").

Definition (Conservative and liberal CI)

CI with **actual/real coverage probability** greater than **nominal coverage probability** ¹ [−] ^α, is called **conservative** (i.e. the probability that θ_0 is within CI is greater that expected). CI with **actual/real coverage probability** smaller than **nominal coverage probability** ¹ [−] ^α, is called **liberal** (i.e. the probability that θ_0 is within CI is smaller that expected).

Likelihood ratio – generalised relative likelihood

Two types of hypotheses:

1. **simple hypothesis** – H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$, then **simple likelihood ratio** is equal to

$$
\lambda(\mathbf{x}) = \lambda = \frac{L(\theta_0|\mathbf{x})}{\sup_{\theta \in \Theta} L(\theta|\mathbf{x})} = \frac{L(\theta_0|\mathbf{x})}{L(\widehat{\theta}|\mathbf{x})},
$$

where ^λ(**x**) ⁼ ^L(θ0|**x**) is test statistic and *^L*(θ|**x**) is continuous for all *x*.

2. **composite hypothesis** – $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$, then **generalised likelihood ratio** is equal to

$$
\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Theta_0} L(\theta | \mathbf{x})}{\sup_{\theta \in \Theta} L(\theta | \mathbf{x})}.
$$

KOXK@XKEXKEX E YORCH

Testing of Statistical Hypotheses

Likelihood ratio test statistic

Subsets of Θ , Θ_0 and Θ_1 , remain the same after monotone transformation of $\lambda(x)$, i.e. the statistical tests before and after transformation are equivalent. Therefore, **likelihood ratio test statistic** is equal to

$$
U_{LR}=-2\ln\lambda(\mathbf{X}).
$$

Its realisation, **observed likelihood ratio test statistic**, is equal to $u_{\text{LR}} = -2 \ln \lambda(\mathbf{x})$, where $u_{\text{LR}} \in (0, \infty)$.

メロトメタトメミトメミト (ミ) の女の

Testing of Statistical Hypotheses

Three test statistics

Geometrical interpretation:

- 1. *ULR* is measuring properly standardised difference between log-likelihoods in $\widehat{\theta}$ and θ_0 (i.e. in direction of *y* axis)
- 2. *U^W* is measuring properly standardised absolute value of ^a difference of $\widehat{\theta}$ a θ_0 (in direction of *x* axis)
- $3.$ $\textit{U}_{\textrm{S}}$ is measuring properly standardised slope of log-ratio in θ_{0}

Example (normal distribution)

Let *X* ∼ *N*(μ ,σ²), where σ² is known, *H*₀ : $\theta = \theta_0$ against *H*₁ : $\theta \neq \theta_0$, where $\theta = \mu$. Then

1.
$$
U_{LR} = -2(I(\theta_0|\mathbf{X}) - I(\hat{\theta}|\mathbf{X})) =
$$

\n
$$
-\sum_{i=1}^{n} (X_i - \overline{X})^2 / \sigma^2 + \sum_{i=1}^{n} (X_i - \mu_0)^2 / \sigma^2 = n \frac{(\overline{X} - \mu_0)^2}{\sigma^2},
$$
\n2. $U_W = (\overline{X} - \mu_0)^2 \mathcal{I}(\overline{X}) = n \frac{(\overline{X} - \mu_0)^2}{\sigma^2},$
\n3. $U_S = \frac{(S(\mu_0))^2}{\mathcal{I}(\mu_0)} = \frac{(n(\overline{X} - \mu_0)/\sigma^2)^2}{n/\sigma^2} = n \frac{(\overline{X} - \mu_0)^2}{\sigma^2}.$

All three test statistics are equal, i.e. $U_{\mathsf{LR}}=U_{\mathsf{W}}=\mathcal{U}_{\mathsf{S}}.$

Testing of Statistical Hypotheses Three test statistics

- If θ is a scalar, three test statistics are defined as:
- 1. $U_{LR} = -2(I(\theta_0|\mathbf{X}) I(\widehat{\theta}|\mathbf{X})) \stackrel{\mathcal{D}}{\sim} \chi_1^2$ 2. $U_W = (\widehat{\theta} - \theta_0)^2 \mathcal{I}(\widehat{\theta}) \stackrel{\mathcal{D}}{\sim} \chi_1^2$ and equivalently $U_W^{1/2} = Z_W \stackrel{\mathcal{D}}{\sim} N(0, 1),$

3.
$$
U_S = \frac{(S(\theta_0))^2}{\mathcal{I}(\theta_0)} \stackrel{\mathcal{D}}{\sim} \chi_1^2
$$
 and equivalently $U_S^{1/2} = Z_S \stackrel{\mathcal{D}}{\sim} N(0, 1)$,

If θ is a vector, three test statistics are defined as:

- 1. $U_{LR} = -2(I(\theta_0|\mathbf{X}) I(\widehat{\theta}|\mathbf{X})) \stackrel{\mathcal{D}}{\sim} \chi_k^2$ 2. $U_W = (\widehat{\theta} - \theta_0)^T \mathcal{I}(\widehat{\theta})(\widehat{\theta} - \theta_0) \stackrel{\mathcal{D}}{\sim} \chi_k^2$
- 3. $U_{\rm S} = (S(\theta_0))^T (I(\theta_0))^{-1} S(\theta_0) \stackrel{\mathcal{D}}{\sim} \chi_k^2$.

Three test statistics and related confidence intervals

If θ is a scalar, three confidence intervals are defined as follows:

 $1.$ **likelihood ratio empirical** $(1 - \alpha) \times 100\%$ CI for θ is defined as

$$
\mathcal{CS}_{1-a}=\left\{\theta:U_{LR}(\theta)<\chi_1^2(\alpha)\right\},\,
$$

where $U_{\text{LR}}(\theta) = -2 \ln \frac{L(\theta|\mathbf{x})}{L(\widehat{\theta}|\mathbf{x})}$.

- 2. **Wald empirical** $(1 \alpha) \times 100\%$ CI for θ is defined based on a pixet (pixetel eterior) $T = U(\theta)$ $\mathsf{pivot}\ (\mathsf{pivotal}\ \mathsf{statistics}) \mathcal{T}_{\mathsf{piv}}=U_{\mathsf{W}}(\theta)$
- 3. **Score empirical** $(1 \alpha) \times 100\%$ **CI for** θ is defined based on a pixet $T = H(\theta)$ pivot $\mathcal{T}_\mathsf{piv}=\mathcal{U}_\mathsf{S}(\theta)$
- Ifθ is ^a vector, CIs can be generalized to **confidence set** CS¹−*a*.
- ◮ If *k*= 2, CS¹−*^a* is an **confidence ellipse**.
- ◮ If *k*> 2, CS¹−*^a* is an **confidence ellipsoid**.

Additionally, if *k*=

Testing of Statistical Hypotheses

Likelihood confidence intervals – bisection method

Bisection method

Let $\theta_{01}, \theta_{02} \in \langle \theta_L, \theta_U \rangle$ and $f(\theta_{01})f(\theta_{02}) < 0$, $f(\cdot)$ is continuous with at least one root within the interval $\langle \theta_{01}, \theta_{02} \rangle$, where

$$
f(\theta) = -2 \ln \mathcal{L}(\theta|\mathbf{x}) - \chi_1^2(\alpha) = 0.
$$

If the first derivative of $f(\cdot)$ is having constant sign, then exactly one root $\theta^* \in \langle \theta_{01}, \theta_{02} \rangle$ of $f(\theta) = 0$ exists.

The iterative process is defined as follows:

- 1. initialisation step starting point $\theta^{(0)} = (\theta_{01} + \theta_{02})/2$ and $i = 1$,
- 2. updating equations substitution of the boundaries θ_{01} and θ_{02}
is defined as is defined as

$$
\langle \theta_{i1}, \theta_{i2} \rangle = \begin{cases} \langle \theta_{i-1,1}, \theta^{(i-1)} \rangle, & \text{if } f(\theta_{i-1,1}) f(\theta^{(i-1)}) < 0 \\ \langle \theta^{(i-1)}, \theta_{i-1,2} \rangle, & \text{if } f(\theta_{i-1,1}) f(\theta^{(i-1)}) > 0 \end{cases},
$$

 $\mathsf{if}~f(\theta^{(i-1)})=0$, then *end*, if not,

メロトメタトメミトメミト ミニの女の

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

 $(\alpha) \times 100\%$ CI for θ is defined as

$$
(\boldsymbol{d},\boldsymbol{h})=\left(\widehat{\theta}-t_{\alpha/2}\widehat{\text{SE}[\widehat{\theta}]},\widehat{\theta}+t_{\alpha/2}\widehat{\text{SE}[\widehat{\theta}]}\right),
$$

where the critical value $t_{\alpha/2}$ depends on the choice of $\hat{\theta}$.

1, CS_{1−a} is an confidence eliterval eliteryals (1 − α) × 100% Cl for θ is defined as follows:

1, CS_{1−a} = {θ : U_{LR}(θ) < χ²(α)},

(θ = -2 h $\frac{L(R|B)}{L(R|B)}$

(d, h) = $\left(\hat{\theta} - t_{\alpha/2} \overline{\leq} E[\hat{\theta}], \hat{\theta} + C$

(d, h) **Likelihood ratio <code>empirical</code> (1 −** α **) × 100% CI for** θ is defined by its development of the contract of a temperature of the contract of the contract θ lower and upper bounds as *k*% cut-offs of standardized relative log-likelihood as follows

$$
\text{Pr}\left(\frac{L(\theta|\textbf{x})}{L(\widehat{\theta}|\textbf{x})}>c_\alpha\right)=\text{Pr}\left(-2\ln\frac{L(\theta|\textbf{x})}{L(\widehat{\theta}|\textbf{x})}<-2\ln c_\alpha\right)=1-\alpha,
$$

where $c_{\alpha} = e^{-\frac{1}{2}\chi_1^2(\alpha)}$. Then

- ► if $1 \alpha = 0.95$, then $c_{\alpha} = 0.1465001 \approx 0.15$ (15% cut-off),
- ► if $1 \alpha = 0.90$, then $c_{\alpha} = 0.2585227 \approx 0.26$ (26% cut-off),
- ► if $1 \alpha = 0.99$, then $c_{\alpha} = 0.0362452 \approx 0.04$ (4%) **CONTRACT AND A STATE AND A STATE AND A**

Testing of Statistical Hypotheses

Likelihood confidence intervals – Brent-Dekker method

Example (Brent-Dekker method)

Let*X*∼ *Bin*(*N*, *^p*), where *N*= ¹⁰ and *n*=*x*= 8. Estimate the boundaries of empirical $100 \times (1 - \alpha)$ % CI for (1) *p* and (2) odds $\frac{p}{1-p}$. The empirical CI are of the two types (A) likelihood and (B) Wald. Draw the log-likelihood function and its quadratic approximation with the lower and upper boundary of CI.

Solution (partial)

Wald empirical 100 × (1-
$$
\alpha
$$
)% CI for *p*:
\n
$$
\hat{p} = \frac{8}{10} = 0.8; \overbrace{SE[\hat{p}]} = \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} = 0.13.
$$
\n(*d*, *h*) = ($\hat{p} - u_{\alpha/2} \overbrace{SE[\hat{p}]}, \hat{p} + u_{\alpha/2} \overbrace{SE[\hat{p}]} = (0.55, 1.05).$
\nLikelihood empirical 100 × (1- α)% CI for *p*:
\n
$$
CS_{1-\alpha} = \{p : -2 \ln \frac{L(p|x)}{L(\hat{p}|x)} \le 3.84\}, \text{ where } (d, h) = (0.50, 0.96),
$$
\nWald empirical 100 × (1- α)% CI for *g*(*p*):
\n
$$
g(\hat{p}) = \ln \frac{\hat{p}}{1-\hat{p}} = \log \frac{0.8}{0.2} = 1.39.
$$
\n
$$
\frac{\partial}{\partial p} g(p) = \frac{1}{p} + \frac{1}{1-p};
$$
\n
$$
SE[g(\hat{p})] = \overbrace{SE[\hat{p}]} (\frac{1}{\hat{p}} + \frac{1}{1-\hat{p}}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} (\frac{1}{\hat{p}} + \frac{1}{1-\hat{p}}) = \sqrt{\frac{1}{n} + \frac{1}{N-n}} = 0.79.
$$
\nThen (*d*_{*g*}, *h*_{*g*}) = (-0.16, 2.94) and back-transformed (*d*, *h*) = (0.46, 0.95).

```
Likelihood confidence intervals – Brent-Dekker method
 1\begin{array}{c|c|c|c|c|c|c|c} \hline 1 & x & \text{ s.} & 8 \\ \hline \end{array} N \text{ s.} & - 10
 2 probs <- seq(0.4,.99,length=1000)
 3 like <- dbinom(8,10,probs)
 4 rellike <- like/max(like)
 5 relloglike <- -2*log(rellike)
 66 cutoff <- exp(-1/2*qchisq(0.95,df=1)) #0.1465001
 7 like.CI.p <- range(probs[rellike>cutoff]) #0.5009910 0.9634234
 8 cutoff <- qchisq(0.95,df=1) #3.841459
 9 like.CI.p <- range(probs[relloglike<cutoff]) #0.500991 0.9634234
10p.hat \leftarrow x/N
1112i.hat \langle- N/p.hat/(1-p.hat)
13 loglikeapprox <- -i.hat/2*(probs-p.hat)ˆ2
14 ra <- range(log(rellike))
15 wald.is.p <- p.hat + c(-1,1)*qnorm(0.975)*sqrt(1/i.hat)
16 wald.is.p # 0.552082 1.047918
17
18 gprobs <- log(probs) - log(1-probs)
19 |
    qp.hat \langle -\log(p.hat) - \log(1-p.hat) \rangle20 i.hat <- x*(N-x)/N
21 lgp <- -i.hat/2*(gprobs-gp.hat)ˆ2
22 |x <- (gp.hat+c(-1,1)*qnorm(0.975)*sqrt(1/i.hat)) #-0.1632 2.9358<br>00
23 wald.is.gp <- exp(x)/(1+exp(x))
24 wald.is.gp # 0.4592920 0.9495872
                                                    KOXK@XKEXKEX E OSG
```
Testing of Statistical Hypotheses

Likelihood confidence intervals – other numerical method

Figure: Log-likelihood of *^p* and its quadratic approximation

メロトメ 伊 トメミトメミト ニミーの女色

Testing of Statistical Hypotheses

To carry out ^a hypothesis test

Number of (in)dependent samples for θ , $q(\theta)$, θ and $q(\theta)$:

- **► one-sample problem** about mean, variance, probability
distribution, correlation coefficient, probability distribution, correlation coefficient, probability
- ► **two-sample problem** about difference in means, ratio of variances, difference in probability distributions, difference in correlation coefficients, difference in probabilities
- **► multiple sample problem** about means, variances, probability
distributions, correlation coefficients, probabilities distributions, correlation coefficients, probabilities
- ◮ **paired problem** the mean of the differences

Dimension:

- ◮ **univariate problem**
- ◮ **multivariate problem**

Testing of Statistical Hypotheses

One-sample problems

- ► **one-sample Z-test** for the mean of one population
- ◮ **one-sample Student** *^t***-test** for the mean of one population
- \triangleright **one-sample** χ^2 -test for the variance of one population
- **▶ one-sample Kolmogorov-Smirnov test** for the empirical
 Algorithment continuation of an accordation probability distribution function of one population
- ◮ **one-sample** *^Z***-test** for the population proportion of one population
- ◮ **one-sample** *^T***-test** for the correlation coefficient of one population

Two-sample problems

- ► **two-sample** Z-test for the difference between the means of two
nearletiens populations
- ◮ **two-sample Student** *^t***-test** for the difference between the means of two populations
- ◮ **two-sample***F***-test** for the ratio of the variances of two populations
- **▶ two-sample Kolmogorov-Smirnov test** for the difference between two empirical probability distribution functions
- ► **two-sample** Z-test for the difference between two population proportions
- ► **two-sample** T-test for the difference between correlation coefficients of two populations

HERRICH ALL AND A START