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Testing of Statistical Hypotheses
Null and alternative hypothesis

◮ a ’hypothesis’ is a theory which is assumed to be true unless

evidence is obtained which indicates otherwise

◮ ’null’ means ’nothing’ and the term ’null hypothesis’ (H0)

means a ’theory of no change’ – that is ’no change’ from what

would be expected from past experience

◮ ’alternative hypothesis’ (H1) means a ’theory of change’ – that

is ’change’ from what would be expected from past experience

◮ the procedure which is used to decide between these two

opposite theories is called ’hypothesis test’ or sometimes

’significance test’

◮ one-tail test – test in which thy alternative hypothesis proposes

a change in parameter in only one direction – increase or

decrease

◮ two-tail test– test in which the alternative hypothesis suggests a

difference in parameter in either direction

Testing of Statistical Hypotheses
Test statistic, rejection and acceptance region, critical value and quantile

◮ the test statistic is calculated from the sample – its value is

used to decide whether the null hypothesis should be rejected

◮ the rejection (or critical) region gives the values of the test

statistic for which the null hypothesis is rejected

◮ the acceptance region gives the values of the test statistic for

which the null hypothesis is not rejected

◮ the boundary value(s) of the rejection region is (are) called the

critical value(s) or quantile(s)

◮ the significance level α of a test gives the probability of the test

statistic falling in the rejection region when null hypothesis is true

Testing of Statistical Hypotheses
Hypothesis testing procedure

◮ a hypothesis is a statement about a population parameter base

on a sample from this population

◮ H0 and H1 are two complementary hypotheses in a hypothesis

testing problem

◮ a hypothesis testing procedure or hypothesis test is a rule

that specifies – for which sample values the decision is made to

accept null hypothesis as true – and for which sample values H0

is rejected

◮ the subset of sample space for which H0 will be rejected is called

rejection region (critical region)

◮ the complement of the rejection region is called the acceptance

region



Testing of Statistical Hypotheses
Four possibilities

Four choices:

A H0 is true – our decision is to reject H0

B H0 is true – our decision is not to reject H0

C H1 is true – our decision is not to reject H0

D H1 is true – our decision is to reject H0

Decision-reality table:

decision/reality H0 is true H0 is not true

to reject H0 Type I error true decision

not to reject H0 true decision Type II error

Testing of Statistical Hypotheses
Four possibilities

Four choices:

A) Pr(A) = Pr(Type I error) ≤ α [significance level]

B) Pr(B) ≥ 1 − α [coverage probability, confidence coefficient

(level)]

C) Pr(C) = Pr(Type II error) ≤ β

D) Pr(D) ≥ 1 − β [power]

Four choices (formalised):

A) 1 − α ≤ Pr(don’t reject H0|H0 is true)

B) α ≥ Pr(CHPD) = Pr(reject H0|H0 is true)

C) β = Pr(CHDD) = Pr(don’t reject H0|H0 isn’t true)

D) 1 − β = Pr(reject H0|H0 isn’t true)

Testing of Statistical Hypotheses
Empirical 100× (1− α)% confidence intervals for parameter θ

Relationship of confidence interval and statistical test

◮ Empirical 100(1 − α)% confidence interval (CI) for parameter θ

◮ α-level hypothesis test about θ

Three types of intervals:

◮ two-tailed CI – Pr(LB(X ) < θ < UB(X )) = 1 − α

◮ one-tailed (right-tailed) CI – Pr(θ < UB∗(X )) = 1 − α

◮ one-tailed (left-tailed)– CI – Pr(LB∗(X ) < θ) = 1 − α

Testing of Statistical Hypotheses
Acceptance region

Definition (Acceptance region of H0)
Let X be a random variable with certain distribution (probabilistic model) dependent on

parameter θ ∈ Θ, g (θ) is parametric function. We are testing null hypothesis

H01 : g (θ) = g(θ0) against two-sided alternative H11 : g (θ) "= g(θ0). Let (LB,UB) be

interval estimate of parametric function g (θ) with coverage probability 1 − α. Then

AIS,1 = {LB,UB; g(θ0) ∈ (LB,UB)}

is acceptance region of a test H01 against H11 on significance level α. If we are

testing H02 : g (θ) ≤ g(θ0) against one-sided (right) alternative H12 : g (θ) > g(θ0) and

if LB∗ be lower estimate of g (θ) with coverage probability 1 − α, then

AIS,2 = {LB∗; LB∗ < g(θ0)}

is acceptance region of a test H02 against H12 on significance level α. If we are

testing H03 : g (θ) ≥ g(θ0) against one-sided (left) alternative H13 : g (θ) < g(θ0) and

if UB∗ is upper estimate of g (θ) with coverage probability 1 − α, then

AIS,3 = {UB∗;UB∗ > g(θ0)}

is acceptance region of a test H03 against H13 on significance level α.



Testing of Statistical Hypotheses
Rejection region

Definition (Rejection (critical) region of H0)
Let X be a random variable with certain distribution (probabilistic model) dependent on

parameter θ ∈ Θ, g (θ) is parametric function. We are testing null hypothesis

H01 : g (θ) = g(θ0) against two-sided alternative H11 : g (θ) "= g(θ0). Let (LB,UB) be

interval estimate of parametric function g (θ) with coverage probability 1 − α. Then

WIS,1 = {LB,UB; g(θ0) /∈ (LB,UB)}

is critical region of a test H01 against H11 on significance level α. If we are testing

H02 : g (θ) ≤ g(θ0) against one-sided (right) alternative H12 : g (θ) > g(θ0) and if LB∗

be lower estimate of g (θ) with coverage probability 1 − α, then

WIS,2 = {LB∗; LB∗ ≥ g(θ0)}

is critical region of a test H02 against H12 on significance level α. If we are testing

H03 : g (θ) ≥ g(θ0) against one-sided (left) alternative H13 : g (θ) < g(θ0) and if UB∗

is upper estimate of g (θ) with coverage probability 1 − α, then

WIS,3 = {UB∗;UB∗ ≤ g(θ0)}

is critical region of a test H03 against H13 on significance level α.

Testing of Statistical Hypotheses
Test criterion

Definition (Test criterion)

A test criterion is a test statistic T = T0 = T0(X1,X2, . . . ,Xn), with

known asymptotic distribution if H0 is known. The set of possible

values of T0 is divided to two subsets, i.e. acceptance region H0

(notation A) and critical region H0 (notation W). These two regions

are divided by critical values tα/2 and t1−α/2, resp. tα and t1−α (for

particular H0 and H1) of the distribution of test statistics T0 (if H0 is

true).

Definition (Confidence interval)

A confidence interval (CI) is a type of interval estimate of a

population parameter θ. It is an observed, often called empirical ,

interval (i.e., it is calculated from the observations) that includes the

value of an unobservable parameter θ if the experiment is repeated.

The frequency that observed interval contains the parameter is

determined by the confidence coefficient 1 − α (i.e. confidence

level, coverage probability).

Testing of Statistical Hypotheses
To carry out a hypothesis test

Step 1 define the null and alternative hypothesis (H0 and H1)

Step 2 decide on a significance level α = 0.1,0.05,0.01

Step 3 calculate the test statistic (test criterion) T0

Step 3 determine the critical value(s)

Step 5 decide on the outcome of the test (reject/don’t reject H0)

depending on one of the following ways:

◮ base on critical region W = WT (observed test statistic

t0 = tobs and critical values tα/2 and t1−α/2, resp. tα and

t1−α),
◮ base on critical region WIS, t.j. empirical confidence interval

(and g(θ0)),
◮ base on p-value.

Step 6 state the conclusion in words

Testing of Statistical Hypotheses
To carry out a hypothesis test – based on test statistic and critical value

Definition (Testing based on critical region W)

Rejecting H0. If observed test statistic (realisation of test statistic) t0
of test statistic T0 is within a critical region W (equivalently is not from

an acceptance region A), H0 is rejected at a significance level α, i.e.

we do have sufficiently enough evidence to reject H0.

Not rejecting H0. If observed test statistic t0 of test statistic T0 is

within an acceptance region A (equivalently, it is not from a critical

region W), H0 is not rejected at a significance level α, i.e. we don’t

have sufficiently enough evidence to reject H0.

Let tmin be the smallest possible value of a test criteria T0 and tmax be

the highest possible value of a test criteriaT0, then

1. two-sided alternative – critical region

W1 = (tmin, t1−α/2) ∪ (tα/2, tmax),

2. one-sided (right) alternative – critical region W2 = (tα, tmax),

3. one-sided (left) alternative – critical region W3 = (tmin, t1−α).



Testing of Statistical Hypotheses
To carry out a hypothesis test – based on CI

Definition (Testing based on CI)

Rejecting H0: If g(θ) = g(θ0) is within CI (H0 is valid), H0 is rejected

at the significance level α, i.e. we do have sufficiently enough

evidence to reject H0.

Not rejecting H0: If g(θ) = g(θ0) is not within CI (H0 is valid), H0 isn’t

rejected at a significance level α, i.e. we don’t have sufficiently

enough evidence to reject H0.

Relationship of confidence interval and statistical test

◮ hypothesis testing ≡ CIs

◮ α-level hypothesis test ≡ 100(1 − α)% CI

◮ one-tail test ≡ one-sided CI (left-sided CI ≡ right-sided

alternative, right-sided CI ≡ left-sided alternative

◮ two-tail test ≡ two-sided CI

◮ parameter(s) ∈ CI ≡ not reject H0

◮ parameter(s) /∈ CI ≡ reject H0

Testing of Statistical Hypotheses
To carry out a hypothesis test – based on p-value (observed significance level)

Definition (Testing based on p-value)

Minimal significance level α (for some test statistic T0), base on which

H02 : g(θ) ≤ g(θ0) is rejected (tested against H12 : g(θ) > g(θ0)), is

called observed significance level or p-value, i.e.

p-value = αobs = sup
θ∈Θ0

Pr (T (X1,X2, . . . ,Xn) ≥ T (x1, x2, . . . , xn); θ) .

This could be written less formally as p-value =
Pr(any test statistics equal or greater than observed |H0 is true).

The closer αobs is to zero, the smaller is the probability that any test

statistic T (X1,X2, . . . ,Xn) produces a p-value (under H0) equal to or

smaller than that observed, while the probability is higher under H1.

Therefore, p-value could be understood as an indicator of credibility

of H0.

Testing of Statistical Hypotheses
To carry out a hypothesis test – based on p-value (observed significance level)

◮ Usually, if αobs < α = 0.05, there is sufficiently enough evidence

to reject H0 and the result of a test is statistically significant.

◮ While αobs > α = 0.1, there is sufficiently enough evidence to

reject H0 and the result of a test is not statistically significant.

◮ The values between 0.05 and 0.1 should be taken as reference

points in a broad sense. As αobs gets closer to either boundary

point of the interval 〈0.05,0.1〉, so this is taken as increasing

evidence for one or other alternative.

◮ Situation with αobs ∈ 〈0.05,0.1) are usually most difficult to

handle and the result is here marginally statistically

significant.

Testing of Statistical Hypotheses
To carry out a hypothesis test – based on p-value (observed significance level)

Wording of the results of a statistical test:

range for p-value stars of significance wording of the result

〈0, 0.001) *** extremely highly statistically significant

〈0.001, 0.01) ** high statistically significant

〈0.01, 0.05) * statistically significant

〈0.05, 0.1) · marginally statistically significant

〈0.1, 1〉 non-significant



Testing of Statistical Hypotheses
To carry out a hypothesis test – based on p-value (observed significance level)

Interpretation of p-values:

◮ p-value < 0.001: the prevalence of an estimated effect is smaller than one to

one thousand (the odds of estimated effect is smaller than 1 : 999), if an effect is

not present in a population (the presence of such an effect is highly

improbable, if an effect is not present in a population – and – the presence of

such an effect is highly probable, if an effect is present in a population)

◮ p-value < 0.01: the prevalence of an estimated effect is smaller than one to one

hundred (the odds of estimated effect is smaller than 1 : 99), if an effect is not

present in a population (the presence of such an effect is very improbable, if an

effect is not present in a population – and – the presence of such an effect is

very probable, if an effect is present in a population)

◮ p-value < 0.05: the prevalence of an estimated effect is smaller than one to one

hundred (the odds of estimated effect is smaller than 5 : 95 or 1 : 19), if an effect

is not present in a population (the presence of such an effect is sufficiently

improbable, if an effect is not present in a population – and – the presence of

such an effect is sufficiently probable, if an effect is present in a population)

◮ p-value ≥ 0.05: the prevalence of an estimated effect is five to one hundred or

greater (5 % or more);

◮ p-value = k , k ∈ 〈0.05, 1〉: the prevalence of an estimated effect is 100 × k to

one hundred (100 × k % or more).

Testing of Statistical Hypotheses
To carry out a hypothesis test – based on p-value (observed significance level)

How is the p-value (mostly) calculated?

1. two-sided alternative –

p-value = 2 min(Pr(T0 ≤ t0|H0),Pr(T0 ≥ t0|H0)), e.g. for normal

and Student distribution of test statistic (symmetric distributions)

and for χ2
df and Fdf1,df2 distribution of test statistic (asymmetric

distributions) or

p-hodnota = min(Pr(T0 ≤ t0|H0),Pr(T0 ≥ t0|H0)), e.g. for χ2
df and

Fdf1,df2 distribution of test statistic (asymmetric distributions)

2. one-sided (right) alternative – p-value = Pr(T0 ≥ t0|H0)

3. one-sided (left) alternative – p-value = Pr(T0 ≤ t0|H0)

Testing of Statistical Hypotheses
On a philosophical level

◮ distinction between ’rejecting H0’ and ’accepting H1’

◮ ’rejecting H0’ – nothing implies about what state the

experimenter is accepting, only that the state defined by H0 is

being rejected

◮ distinction between ’accepting H0’ and ’not rejecting H0’

◮ ’accepting H0’ – the experimenter is willing to assert the state of

nature specified by H0

◮ ’not rejecting H0’ – the experimenter really does not believe H0

but does not have the evidence to reject it

Testing of Statistical Hypotheses
Conservative and liberal test and CI

Definition (Conservative and liberal test)

A test with actual/observed significance level smaller than

nominal significance level α, is called conservative (the test

should theoretically be ”rejecting quickly” H0, but, in reality, it is the

opposite, i.e. the test is ”rejecting slowly”).

A test with actual/observed significance level greater than

nominal significance level α, is called liberal (the test should

theoretically be ”rejecting slowly” H0, but, in reality, it is the opposite,

i.e. the test ”rejecting quickly”).

Definition (Conservative and liberal CI)

CI with actual/real coverage probability greater than nominal

coverage probability 1 − α, is called conservative (i.e. the

probability that θ0 is within CI is greater that expected).

CI with actual/real coverage probability smaller than nominal

coverage probability 1 − α, is called liberal (i.e. the probability that

θ0 is within CI is smaller that expected).



Testing of Statistical Hypotheses
Likelihood ratio – generalised relative likelihood

Two types of hypotheses:

1. simple hypothesis – H0 : θ = θ0 against H1 : θ )= θ0, then

simple likelihood ratio is equal to

λ(x) = λ =
L(θ0|x)

supθ∈Θ L(θ|x)
=
L(θ0|x)

L(θ̂|x)
,

where λ(x) = L(θ0|x) is test statistic and L(θ|x) is continuous for

all x .

2. composite hypothesis – H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, then

generalised likelihood ratio is equal to

λ(x) =
supθ∈Θ0

L(θ|x)

supθ∈Θ L(θ|x)
.

Testing of Statistical Hypotheses
Likelihood ratio test statistic

Subsets of Θ, Θ0 and Θ1, remain the same after monotone

transformation of λ(x), i.e. the statistical tests before and after

transformation are equivalent. Therefore, likelihood ratio test

statistic is equal to

ULR = −2 lnλ(X).

Its realisation, observed likelihood ratio test statistic, is equal to

uLR = −2 lnλ(x), where uLR ∈ (0,∞).

Testing of Statistical Hypotheses
Three test statistics

Geometrical interpretation:

1. ULR – is measuring properly standardised difference between

log-likelihoods in θ̂ and θ0 (i.e. in direction of y axis)

2. UW – is measuring properly standardised absolute value of a

difference of θ̂ a θ0 (in direction of x axis)

3. US – is measuring properly standardised slope of log-ratio in θ0

Example (normal distribution)

Let X ∼ N(µ, σ2), where σ2 is known, H0 : θ = θ0 against H1 : θ $= θ0,

where θ = µ. Then

1. ULR = −2(l(θ0|X)− l(θ̂|X)) =

−
∑n

i=1(Xi − X )2/σ2 +
∑n

i=1(Xi − µ0)
2/σ2 = n

(X−µ0)
2

σ2 ,

2. UW = (X − µ0)
2I(x) = n

(X−µ0)
2

σ2 ,

3. US = (S(µ0))
2

I(µ0)
= (n(X−µ0)/σ

2)2

n/σ2 = n
(X−µ0)

2

σ2 .

All three test statistics are equal, i.e. ULR = UW = US.

Testing of Statistical Hypotheses
Three test statistics

If θ is a scalar, three test statistics are defined as:

1. ULR = −2(l(θ0|X)− l(θ̂|X))
D
∼ χ2

1,

2. UW = (θ̂ − θ0)
2I(θ̂)

D
∼ χ2

1 and equivalently U
1/2

W = ZW
D
∼ N(0,1),

3. US = (S(θ0))
2

I(θ0)

D
∼ χ2

1 and equivalently U
1/2

S
= ZS

D
∼ N(0,1),

If θ is a vector, three test statistics are defined as:

1. ULR = −2(l(θ0|X)− l(θ̂|X))
D
∼ χ2

k ,

2. UW = (θ̂ − θ0)
TI(θ̂)(θ̂ − θ0)

D
∼ χ2

k ,

3. US = (S(θ0))
T (I(θ0))

−1S(θ0)
D
∼ χ2

k .



Testing of Statistical Hypotheses
Three test statistics and related confidence intervals

If θ is a scalar, three confidence intervals are defined as follows:

1. likelihood ratio empirical (1− α)× 100% CI for θ is defined as

CS1−a =
{
θ : ULR(θ) < χ2

1(α)
}
,

where ULR(θ) = −2 ln
L(θ|x)

L(θ̂|x)
.

2. Wald empirical (1− α)× 100% CI for θ is defined based on a

pivot (pivotal statistics)Tpiv = UW(θ)

3. Score empirical (1− α)× 100% CI for θ is defined based on a

pivot Tpiv = US(θ)

If θ is a vector, CIs can be generalized to confidence set CS1−a.

◮ If k = 2, CS1−a is an confidence ellipse.

◮ If k > 2, CS1−a is an confidence ellipsoid.

Additionally, if k = 1, CS1−a is an confidence interval.

Testing of Statistical Hypotheses
Confidence intervals

Wald empirical (1− α)× 100% CI for θ is defined as

(d ,h) =

(
θ̂ − tα/2

̂
SE [θ̂], θ̂ + tα/2

̂
SE [θ̂]

)
,

where the critical value tα/2 depends on the choice of θ̂.

Likelihood ratio empirical (1− α)× 100% CI for θ is defined by its

lower and upper bounds as k% cut-offs of standardized relative

log-likelihood as follows

Pr

(
L(θ|x)

L(θ̂|x)
> cα

)
= Pr

(
−2 ln

L(θ|x)

L(θ̂|x)
< −2 ln cα

)
= 1− α,

where cα = e−
1
2
χ2

1(α). Then

◮ if 1− α = 0.95, then cα = 0.1465001
.
= 0.15 (15% cut-off ),

◮ if 1− α = 0.90, then cα = 0.2585227
.
= 0.26 (26% cut-off),

◮ if 1− α = 0.99, then cα = 0.0362452
.
= 0.04 (4% cut-off).

Testing of Statistical Hypotheses
Likelihood confidence intervals – bisection method

Bisection method

Let θ01, θ02 ∈ 〈θL, θU〉 and f (θ01)f (θ02) < 0, f (·) is continuous with at

least one root within the interval 〈θ01, θ02〉, where

f (θ) = −2 lnL(θ|x)− χ2
1(α) = 0.

If the first derivative of f (·) is having constant sign, then exactly one

root θ∗ ∈ 〈θ01, θ02〉 of f (θ) = 0 exists.

The iterative process is defined as follows:

1. initialisation step – starting point θ(0) = (θ01 + θ02)/2 and i = 1,

2. updating equations – substitution of the boundaries θ01 and θ02

is defined as

〈θi1, θi2〉 =

{〈
θi−1,1, θ

(i−1)
〉
, if f (θi−1,1)f (θ

(i−1)) < 0〈
θ(i−1), θi−1,2

〉
, if f (θi−1,1)f (θ

(i−1)) > 0
,

if f (θ(i−1)) = 0, then end, if not,

Testing of Statistical Hypotheses
Likelihood confidence intervals – Brent-Dekker method

Example (Brent-Dekker method)

Let X ∼ Bin(N,p), where N = 10 and n = x = 8. Estimate the

boundaries of empirical 100×(1− α)% CI for (1) p and (2) odds p
1−p .

The empirical CI are of the two types (A) likelihood and (B) Wald.

Draw the log-likelihood function and its quadratic approximation with

the lower and upper boundary of CI.

Solution (partial)
Wald empirical 100 × (1 − α)% CI for p:

p̂ = 8
10

= 0.8; ŜE [p̂] =

√
p̂(1−p̂)
N

= 0.13.

(d , h) =
(
p̂ − uα/2ŜE [p̂], p̂ + uα/2ŜE [p̂]

)
= (0.55, 1.05).

Likelihood empirical 100 × (1 − α)% CI for p:

CS1−α =
{
p : −2 ln

L(p|x)

L(p̂|x)
≤ 3.84

}
, where (d , h) = (0.50, 0.96),

Wald empirical 100 × (1 − α)% CI for g(p):

g(p̂) = ln
p̂

1−p̂
= log 0.8

0.2
= 1.39.

∂
∂p
g(p) = 1

p
+ 1

1−p
;

̂SE [g(p̂)] = ŜE [p̂]
(

1
p̂

+ 1
1−p̂

)
=

√
p̂(1−p̂)
N

(
1
p̂

+ 1
1−p̂

)
=
√

1
n

+ 1
N−n

= 0.79.

Then (dg , hg) = (−0.16, 2.94) and back-transformed (d , h) = (0.46, 0.95).



Testing of Statistical Hypotheses
Likelihood confidence intervals – Brent-Dekker method

1 x <- 8; N <- 10

2 probs <- seq(0.4,.99,length=1000)

3 like <- dbinom(8,10,probs)

4 rellike <- like/max(like)

5 relloglike <- -2*log(rellike)

6 cutoff <- exp(-1/2*qchisq(0.95,df=1)) #0.1465001

7 like.CI.p <- range(probs[rellike>cutoff]) #0.5009910 0.9634234

8 cutoff <- qchisq(0.95,df=1) #3.841459

9 like.CI.p <- range(probs[relloglike<cutoff]) #0.500991 0.9634234

10

11 p.hat <- x/N

12 i.hat <- N/p.hat/(1-p.hat)

13 loglikeapprox <- -i.hat/2*(probs-p.hat)ˆ2

14 ra <- range(log(rellike))

15 wald.is.p <- p.hat + c(-1,1)*qnorm(0.975)*sqrt(1/i.hat)

16 wald.is.p # 0.552082 1.047918

17

18 gprobs <- log(probs) - log(1-probs)

19 gp.hat <- log(p.hat) - log(1-p.hat)

20 i.hat <- x*(N-x)/N

21 lgp <- -i.hat/2*(gprobs-gp.hat)ˆ2

22 x <- (gp.hat+c(-1,1)*qnorm(0.975)*sqrt(1/i.hat)) #-0.1632 2.9358

23 wald.is.gp <- exp(x)/(1+exp(x))

24 wald.is.gp # 0.4592920 0.9495872

Testing of Statistical Hypotheses
Likelihood confidence intervals – other numerical method
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Figure: Log-likelihood of p and its quadratic approximation

Testing of Statistical Hypotheses
To carry out a hypothesis test

Number of (in)dependent samples for θ, g(θ), θ and g(θ):

◮ one-sample problem about – mean, variance, probability

distribution, correlation coefficient, probability

◮ two-sample problem about – difference in means, ratio of

variances, difference in probability distributions, difference in

correlation coefficients, difference in probabilities

◮ multiple sample problem about – means, variances, probability

distributions, correlation coefficients, probabilities

◮ paired problem – the mean of the differences

Dimension:

◮ univariate problem

◮ multivariate problem

Testing of Statistical Hypotheses
One-sample problems

◮ one-sample Z -test for the mean of one population

◮ one-sample Student t-test for the mean of one population

◮ one-sample χ2-test for the variance of one population

◮ one-sample Kolmogorov-Smirnov test for the empirical

probability distribution function of one population

◮ one-sample Z -test for the population proportion of one

population

◮ one-sample T -test for the correlation coefficient of one

population



Testing of Statistical Hypotheses
Two-sample problems

◮ two-sample Z -test for the difference between the means of two

populations

◮ two-sample Student t-test for the difference between the

means of two populations

◮ two-sample F -test for the ratio of the variances of two

populations

◮ two-sample Kolmogorov-Smirnov test for the difference

between two empirical probability distribution functions

◮ two-sample Z -test for the difference between two population

proportions

◮ two-sample T -test for the difference between correlation

coefficients of two populations


