

Persistence

Filip Nguyen

Agenda

● Persistent storage
● Java Patterns
● Java Persistence API
● Support from Java middleware

Motivation

● Important for Information System
● Project in this course
● Important in the industry, any Java EE interview
● Wide adoption

Persistence I

● Persistent storage
● Java Patterns
● JPA

● Configuration
● Basic Entity Mappings

Resources

● JPA 2.1 specification
● Hibernate documentation
http://hibernate.org/orm/documentation/

● Hibernate in Action
● JEE Development Without EJB: chapter 3,
chapter 10

Persistent storage

● Data Storage Types (RDBMS, NoSQL)
● Java EE Standards JCR, JDO, JPA
● Java Libraries (Spring JDBC Template, iBatis
SQL Map, JPA implementations, NoSQL API
practices)

Data Storage Types

● RDBMs
● Structured, allows constraints
● JDBC drivers

● NoSQL
● Unstructured
● Proprietary drivers

Advantages of RDBMs

● Good theoretical model (Relational Algebra)
● High performance (optimizations)
● Well established and standardized (SQL)
● Supported on many platforms and programming
languages

Disadvantages of RDBMs

● Not possible to horizontally scale
● Adding more RDMBs servers doesn't increase
performance

● RDBMs is usually the bottleneck

Java Libraries for RDBMs

● JDBC
● version 3, version 4

● Spring JDBC Template
● iBatis SQL Map

Java Patterns

● Persistence Layer
● Data Access Object
● Object Relational Mapping

Persistence Layer

● Encapsulates data access
● Lowest level, doesn't use any other layer
underneath

● Shouldn't contain business logic
● Usually implemented using Data Access Object
(DAO) design pattern

Entity

● Represents an object from reality that we model
● Usually a simple POJO class
● In Java the Entity is standardized in JPA. Word
'Entity' in JPA defines very strict Java class as
shown later

Data Access Object Pattern

● Has clear interface, usually Create, Update,
Read, Delete operations

● Usually 1 to 1 relationship to Entity classes

DAO - Example

● PersonDao
● find(long id)
● findByName(String name)
● delete(Person p)
● create(Person p)

DAO Transactions

● Methods of the DAO are fine grained
● DAO should participate in a transaction but does
not demarcate the transactions!

● What do you know about JDBC transaction
control?

DAO Exceptions

● Errors on Data Layer should be propagated
● Encapsulation applies

DAO Exceptions - Example

Naive Exception Translation:

public void create(Person p) {
 try {
 ….
 } catch (SqlException ex) {
 throw new DataAccessException(....);
 }
}

ORM Mapping

Java ORM

● JPA (versions 2, 2.1)
● Hibernate
● Toplink

JPA vs Hibernate

● Java Persistence API (JPA)
● Standard, set of Interfaces
● PDF file with the specification

● Hibernate
● Implementation of the Interfaces
● Additional features on top of the JPA

JPA Entity

● Must have @Entity annotation
● Must have public/protected no-arg constructor
● Must have field acting as unique identifier
annotated with @Id

JPA Entity equals/hashCode

● Use instanceof instead of getClass()
● Prefer business key instead of getId()
● Use getters on “other object” do not take
advantages of visibility of other object's private
field

Supported Data Types

● Java primitive types and wrappers (Integer, etc.)
● java.lang.String;
● Enums
● java.math.BigInteger; java.math.BigDecimal,
● java.util.Date; java.util.Calendar, java.sql.Date,
java.sql.Time, java.sql.Timestamp,

● byte[], Byte[], char[], Character[],
● user-defined types that implement the
Serializable interface;

Supported Data Types

● Java primitive types and wrappers (Integer, etc.)
● java.lang.String;
● Enums
● java.math.BigInteger; java.math.BigDecimal,
● java.util.Date; java.util.Calendar, java.sql.Date,
java.sql.Time, java.sql.Timestamp,

● byte[], Byte[], char[], Character[],
● user-defined types that implement the
Serializable interface;

Basic Field Annotations

● @Lob – large object, usually maps to database
as BLOB

● @Basic(fetch=LAZY)
● @Column
● Convention over configuration
● @Transient

Basic Entity Annotations

● @Table – override the table name, to override
the case of the name use \”\”

● @NamedQuery
● @SecondaryTable

Primary Key

● Entity must have primary key
● Supported Data Types: any primitive type,
java.lang.String, java.util.Date, java.sql.Date,
java.math.BigDecimal, java.math.BigInteger

● May be composite!
● Can be either assigned by the developer or
autogenerated by the database

Primary Key - Generation

● @GeneratedValue(type=TABLE|SEQUENCE|
IDENTITY)

● TABLE – a database table is created and new
primary key values are taken from it

● IDENTITY – database identity column is used
● SEQUENCE – database sequences are used
(some DB systems do not support this)

Primary Key - Generation

public class Product {
@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
private Long id;

Persistence Context

● Memory area with instances of Entities
● Usually one instance of EntityManager
corresponds to this memory area – entities are
tied to this EntityManager

Persistence Context

A persistence context is a set of managed entity
instances in which for any persistent entity identity
there is a unique entity instance. Within the
persistence context, the entity instances and their
lifecycle are managed by the entity manager.

Database Synchronization

● Persistence Context is synchronized
● on flush() operation
● on transaction commit() operation

● Consequence is that you may not see database
insert immediately after persist()

Application Managed Entity
Manager

● You must use close the entity manager through
close() method

● Most typically you will use EntityTransaction and
directly manage transaction boundaries

● In Container you will use @PersistenceUnit to
get EMF and then you can create your EM

Example persist with Application
Managed entity Manager

@PersistenceUnit
private EntityManagerFactory emf;
...
em = emf.createEntityManager();
em.getTransaction().begin();
em.persist(person);
person.setName(“Filip”);
em.getTransaction().commit();
em.close();

Example persist and detached
instance

// somehow obtain instance of EntityManager
em.getTransaction().begin();
em.persist(person);
em.getTransaction().commit();
em.close();
person.setName(“Filip”);

Container Managed
EntityManager

● You will not close() the EM
● Transactions are usually driven by container
declaratively

● @PersistenceContext to get the manager via DI

Example persist and detached
instance

@PersistenceContext
private EntityManager em;
….
em.persist(person);
person.setName(“Filip”);

JPA Configuration

● Standard persistence.xml configuration
● Persistence Unit
● Spring Java Based Configuration

PersistenceUnit

● List of classes to be used
● Database configuration
● Table creation strategy
● Configured in persistence.xml

persistence.xml

● Mandatory file for JPA
● Contains one or more Persistence Units

Spring configuration
● In addition to persistence.xml we need to configure

Spring to act as a container for Persistence services
● @Configuration
● Beans to configure:

● JpaTransactionManager
● LocalContainerEntityManagerFactoryBean
● LoadTimeWeaver
● DataSource

● Spring takes over much configuration that usually is in
persistence.xml In the background the Spring
Framework does programatic persistence context
configuration, defined by JPA specification. Note this is
not available in EE enviro

Spring Application Startup

● In Java SE application use
AnnotationConfigApplicationContext

● In Web Application you can extend
WebMvcConfigurationSupport which will be
autodetected by Servlet 3.0 container

Basic operations
EntityManager em = emf.createEntityManager();
em.find – find an entity by ID
em.persist – persist NEW entity
em.merge – attach an entity to persistence
context
em.refresh – attach an entity to persistence
context and overwite database
em.remove
em.close
em.getTransaction()
begin()
commit()

Persistence II
● Implementing Persistence Layer – DAO objects
● JPA

● Relationships
● Schema Creation Strategies
● Temporal Types
● Cascading
● JPQL
● Criteria API

● Spring Data
● N+1 problem, Advantages/Disadvantages of
ORM

● Beans Validation

Implementing Persistence Layer

● For each entity create a Dao object
● Person entity will have PersonDao

● Each PersonDao is Spring @Component, is
@Transactional and recieves EntityManager
through @PersistenceContext annotation

● PersonDao has simple CRUD methods

JPA Relationships

● Unidirectional
● Bi-directional – maintaining runtime consistency
● Load State - PersistenceUtil
● Fetching Strategies
● Cascading

Unidirectional ManyToOne

● Field contains entity
● @ManyToOne annotation
● In Database this is represented by a foreign key
● The side with @ManyToOne is owning side
● In the example, referenced entity (Category)
must be persisted before so that we can persist
Product

Owning Side, Inverse Side

● Unidirectional relationship has only owning side
● Bidirectional relationship has both owning and
inverse side

● Owning side dictates propagation to the
database

Bidirectional OneToMany

● Owning side is the one with FK on database
● Inverse side must use mappedBy
● Use defensive collections for returning the set
● Always initialize the collection

Database Schema

● In this setting we had the database schema for
bi-directional will be the same as for
unidirectional

Bidirectional runtime
consistency

JPA spec section 2.9: Note that it is the
application that bears responsibility for
maintaining the consistency of runtime
relationships – for example, for insuring that
the “one” and the “many” sides of a
bidirectional relationship are consistent with
one another when the application updates
the relationship at runtime

Database Schema

● In this setting we had the database schema for
bi-directional will be the same as for
unidirectional

Bidirectional runtime
consistency

em.getTransaction.begin()
em.persist(product);
em.persist(category);
product.setCategory(category);
category.addProduct(product);
em.getTransaction.commit();
em.close();

LoadState

tx begin
List<Category> categories = em.createQuery(….);

// here a second SELECT is issued
categories.get(0).getProducts();

tx end

Load State
● Each attribute have default FetchType (important

especially with collections)
● Collections have default FetchType.LAZY

● They are loaded only after the collection is accessed
(typically traversed by loop)

● Setting FetchType.EAGER may result in serious
performance problems since large number of objects
might be loaded from the database

● Leaving FetchType.LAZY may also result in serious
performance problems since accessing the LAZY
collections with loops might result in large number of
queries sent to the database

PersistenceUtil

● You can use PersistenceUtilHelper to find out the load
state of your collections on an Entity
● LoadState.LOADED
● LoadState.NOT_LOADED

Operation Cascading

Use of the cascade annotation element may
be used to propagate the effect of an
operation to associated entities. The cascade
functionality is most typically used in parent-
child relationships.

Operation Cascading

@ManyToOne(cascade=CascadeType.PERSIST)
private Category category;

….

em.getTransaction.begin();
em.persist(product)
product.setCategory(new Category());
em.getTransaction().commit();

JPA Schema Creation

● Bottom Up
● Top Down
● persistence.xml “hibernate.hbm2ddl.auto”:

● create
● create-drop
● update
● validate
● None

● What to use in production?

Temporal Data Types

● java.util.Date vs java.sql.Date
● @Temporal()

● TemporalType.DATE
● TemporalType.TIME
● TemporalType.TIMESTAMP

● How to handle Java 8 data types?

Spring Data

● http://projects.spring.io/spring-data-jpa/
● Simplifies Creation of Data Access Layer
● @EnableJpaRepositories
● public interface PriceRepository extends
CrudRepository<Price, Long> {
}

● http://docs.spring.io/spring-
data/commons/docs/current/api/org/springframe
work/data/repository/CrudRepository.html

Entity Manager

● RESOURCE_LOCAL vs JPA transaction type
● BMT vs CMT transaction demarcation

Java Persistence Query
Language

● Simple queries
● Aggregation
● Creation of new objects
● Parametrized JPQL queries
● Named Queries

Queries

List<Pet> pets =
em.createQuery("SELECT p FROM Pet p",Pet.class)
.getResultList();

● Developer is responsible to understand type of
result a query generates
● Usually the result is list of Entities or single
Entity

● More complicated results come as
List<Object[]>

Creation the queries

● EntityManager.createQuery(String query,Class
result)

● EntityManager.createNamedQuery(String
queryName,Class result)

Using the TypedQuery Object

● getResultList() - runs the query and retrieves the
list

● getSingleResult()
● Single entity
● Aggregation function COUNT, MAX, etc.

● setParameter(..) - used to supply parameters

Path Expression

● JPA Specification 4.4.4
An identification variable followed by the
navigation operator (.) and a state field or
association field is a path expression

SELECT s.name, COUNT(p)
FROM Suppliers s LEFT JOIN s.products p
GROUP BY s.name

Fetch Join
● A FETCH JOIN enables the fetching of an
association or element collection as a side effect
of executing the query

● The JPA provider will try to load the collection in
the same Query! The collection will effectively
be eager loaded!

SELECT d
FROM Department d LEFT JOIN FETCH
d.employees
WHERE d.deptno = 1

Empty Collection Predicate

● Test whether an associated collection is empty

SELECT o
FROM Order o
WHERE o.lineItems IS EMPTY

Named Query

● Named queries are static queries expressed in
Entity metadata

@NamedQuery(name=”findAll”, query=”SELECT p FROM Pet p”)
@Entity
public class Pet {

List<Pet> pets = em.createNamedQuery(“findAll”,
Pet.class”).getResultList();

Constructor Expressions in
SELECT

● So called SELECT NEW

SELECT NEW com.acme.exampleCustomerDetails(c.id, c.status, o.count)
FROM Customer o JOIN c.orders o
WHERE o.count > 100

Parametrized Queries

em.createQuery(“SELECT p
FROM Pet p where p.birthDate =
:date,Pet.class)
.setParameter(“date”, new Date());

Criteria API

● Typesafe way of creating queries
● Must pair with code generation to achieve 100%
typesafeness (e.g. Hiberante JPA 2 Metamodel
Generator which comes as a Maven Plugin)

Criteria API

select p from product p where p.name = 'Guitar'

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Product> cq = cb.createQuery(Product.class);
Root<Product> p = cq.from(Product.class);
cq.select(p).where(cb.equal(p.get("name"),"Guitar"));
TypedQuery<Product> tq= em.createQuery(cq);
tq.getResultList();

ORM Advantages

● Less code to write
● SQL dialect agnostic
● Caching and batch operations

ORM Disadvantages

● Potential performance problems
● Big abstraction (N+1 problem)
● Learning curve
● Less control over final SQL

N+1 Problem

How many SQL statements will be issued?

Product p = find(1);
System.out.println(p.getName());

N+1 Problem

Typically one

select * from PRODUCT where ID = 1;

N+1 Problem

How many now?

List<Category> cats = findAll();

for (Category c : cats) {
 print(c.getProducts().size());
}

N+1 Problem

cats.size()+1

Beans Validation

● Validate your domain object/entities
● EntityManager will automatically detect validation
annotations and enforce the constraints before
persist

● You can create custom constraints

Testing JPA Implementation

● TestNG support
● Test setup

Application Server support

● EJB 2.0
● EJB 3.0 - JPA

EJB 2.1

● Application server with EJB container required
● Entity is a heavyweight component
● CMP or BMP
● JPA is preferred since EJB 3.0

EJB 3

● Java EE standard for ORM (inspired with
Hibernate)

● Entity is lightweight POJO

Spring Framework support

● Spring Transactions
● Spring Emulation of Container for EntityManager
● Spring Data

What we didn't cover

● Inheritance
● Caching
● Transactions, Rollback vs detaching of entities
● Shared Primary Key, OneToOne mappings
● JoinColumn, JoinTable annotations
● Entity Lifecycle Callbacks
● Pessimistic and Optimistic Locking
● XML configuration
● And more...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

