
Bruno Rossi

PA165 Enterprise Java

System Integration I: Web Services &
REpresentational State Transfer (REST)

2/73

Integration, SOC/SOA & Webservices

3/73

System Integration

 System integration (SI) is a software engineering
process that aims at putting together different
subsystems within an overall application.

 SI ensures that each integrated system functions and
potentially can also add value by interconnecting
different sub-systems/components

4/73

Enterprise Integration

Bringing interoperability
between the different
systems within an enterprise
infrastructure

Integrating different
business processes

Integrating different sub-
systems / components

Integrating different
applications

Enterprise Service Bus
(ESB)

Business Process
Execution Language
(BPEL)

Common Object Request
Broker Architecture
(CORBA)

COM (Component Object
Model)

5/73

Distributed Computing Evolution

Client-Server(C/S)
silos

Web-based computing

Web Services/Peer-to-Peer

Servers

Clients

Clients

Servers

Internet PDA Cell
Phone

Server

LaptopKiosk

Workstation

6/73

Evolution of software development /programming

Procedural
computing

Service
oriented

computing
(SOC)

Object
oriented

computing
(OOC)

“Instructive”
computing

Hardware
logic

Execution
logic

Entity/object
logic

Value/servic
e logic

7/73

Code / script
execution

XML

Browsing

HTML

TCP/I
P

File access

Technology

Applications

Text Hypertext Applications
File transfer, E-mail

Web pages
Web services

Internet Evolution

8/73

Service Oriented Computing (SOC)

 SOC is an emerging cross-disciplinary paradigm for
distributed computing that is changing the way software
applications are designed, architected, delivered and
consumed

 SOC is a new computing paradigm that utilizes services as
the basic constructs to support the development of rapid,
low-cost and easy composition of distributed applications
even in heterogeneous environments

S. Dustdar and B. J. Krämer, Eds., “Introduction to Special Issue on Service Oriented Computing (SOC),” ACM Trans. Web, vol. 2, no. 2,
pp. 10:1–10:2, May 2008.

9/73

Services Execution

Data
storage

Client

Brows
er

Applicati
on client
container

Applicati
on client

Server
Service

orchestration and
choreography

Web container

Servlet JSP

EJB container

EJB EJB

10/73

Some SOA definitions (1/2)

A Service-Oriented Architecture (SOA) facilitates the creation of flexible, re-usable
assets for enabling end-to-end business solutions. (Open Group Standard: SOA Reference
Architecture, 2011)

Contemporary SOA represents an open, agile extensible, federated, composable
architecture comprised of autonomous, QoS-capable, vendor diverse, interoperable,
discoverable, and potentially reusable services, implemented as Web services. (Erl, T.,
Service-oriented Architecture: Concepts, Technology and Design, 2005)

Service-Oriented Architecture is an IT strategy that organizes the discrete functions
contained in enterprise applications into interoperable, standards-based services that can
be combined and reused quickly to meet business needs. (BEA white paper, 2005 -> 2008 Oracle)

SOA is a conceptual business architecture where business functionality, or application
logic, is made available to SOA users, or consumers, as shared, reusable services on an
IT network. “Services” in an SOA are modules of business or application functionality with
exposed interfaces, and are invoked by messages. (Marks, E.A., Bell, M., Service Oriented
Architecture (SOA): A Planning and Implementation Guide for Business and Technology, 2006)

11/73

Some SOA definitions (2/2)
Service-oriented architecture (SOA) is a set of principles and
methodologies for designing and developing software in the form of
interoperable services. These services are well-defined business functionalities
that are built as software components (discrete pieces of code and/or data
structures) that can be reused for different purposes. SOA design principles are
used during the phases of systems development and integration. (Wikipedia)

SOA is an architectural style whose goal is to achieve loose coupling among
interacting software agents. A service is a unit of work done by a service
provider to achieve desired end results for a service consumer. Both provider
and consumer are roles played by software agents on behalf of their owners.
(O’Reilly XML.COM)

There is no unique definition: some refer to SOA as an architectural style, others as a
paradigm, principles and methodologies, IT strategy, etc...

12/73

What is SOA

SOA is an architectural style,

realized as a collection of collaborating agents,
each called a service,

whose goal is to manage complexity and
achieve architectural resilience and

robustness through ideas such as loose
coupling, location transparency, and protocol

independence.
(IBM definition of SOA)

13/73

Service

 A service is an entity that has a description, and that is made
available for use through a published interface that allows it to be
invoked by a service consumer.

 A service in SOA is an exposed piece of functionality with three
properties:
 The interface contract to the service is platform-independent.
 The service can be dynamically located and invoked.
 The service is self-contained. That is, the service maintains its own

state.

14/73

What is a WebService

 A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It
has an interface described in a machine processable format (usually
WSDL).

 Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-related
standards

15/73

Principles of SOA

 Services
 Share a formal contract
 Are loosely coupled
 Abstract underlying logic
 Are composable
 Are reusable
 Are autonomous
 Are stateless
 Are discoverable

16/73

A SOA Characterization

17/73

REpresentational State Transfer (REST)

PA165 Enterprise Java
2014-2015

18/73

Distributed Systems

Distributed systems

….

CORBA

Broker Architecture Web Services

Peer-to-Peer
Systems

Service-Oriented
Systems

….

RESTful Web
Services

WS*Web Services

REST=Representational State Transfer

18

19/73

REST

REpresentational State
Transfer
 Named by Roy Fielding in his

Ph.D thesis from 2000

“Architectural Styles and the
Design of Network-based
Software Architectures”

 http://ics.uci.edu/~fielding/pubs/dissertation/top.htm

 it is an architectural style: REST is
a sort of reverse-engineering of how
the Web works. HTTP and URIs
were written with the REST
principles in mind before they were
formalized

 The original idea behind
Representational State Transfer is to
mimic the behaviour of Web
applications : as a net of Web pages
and links, resulting in the next page
(state change)

 REST was born in the context of
HTTP, but it is not limited to that
protocol.

19

20/73

WS* vs. RESTful Web services

WS*Web Services
Middleware

Interoperability
Standards

RESTful Web Services
Architectural style for

the Web

20

21/73

REST & SOA
21

 How does REST fit in the SOA
characterization?

 What about the SOA principles?

Services

Share a formal contract

Are loosely coupled

Abstract underlying logic

Are composable

Are reusable

Are autonomous

Are stateless

Are discoverable

22/73

HTTP Request/Response as REST

Request
GET /customer/{id}/items HTTP/1.1
Host: localhost
Accept: application/xml

Response
HTTP/1.1 200 OK
Date: Fri, 22 Jun 2013 17:21:35 GMT
Server: Apache/1.3.6
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0"?>
<items xmlns="…">
 <item>…</item>
 …
</items>

Method

Representation

State
transfer

Resource

22

23/73

URI, example

http://localhost/customers/123

Resource Collection name

Primary key

23

24/73

HTTP Methods,
for both collection and single item

GET
 to retrieve information
 Retrieves a given URI
idempotent, should not initiate a
state
 Cacheable

POST
 to add new information
 Add the entity as a
subordinate/append to the POSTed
resource

PUT
 to update information
 Full entity create/replace used
when you know the “id”

DELETE
 to remove (logically) an entity

24

25/73

An Example

HTTP Client
(Web Browser)

Web Server
(Application server)

Database

GET /books/222

POST /order

PUT /order/12

301 Location: /order/12

SELECT FROM books
WHERE id=222

INSERT INTO orders

UPDATE orders
WHERE id=12

25

26/73

REST Methods
26

Method Collection of resources, e.g.
<host:port>/<context>/resources

Single item, e.g.
<host:port>/<context>/resources/1

@GET Get a list of all the resources Retrieve data for resource with id 1

@PUT Update the collection with a new one Update the resource with id 1

@POST Create a new member resource Create a sub-resource under resource
with id 1

@DELETE Delete the whole collection Delete the resource with id 1

@HEAD Retrieve meta-data information according
to HTTP head request

Retrieve data for resource with id 1

 @OPTIONS Retrieved allowed operations, e.g. Allow:
 GET, OPTIONS

 Retrieved allowed operations, e.g. Allow:
 HEAD,GET,PUT,DELETE,OPTIONS

 @PATCH Partial modification of the collection Partial modification of some attributes of
 resource with id 1

27/73

REST Maturity Models

28/73

REST Maturity Model
28

Explains different levels at which REST can be implemented

See http://martinfowler.com/articles/richardsonMaturityModel.html

http://martinfowler.com/articles/richardsonMaturityModel.html

29/73

Level 0 – The Swamp of POX*

 Looks more as a Remote Procedure Call system

 We post to an endpoint asking for different services

 There is no knowledge about resources, rather messages that are
sent to the endpoints (and back responses)

29

* Plain Old XML

POST /appointmentService HTTP/1.1
[various other headers]

<openSlotRequest date = "2010-01-04" doctor = "mjones"/>

30/73

Level 1 – Resources

 At this level we introduce Resources

 We contact resources, not endpoints

 Instead of passing parameters, now we contact the specific resource

30

POST /doctors/mjones HTTP/1.1
[various other headers]

<openSlotRequest date = "2010-01-04"/>

31/73

Level 2 – HTTP Verbs

 At this level we start using HTTP verbs

 We start differentiating between POST and GET

 We also start using HTTP response codes

 We start differentiating “safe” vs “unsafe” operations

31

GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.1

32/73

Level 3 – Hypermedia Controls (1/2)

 We introduce HATEOAS (Hypertext As The Engine Of Application
State)

32

GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.1

This time the response contains link to URI:

<openSlotList>
 <slot id = "1234" doctor = "mjones" start = "1400" end = "1450">
 <link rel = "/linkrels/slot/book"
 uri = "/slots/1234"/>
 </slot>
...

33/73

Level 3 – Hypermedia Controls (2/2)

 This allows to create a more fluent flow of resources:

33

...
<link rel = "/linkrels/appointment/cancel"
 uri = "/slots/1234/appointment"/>
 <link rel = "/linkrels/appointment/addTest"
 uri = "/slots/1234/appointment/tests"/>
 <link rel = "self"
 uri = "/slots/1234/appointment"/>
 <link rel = "/linkrels/appointment/changeTime"
 uri = "/doctors/mjones/slots?date=20100104@status=open"/>
 <link rel = "/linkrels/appointment/updateContactInfo"
 uri = "/patients/jsmith/contactInfo"/>
 <link rel = "/linkrels/help"
 uri = "/help/appointment"/>
...

34/73

REST Principles
PA165 Enterprise Java
2014-2015

35/73

REST Principles (1/4)

 REST services are stateless. From Fieldings' thesis: “each
request from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of
any stored context on the server”

 So, server sessions should not be used → all needed to process a
request should be available in the request

 Messages are self-describing

 No need to start negotiation to understand how to communicate with
a service

 Specific to HTTP, URI have semantics

35

36/73

REST Principles (2/4)

 In REST, resources are manipulated through the exchange
of representations of the resources
 The components in the system exchange data (usually XML

documents) → this represents a resource

 REST-based architectures communicate primarily through the
transfer of representations of resources
 Resources have multiple representations (e.g. XML, JSON,

XHTML, JPEG img)

36

37/73

REST Principles (3/4)

 RESTful services have a uniform interface
 No WSDL in REST
 Standard HTTP methods GET, POST, PUT, DELETE, etc...
 Protocol independence (although by default HTTP is relied on)

 REST-based architectures are built with resources

→ Resources are uniquely identified by URIs

37

38/73

REST Principles (4/4)

 Hypermedia as the engine of application state
(HATEOS)

 Fielding defines hypertext as: “the simultaneous presentation of
information and controls such that the information becomes the
affordance through which the user (or automaton) obtains choices
and selects actions”

 This is important because the implication is that: every resource
returned by a server will allow to follow the URIs to any next step

See http://spring.io/understanding/HATEOAS

http://spring.io/guides/tutorials/bookmarks/#_building_a_hateoas_rest_service

38

http://spring.io/understanding/HATEOAS
http://spring.io/guides/tutorials/bookmarks/#_building_a_hateoas_rest_service

39/73

Safety and Idempotence

 The term "safe" means that if a given method is called, the resource
state on the server remains unchanged

 By specifications, GET and HEAD should always be safe – clearly it
is up to the developers not to violate this hidden specification

 PUT, DELETE are considered unsafe, while for POST generally
depends

39

40/73

Safety and Idempotence

 The word "idempotent" means that, independently from how many
times a given method is invoked, the end result is the same.

 GET and HEAD are an example of an idempotent operation

 PUT is as well idempotent: if you add several times the same
resource, it should be only inserted once

DELETE is as well idempotent: issuing delete several times should
yield the same result – the resource is gone (but what about
DELETE /items/last ?)

 POST is generally not considered an idempotent operation

40

41/73

Safety and Idempotence
41

Method Safety Idempotence

@GET YES YES

@PUT NO YES

@POST NO NO

@DELETE NO YES

@HEAD YES YES

 @OPTIONS
YES YES

 @PATCH NO NO

42/73

REST Best Practices
PA165 Enterprise Java 2014-2015

43/73

REST Best Practices (1/6)

 Have consistent usage of resource names, e.g. plural for resources
→ /users/1, orders/1

 Use URIs to deal with relationships → GET /users/1/orders to
get all orders for a user

 Thinking in terms of CRUD operations

– Example: using PUT and DELETE to set flags, rather than
/users/1/enable /users/1/disable

– If not possible (e.g. retrieval of multiple resources) then also
/find or similar action might be appropriate

 Filtering and sorting options should be provided as parameters in
the API, e.g. GET /users/1/orders?
state=active&sorting=by-name

43

44/73

REST Best Practices (2/6)

 Might decide to use some parameter to limit “response-heavy”
queries – GET /users?fields=id,name,desc

– The Github API takes an interesting approach: collections return only
the basic information (id, name, desc,...). If you need more → need to
query the specific resource

 Versioning: it is important to version the API – the requested version
can be given in the header (preferred) or as a parameter.

– See how the GitHub REST API manages versioning:
https://developer.github.com/v3/media/#request-specific-version

 Might use some aliases for common queries → GET
/users/most_popular

44

https://developer.github.com/v3/media/#request-specific-version

45/73

REST Best Practices (3/6)

 Create and Update methods should return the resource that has
been created or modified

 Usage of HATEOAS is a design decision, in some cases it might add
more overhead to what it is really necessary

 JSON is nowadays much more popular than XML in REST APIs*

45

* Pragmatic Best Practice about REST APIs
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api

46/73

REST Best Practices (4/6)
 Some API prefer to always wrap all responses so that there is a

standard way of returning data even in case of errors:
{
 "data" : {
 "id" : “1”,
 "name" : "Joseph"
 },
 "state" : {
 "name" : “OK”,
 "desc" : "no error"
 }
}

This depends on the case, as it introduces overhead for every
response. Good idea is to return some structured information, e.g.
validation errors

{
 "code" : 1024,
 "message" : "Validation Failed",
 "errors" : [
 {
 "field" : "first_name",
 "message" : "First name cannot be empty"
 },
 {
 "field" : "price_change",
 "message" : "Price cannot be changed by over 10%"
 }
]
}

46

47/73

REST Best Practices (5/6)

 When returning paginated results, you can use the link
header:
– https://developer.github.com/v3/#pagination

 It can be a good idea to think about limiting access to the API
implementing some limiting counter returning 429 Too
Many Requests
– https://developer.github.com/v3/#rate-limiting

 Implementing a limiter for access will also “force” clients to use
conditional requests

47

https://developer.github.com/v3/#pagination
https://developer.github.com/v3/#rate-limiting

48/73

REST Best Practices (6/6)

 Most used return codes in REST APIs:

 200 OK → successful GET, PUT, PATCH, DELETE, POST (no creation)
 201 Created → After a POST (creation). Location header might give location

of new resource
 204 No Content → Successful but no body (e.g DELETE)
 304 Not Modified → HTTP caching
 400 Bad Request → error in the request body
 404 Not Found → non-existent resource requested
 409 Conflict → a resource conflict, e.g. duplicate entities
 410 Gone → old API method?
 415 Unsupported Media Type → incorrect content type in part of the

request
 422 Unprocessable Entity → Validation errors
 429 Too Many Requests → limiting requests

48

5xx HTTP codes are used to indicate some server-error – might decide in these cases
to always return 500 Internal Server Error

49/73

Github REST API

 Let's look at GitHub REST API
 https://developer.github.com/v3/

 Also a wrapper of such API: http://github-api.kohsuke.org

49

https://developer.github.com/v3/
http://github-api.kohsuke.org/

50/73

REST in Spring

51/73

A Spring REST Controller
51

Spring

@RestController
@RequestMapping("/customers")
public class CustomersController {

 @RequestMapping(value="customers", method=RequestMethod.GET,
 headers="Accept=text/plain")
 public String getCustomers() {

 }
 ...
}

or produces={MediaType.TEXT_PLAIN}

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

52/73

Multiple Representations

 Data in a variety of formats
 XML
 JSON (JavaScript Object Notation)
 XHTML

 Content negotiation
 Accept header
GET /customers
Accept: application/json

 URI-based
GET /customers.json

 parameter-based

 http://localhost/customers?type=json

52

produces={MediaType.TEX
T_PLAIN [, more-types]}

Specifies the type of data that is
returned, for example, "text/plain"

consumes={type [, more-
types]}

The type of data that is consumed
by the method, for example,
"text/plain"

Which is the order in which these are
considered in Spring?

53/73

Multiple Representations

 Content negotiation
 Accept header
GET /customers
Accept: application/json

 URI-based
GET /customers.json

 parameter-based

 http://localhost/customers?type=json

53

Why is 'accept header' the last option?

3

1

2

54/73

Content Negotiation

 Example

@RestController
@RequestMapping(value=ApiUris.ROOT_URI_ORDERS,
consumes=MediaType.TEXT_PLAIN_VALUE)
public class CustomerController {

@RequestMapping(method = RequestMethod.POST, consumes =
MediaType.TEXT_XML_VALUE, produces = MediaType.TEXT_XML_VALUE)
public CustomerDTO createCustomer(NewCustomerDTO customer)
{...}

}

54

POST /customers
content-type: text/xml

<customer name="Roy" surname="Fielding"/>

55/73

Content Negotiation

 Example

@RestController
@RequestMapping(value=ApiUris.ROOT_URI_ORDERS,
produces=MediaType.TEXT_PLAIN_VALUE)
public class CustomersController {

 @RequestMapping(method = RequestMethod.GET)
public List<CustomerDTO> getCustomersPlain()
{...}

@RequestMapping(method = RequestMethod.GET, produces =
 MediaType.TEXT_XML_VALUE)
public List<CustomerDTO> getCustomersXML()
{...}

}

55

GET /customer
Accept: text/xml

56/73

Content Negotiation
56

Configuration example in Spring

@Configuration

@EnableWebMvc

public class WebConfig extends WebMvcConfigurerAdapter {

 @Override

 public void configureContentNegotiation(ContentNegotiation
Configurer configurer) {

 configurer.favorPathExtension(false).favorParameter(true).
parameterName("mediaType").ignoreAcceptHeader(true).
defaultContentType(MediaType.APPLICATION_JSON).mediaType("txt",MediaType.TE
XT_PLAIN).mediaType("xml",MediaType.APPLICATION_XML).
mediaType("json",MediaType.APPLICATION_JSON);

 }

}

We are favouring parameter based requests, ignoring accept headers

57/73

Content Negotiation
57

Configuring the ObjectMapper

See http://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html

 @Bean

 public MappingJackson2HttpMessageConverter customJackson2HttpMessageConverter() {

 MappingJackson2HttpMessageConverter jsonConverter = new
 MappingJackson2HttpMessageConverter();

 ObjectMapper objectMapper = new ObjectMapper();

 objectMapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);

 objectMapper.disable(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS);

 jsonConverter.setObjectMapper(objectMapper);

 return jsonConverter;

 }

 @Override

 public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {

 converters.add(customJackson2HttpMessageConverter());

 }

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-spring-mvc.html

58/73

Managing Exceptions & Return Codes

 It is responsibility of the developer to provide consistent behaviour of
their REST API:

 Successful HTTP response code numbers go from 200 to 399. The creation will
return 200, “OK” if the object returned is not null. 204, “No Content” is returned when a
null object was retrieved. As well as if the return is of type void 204, “No Content” is
returned.

 HTTP error response code numbers go from 400 to 599. A 404 “Not Found”
response code will be sent back to the client if the resource requested is not found. A
bad request "400" is sent back in case of bad parameters. All the codes in the range
5xx indicate internal errors of the application.

58

59/73

Testing the REST API (1/2)

 Very often it is useful also for documentation (see later)

 Using org.springframework.test.web.servlet.MockMvc

59

mockMvc = standaloneSetup(productsController).setMessageConverters(new
MappingJackson2HttpMessageConverter()).build();

[...]

// mocking some facade/service operation
doReturn(Collections.unmodifiableList(this.createProducts())).when(

productFacade).getAllProducts();

mockMvc.perform(get(ApiUris.ROOT_URI_PRODUCTS))
.andExpect(status().isOk())
.andExpect(

content().contentType(MediaType.APPLICATION_JSON_VALUE));

60/73

Testing the REST API (2/2)

 Using JSONPath to check the JSON request/response

 https://github.com/jayway/JsonPath

60

mockMvc.perform(get(ApiUris.ROOT_URI_ORDERS).param("status",
"ALL")).andDo(print())
 .andExpect(status().isOk())
 .andExpect(
 content().contentType(MediaType.APPLICATION_JSON_VALUE))
 .andExpect(jsonPath("$.[?(@.id==1)].state").value("DONE"));

Filtering expression, '@' stands for the current node

https://github.com/jayway/JsonPath

61/73

Managing Exceptions (1/5)

 Any unhandled exception will cause an HTTP 500
response

 However, you can annotate exceptions with
@ResponseStatus to return the appropriate HTTP error
code & message

61

@ResponseStatus(value=HttpStatus.NOT_FOUND,
 reason="the resource was not found")
 public class ResourceNotFoundException extends RuntimeException{
 [...]
 }

62/73

Managing Exceptions (2/5)
62

@ResponseStatus(value=HttpStatus.NOT_FOUND, reason="The customer was not found")
 public class CustomerNotFoundException extends RuntimeException {
 // ...
 }

@RequestMapping(value="customers/{id}", method=RequestMethod.GET,
 headers="Accept=text/plain")
public String getCustomer(@PathVariable("id") long id) {

 customer = customersFacade.getCustomerById(id);
 if (customer == null) throw new CustomerNotFoundException(id);

}

63/73

Managing Exceptions (3/5)

See org.springframework.http.HttpStatus

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/HttpStatus.html

63

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/HttpStatus.html

64/73

Managing Exceptions (4/5)

 Methods annotated with @ExceptionHandler are handling
exceptions

 You do not need to add @ResponseStatus to the Exceptions

 Gives you more freedom in returning a custom error data structure

64

 @RestController
 public class MyController {
 ...
 @ExceptionHandler
 @ResponseStatus(HttpStatus.UNPROCESSABLE_ENTITY)
 @ResponseBody
 ApiError handleException(ResourceAlreadyExistingException ex) {
 ApiError apiError = new ApiError();
 apiError.setErrors(Arrays.asList("the requested resource already
 exists"));
 return apiError;
 }
}

65/73

Managing Exceptions (5/5)

 Another way is to have a global advice using
@ControllerAdvice that will manage exceptions for all
controllers

65

@ControllerAdvice
class GlobalControllerExceptionHandler {
 @ResponseStatus(HttpStatus.NOT_FOUND)
 @ExceptionHandler(CustomerNotFoundException.class)
 public void handleCustomerNotFound() {
 ...
 }
}

66/73

Caching

Client Server

Basic setup

Caching:
Server

Caching:
client

Server

Client

Caching:
client

Caching:
Server

Caching options

66

67/73

Caching Example in Spring
67

public String myHandleMethod(WebRequest request, Model model) {
 String eTag = // application-specific calculation

 if (request.checkNotModified(eTag)) {
 // shortcut exit - no further processing necessary
 return null;
 }

 // further request processing, actually building content
 model.addAttribute(...);
 return "myViewName";
 }

From http://docs.spring.io/spring/docs/current/javadoc-
api/org/springframework/web/context/request/WebRequest.html#checkNotModified-
java.lang.String-

68/73

Caching Example in Spring
68

> curl -X GET -i http://localhost:8080/eshop-rest/users/1

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
ETag: "3242771"
Cache-Control: no-transform, max-age=86400
Content-Type: text/plain
Content-Length: 4

> curl -i -X GET http://localhost:8080/eshop-rest/users/1
--header 'If-None-Match: "3242771"'

-Match: "3242771"'
HTTP/1.1 304 Not Modified
Server: Apache-Coyote/1.1
ETag: "3242771"

69/73

Documentation

 Several ways to document a Spring REST API

 More design-oriented

– Example, Apiary https://apiary.io/

 By test invocation

– REST Docs, http://projects.spring.io/spring-restdocs/

 By annotating controller methods

– Swagger, http://swagger.io

69

https://apiary.io/
http://projects.spring.io/spring-restdocs/
http://swagger.io/

70/73

Documentation - Apiary
70

71/73

Documentation – REST Docs

 Official Spring project

 Uses expected testing behaviour to describe the API

71

In a test class:
@Rule
public final RestDocumentation restDocumentation = new
RestDocumentation("build/generated-snippets");

@Before
public void setUp() {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.context)
 .apply(documentationConfiguration(this.restDocumentation))
 .build();
}

Later on in a @Test method:
this.mockMvc.perform(get("/customers").accept(MediaType.APPLICATION_JSON))
 .andExpect(status().isOk())
 .andDo(document("customers"));

72/73

Documentation – Swagger

 Very popular documentation project for REST API, not officially
endorsed by the Spring community

 Based on additional annotations on the controllers to describe the
API

72

@RestController
@Api(value=ApiUris.ROOT_URI_CUSTOMERS, description="All operations related to
 customer resources")
@RequestMapping(ApiUris.ROOT_URI_CUSTOMERS)
public class CustomersController {

 @ApiOperation(value = "Get information about one customer", note="additional notes")
 @RequestMapping(value="/{id}", method=RequestMethod.GET)
 public String getCustomer(@ApiParam(name="id", value="the id of the customer resource
 to be retrieved", required=true) @PathVariable String productid) {

 }
 ...
}

See https://github.com/swagger-api/swagger-core/wiki/Annotations-1.5.X

https://github.com/swagger-api/swagger-core/wiki/Annotations-1.5.X

73/73

References

 Roy Fielding PhD Thesis:
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

 Review of REST API documentation tools:
https://www.opencredo.com/2015/07/28/rest-api-tooling-review/

 Richardson Maturity model from Martin Fowler's website:
See http://martinfowler.com/articles/richardsonMaturityModel.html

 Webber, Jim, Savas Parastatidis, and Ian Robinson. REST in practice:
Hypermedia and systems architecture. " O'Reilly Media, Inc.", 2010.

 Pragmatic Best Practice about REST APIs
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api

 RESTful best practices
http://www.restapitutorial.com/media/RESTful_Best_Practices-v1_1.pdf

73

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.opencredo.com/2015/07/28/rest-api-tooling-review/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
http://www.restapitutorial.com/media/RESTful_Best_Practices-v1_1.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

