
Bruno Rossi

PA165 Enterprise Java

System Integration II: SOAP, WS-* Web
Services & Spring-WS

2/82

Webservices & WSDL

3/82

W3C Definition of Web Services

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a
network. It has an interface described in a machine
processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-
related standards.

3

4/82

Web Service Description Language
(WSDL)

 The Web Service Description Language (WSDL) is a technical
description of a Web Service

 It mentions all interfaces available, with the relevant information
for the invocation (parameters, return type...)

It is possible to generate:

 the client code for accessing the Web Service

 A WSDL file from Java source code

 A Java source code skeleton from WSDL file

4

Thomas Erl's definition

5/82

What are WS-* specifications

 The term "WS-*" has become a commonly used abbreviation
that refers to the second-generation Web services
specifications. These are extensions to the basic Web
services framework established by first generation
standards represented by WSDL, SOAP, and UDDI.

 The term "WS-*" became popular because the majority of
titles given to second-generation Web services specifications
have been prefixed with "WS-".

5

Thomas Erl's definition

6/82

6

Business process
Specifications

Management
Specifications

Presentation
Specifications

Metadata
Specifications

Reliability Specifications

Security Specifications Resource
Specifications

In
te

ro
p
e
ra

b
ili

ty

is
su

e
s

D
e
p
e
n
d
e
n
cie

sTransaction
Specifications

Messaging
Specifications

XML Specifications

SOAP

7/82

Web Services Standards for SOA
The Web Services Platform Architecture

Messaging

Quality
of Service

Transport

Description

Components

Transport

Interface + Bindings

Composite

XML Non-XML

Security

Policy

D
i
s
c
o
v
e
r
y
,

N
e
g
o
t
i
a
t
i
o
n
,

A
g
r
e
e
m
e
n
t

Atomic

OrchestrationOrchestration ProtocolsProtocols StateState

Reliable
Messaging Transactions

Component
Model
Component
Model

7

8/82

Web Services Standards for SOA
The Web Services Platform Architecture

Messaging

Quality
of Service

Transport

Description

Components

Transport

Interface + Bindings

Composite

XML Non-XML

Security

Policy

D
i
s
c
o
v
e
r
y
,

N
e
g
o
t
i
a
t
i
o
n
,

A
g
r
e
e
m
e
n
t

Atomic

OrchestrationOrchestration ProtocolsProtocols StateState

Reliable
Messaging Transactions

Component
Model
Component
Model

WS-RM

WSDL* WS-Policy*

HTTP, TCP/IP, SMTP, FTP, …

U
D
D
I
,

W
S
-
A
d
d
r
,

M
e
t
a
d
a
t
a

E
x
c
h
.
,
…

WS-C
WS-N* WS-RFWS-BPEL

WS-Security*
WS-AT
WS-BA

SOAP, WS-Addr* JMS, RMI/IIOP, ...

SCA

8

9/82

SOAP
(Simple Object Access Protocol)

10/82

SOAP, in general terms
10

 Acronym for Simple Object Access Protocol

 Nowadays it refers more to a specification, so it has lost the original
meaning

 Provides a communication protocol for data transport for webservices

 Exchanges complete documents or call a remote procedure

 Is platform, language, and protocol independent

https://kore.fi.muni.cz/wiki/index.php/PA165/WebServices_(English)
An historical overview:

https://kore.fi.muni.cz/wiki/index.php/PA165/WebServices_(English)

11/82

XML (Extensible Markup Language)
11

 Sets of rules for encoding documents to structure, store, and
transport data in a convenient way

 Human-readable and machine-readable format

 XML 1.0 Specification produced by the W3C

 two current versions of XML.
 XML 1.0, currently in its fifth edition, still recommended for general use
 XML 1.1, not very widely implemented and is recommended for use only

by those who need its unique features

12/82

Schema and Validation
12

 Well-formed (compliant to XML
standard) vs valid (compliant to DTD)
 Document contains a reference to

DTD,
 DTD declares elements and

attributes, and specifies the
grammatical rules

 XML processors

 re validating or non-validating
 If error discovered it is reported, but

processing may continue normally

 schema languages constrain
 the set of elements in a document,
 attributes that are applied to them,
 the order in which they appear,
 the allowable parent/child

relationships

XML Schema: XSD (XML Schema
Definition)

schema language, described by the
W3C

 (successor of DTD = Document
Type Definition)

 XML schema is more powerful than
DTDs

 XSDs use an XML-based format, so
XML tools can be used process them.

13/82

XML Messaging

 SOAP 1.1 defined:
 An XML envelope for XML messaging:

 Headers + body.
 An HTTP binding for SOAP messaging:

 SOAP is “transport independent”.

 A convention for doing RPC

 An XML serialization format for structured data.
 SOAP Attachments: How to carry and reference data attachments

13

14/82

SOAP Message

SOAP Message

Primary MIME part
(text/xml)

Attachment

Attachment

Attachment

SOAP Envelope

SOAP Header

SOAP Body

Fault

14

15/82

SOAP Message Envelope

Encoding information

Header

 Optional
 Contains context knowledge
• Security
• Transaction

Body

 Methods and parameters

 Contains application data

15

16/82

A SOAP Request

POST /temp HTTP/1.1
Host: www.somewhere.com
Content-Type: text/xml; charset="utf-8"
Content-Length: xxx
SOAPAction: "http://www…../temp"

<?xml version=“1.0”?>

……………..

HTTP
headers and
the blank line

an XML document

“The SOAPAction HTTP request header field can be used to indicate the intent of the SOAP HTTP
request. The value is a URI identifying the intent. SOAP places no restrictions on the format or
specificity of the URI or that it is resolvable. An HTTP client MUST use this header field when issuing a
SOAP HTTP Request.”
Note: in SOAP 1.2, the SOAPAction header has been replaced with the “action” attribute on the
application/soap+xml media type (Content-Type: application/soap+xml; charset=utf-8). But it works
almost exactly the same way as SOAPAction.

16

Source: Simple Object Access Protocol (SOAP) 1.1 specifications

17/82

<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope“
soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Header>
...

</soap:Header>

<soap:Body>
...
<soap:Fault>

...
</soap:Fault>

</soap:Body>
</soap:Envelope>

soap-encoding

XML message structure

Version number

17

18/82

SOAP Encoding

 When SOAP specification was
written for the first time,
XMLSchema was not
available, so a common
way to describe messages
was defined.

 Now SOAP encoding defines
it's own namespace as
http://schemas.xmlsoap.org/so
ap/encoding/ and a set of
rules to follow.

 Rules of expressing
application-defined data types
in XML

 Based on W3C XML Schema

 Simple values
 Built-in types from XML
Schema, Part 2 (simple
types, enumerations,
arrays of bytes)

 Compound values
 Structures, arrays,
complex types

18

19/82

SOAP Header (1/3)
19

 Allows to specify non-body related information

 For example if some node is the receiver, how
intermediary nodes might deal with the message, etc...

<SOAP-ENV:Header>
 <ns:timeAlive value="3600" xmlns:ns="http://muni.fi.cz/pa165/ws"
</SOAP-ENV:Header>

20/82

SOAP Header (2/3)
20

 Some interesting attributes that are specified in SOAP
specifications are mustUnderstand and role

 MustUnderstand = “true” means that if a node does not
understand the header element with such attribute →
must send a SOAPFault

 Role: only a node with the specified role can deal with
the header element – other nodes do not need to process

<SOAP-ENV:Header>
 <ns:timeAlive value="3600" xmlns:ns="http://muni.fi.cz/pa165/ws"
 role="http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver"
</SOAP-ENV:Header>

See http://www.w3.org/TR/2003/REC-soap12-part1-20030624/#soaproles

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/#soaproles

21/82

SOAP Header (3/3)
21

 Relay: whether the element needs to be kept when the
message is forwarded even if it has been processed by
one node

<SOAP-ENV:Header>
 <ns:timeAlive value="3600" xmlns:ns="http://muni.fi.cz/pa165/ws"
 relay="true"
</SOAP-ENV:Header>

22/82

WS-Addressing (1/2)

→ WS-* specifications are inserted on top of SOAP
messaging

→ For example, looking at SOAP, there is no knowledge
about where the message is going, or how to return the
response or where to post an error message → this can be
problematic in case of asynchronous communication

→ WS-Addressing adds this information to the SOAP
envelope

22

See https://jax-ws.java.net/nonav/jax-ws-21-ea2/docs/why-wsaddressing.html

https://jax-ws.java.net/nonav/jax-ws-21-ea2/docs/why-wsaddressing.html

23/82

WS-Addressing (2/2)

Example

23

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa="http://www.w3.org/2004/12/addressing">
<soap:Header>
 <wsa:MessageID>
 UniqueMessageIdentifier
 </wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://somereceiving.client</wsa:Address>
 </wsa:ReplyTo>

 <wsa:FaultTo>
 <wsa:Address>http://somereceiving.server/ErrorHandler</wsa:Address>
 </wsa:FaultTo>

 <wsa:To>http://somereceiving.server/HandlerURI </wsa:To>
 <wsa:Action>

http://somereceiving.server/ACTION
</wsa:Action>

 </soap:Header>

 <soap:Body>
<!-- SOAP Request as usual here -->

 </soap:Body>

24/82

SOAP, “closer to
the bit space”

 SOAP, originally defined as Simple Object Access Protocol, is a
protocol specification that is used to exchange information in a
structured way – the protocol is used for implementation of Web
Services as it builds on top of an Application Layer protocol,
Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer
Protocol (SMTP).

 SOAP is based on on Extensible Markup Language (XML) for its
message format.

 SOAP is usually the foundation layer of a web services protocol
stack, to provide a basic messaging framework.

Summing up

25/82

Some Remarks

 SOAP is not “what it used to be”, the name remained, but the content
has changed

 SOAP term is often used as synonym for WS* web service
architecture, although it is one element of it

 SOAP is not just one element of WS*, it is used in other context as
well, even in parallel with REST web services.

 SOAP is often hidden from the developer, build into tools in such
a way that developer does not have to deal with it at a detailed level.

25

26/82

SOAP vs REST (1/2)

REST

 Easy to develop

 Using existing infrastructure
(and based on HTTP)

 Little learning required

26

SOAP

 More an industry standard
than an architectural style

 More overhead but more
protocol independence

 Based on a specification

WS*Web Services
Middleware

Interoperability
Standards

RESTful Web Services
Architectural style for

the Web

27/82

SOAP vs REST (2/2)

REST

 Limited bandwidth and
resources

 Stateless operations

 Opportunities for caching

27

SOAP

 Asynchronous processing &
invocation

 Need for formal contracts

 Stateful operations

Best used in these cases:

WS*Web Services
Middleware

Interoperability
Standards

RESTful Web Services
Architectural style for

the Web

28/82

SOAP with Attachments,
SOAP with Attachments API for Java (SAAJ)

 SOAP with Attachments (SwA)
or MIME for Web Services refers
to the method of using Web
Services to send and receive files
using a combination of SOAP and
MIME, primarily over HTTP.

 Note that SwA is not a new
specification, but rather a
mechanism for using the
existing SOAP and MIME
facilities to perfect the
transmission of files using Web
Services invocations.

 The SOAP with Attachments API
for Java or SAAJ provides a
standard way to send XML
documents over the Internet from
the Java platform.

 SAAJ enables developers to
produce and consume messages
conforming to the SOAP 1.1
specification and SOAP with
Attachments.

 Developers can also use it to write
SOAP messaging applications
directly instead of using JAX-
RPC (obsolete) or JAX-WS

28

29/82

SOAP with Attachments API for Java
The Java EE 5 Tutorial
http://docs.oracle.com/javaee/5/tutorial/doc/bnbhf.html

29

30/82

import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.MessageFactory;
……….

public SimpleSAAJ {
 public static void main(String args[]) {
 try {
 //Create a SOAPConnection
 SOAPConnectionFactory factory =
 SOAPConnectionFactory.newInstance();

 SOAPConnection connection =
 factory.createConnection();

 // Close the SOAPConnection
 connection.close();

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
}

Creating a SOAP
Connection

30

31/82

……………

import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPBody;
import java.net.URL;
……………

 //Create a SOAPMessage
 SOAPMessageFactory messageFactory =

 MessageFactory.newInstance();
 SOAPMessage message = messageFactory.createMessage();
 SOAPPart soapPart = message.getSOAPPart();
 SOAPEnvelope envelope = soapPart.getEnvelope();
 SOAPHeader header = envelope.getHeader();
 SOAPBody body = envelope.getBody();
 header.detachNode();

Creating a SOAP
Message

31

32/82

Populate a SOAP
Message

32

 //Create a SOAPBodyElement
 Name bodyName = envelope.createName("GetElement"
 "n", "http://localhost");
 SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

 //Insert Content
 Name name = envelope.createName("symbol");
 SOAPElement symbol = bodyElement.addChildElement(name);
 symbol.addTextNode("Smith");

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <n:GetElement xmlns:n="http://localhost">
 <symbol>Smith</symbol>
 </n:GetElement>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This will produce the SOAP envelope:

java.net.URL endpoint = new URL("localhost/addr");
SOAPMessage response = connection.call(message, endpoint);

That you can send with

33/82

Invoking Webservices

34/82

Use of web services

Service
requestor Client

Directory
UDDI

Service provider
Web services

Find
(WSDL)

Publish
(WSDL)

Bind / invoke
(SOAP)

SOAP, WSDL, UDDI, and XML in all of them

34

35/82

UDDI (Universal Description,
Discovery and Integration)

35

 UDDI is a platform-independent, Extensible Markup Language
(XML)-based registry by which businesses worldwide can list
themselves, plus a mechanism to register and locate web service
applications.

 It is a standard supported by the Organization for the Advancement
of Structured Information Standards (OASIS)

 In the original plans for the discoverability of web services, a central
role should have been played by UDDI

36/82

Public Registries (well, it used to be...)

 IBM Registration: https://uddi.ibm.com/ubr/registry.html
 inquiryURL= https://uddi.ibm.com/ubr/inquiryapi

 publishURL= https://uddi.ibm.com/ubr/publishapi

 HP Registration: http://uddi.hp.com
 inquiryURL = http://uddi.hp.com/ubr/inquire

 publishURL = https://uddi.hp.com/ubr/publish

 Microsoft Registration: http://uddi.rte.microsoft.com
 inquiryURL=http://uddi.rte.microsoft.com/inquire
 publishURL=https://uddi.rte.microsoft.com/publish

 SAP Registration: http://udditest.sap.com
 inquiryURL=http://uddi.sap.com/UDDI/api/inquiry/

 publishURL=https://uddi.sap.com/UDDI/api/publish/

36

UDDI has not been as successful as its creators had expected.
IBM, Microsoft, and SAP closed their public UDDI nodes in 2006.

The OASIS UDDI Specification Technical Committee has been
dismantled as well.

Microsoft removed UDDI services from the Windows Server
operating system.

UDDI systems are most commonly found inside companies,
where they are used to dynamically bind client systems to
implementations. However, much of the more advanced
functionalities are not used.

37/82

Enabling technologies

Service discovery and publication
UDDI

Service description
WSDL

XML-Based message
SOAP

Network
HTTP, …………

37

38/82

WS*

Web
service

WSDL
Web

service

WSDL

SOAP
messages

SOAP
messages

.NETJ2EE

Platform or middleware

 clear specifications of
the service interface
and the data types in
use

 communication
protocol independent
(platform,
programming
language)

 interoperability.

38

39/82

SOAP engines

SOAP engine

Serialize into
a SOAP

message

De-serialize
into native
data types

Message

Message

SOAP engine

Serialize into
a SOAP

message

De-serialize
into native
data types

Consumer
/ Client

Provider /
Server

A SOAP engine allows to:
1.Serialize objects (from any supported language) into SOAP messages
2.Deserialize SOAP messages back into objects, i.e. create the appropriate
data types and populate these with the message content.

39

40/82

JAXB

SOAP

SchemaJAX-P

JAX-RUDDI

WSDL

MTOM

SAAJ

JAX-WS

Java SE
6/7

XML

Includes

In build on

Binds to

Directory for

Provides client
access for

Uses

Provides high-
level API for

Pro
vides

low-le
ve

l

API fo
r

Im
pro

ve
s p

er
fo

rm
an

ce
 o

f

bi
nar

y
at

ta
ch

m
en

ts
 o

f

Transforms Java objects
to/from

Represented by

Processes Defines

40

41/82

Developing Webservices

42/82

Simple Web Service Invocation

Manual Web
Service
Lookup

Invoke Web
Service

Write Client
Code

Remote Web Service

Publish
Web

Service

Service directory

1.

2. HTTP GET

3. WSDL file

4. SOAP request

5. SOAP response

42

43/82

Client-side programming
43

 Usually two ways:

 Contract last: first you create the code for your web
service, then the contract (WSDL) is generated based on
the code

 Contract first: you start with the creation of the
contract for the web service and then source code
templates are generated based on the contract

44/82

Developing a Web Service

WSDL
Service
contract

war file
(or ear)

Server
code

@WebService
POJO class
Servlet-based

Deploymen
t

JAXB &
JAX-WS

files

44

45/82

Client-side programming

WSDL

Service
contract

wsimport
tool

Client
code

@WebService
Dynamic proxy

You develop Client which uses
proxy to call Web Service

45

46/82

Generating XSD/Java representations
46

package cz.fi.muni.pa165.dto;

import java.util.*;

public class ProductDTO
{
 private Long id;
 private byte[] image;
 private String imageMimeType;
 private String name;
 private String description;
 private Color color;
 private Date addedDate;
 private Set<CategoryDTO> categories = new
 HashSet<>();
 private List<PriceDTO> priceHistory = new
 ArrayList<>();
 private PriceDTO currentPrice;
 //...
}

schemagen *.java →
← xjc *.xsd

→ Why did Spring-WS opt for “Contract-first”? Which are the
advantages?

47/82

An example (1/7)

Implementing a simple web service with Java

1. Create the “service
endpoint interface”
 Interface for web
service

2. Create the “service
implementation”
 Class that
implements the
service

3. Create the “service
publisher”

 Java supports web services
in core Java
 JAX‐WS (Java API for
XML‐Web Services)

 In full production mode,
one would use a Java
application server such as
Tomcat, Glassfish, etc. like
we will see later with
Spring-WS

47

48/82

An example (2/7)

Service Endpoint Interface

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;

@WebService // This is a Service Endpoint Interface
@SOAPBinding(style = Style.RPC) // Needed for the WSDL
public interface EchoServer {

@WebMethod // This method is a service operation
String EchoMessage(String strMsg); }

48

See https://docs.oracle.com/javaee/5/tutorial/doc/bnayn.html

https://docs.oracle.com/javaee/5/tutorial/doc/bnayn.html

49/82

An example (3/7)

 Service Implementation

import javax.jws.WebService;
/**

* The @WebService property endpointInterface links this class
* to EchoServer class

*/
@WebService(endpointInterface = "EchoServer")
public class EchoServerImpl implements EchoServer {

public String EchoMessage(String Msg) {
String capitalizedMsg;
System.out.println("Server: EchoMessage() invoked...");
System.out.println("Server: Message > " + Msg);
capitalizedMsg = Msg.toUpperCase();
return(capitalizedMsg);

}
}

49

50/82

An example (4/7)
Service Publisher

import javax.xml.ws.Endpoint;

public class EchoServerPublisher {
public static void main(String[] args) {
Endpoint.publish("http://localhost:8080/ws", new
EchoServerImpl());
}

}

50

51/82

An example (5/7)
Deploying and testing

1. Compile the Java code

2. Run the publisher
 java example.echo.EchoServerPublisher

3. Testing the web service with a browser
 URL: http://localhost:8080/ws?wsdl

51

52/82

<definitions targetNamespace=”http://localhost/" name="EchoServerImplService">
<types/>
<message name="EchoMessage”> <part name="arg0" type="xsd:string"/> </message>
<message name="EchoMessageResponse”><part name="return"
type="xsd:string"/></message>

<portType name="EchoServer">
<operation name="EchoMessage">

<input message="tns:EchoMessage"/>
<output message="tns:EchoMessageResponse"/>

</operation>
</portType>

<binding name="EchoServerImplPortBinding" type="tns:EchoServer">
<soap:binding transport=”http://schemas.xmlsoap.org/soap/http" style="rpc”/>
<operation name="EchoMessage">
<soap:operation soapAction=""/>
<input> <soap:body use="literal" namespace="http://my.ws/"/> </input>
<output> <soap:body use="literal" namespace="http://my.ws/"/> </output>
inding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
</operation>

</binding>

<service name="EchoServerImplService">
<port name="EchoServerImplPort" binding="tns:EchoServerImplPortBinding”>

<soap:address location=”http://localhost:8080/ws"/>
</port>
</service>
</definitions>

An Example (6/7)
WSDL for echo service

52

53/82

import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import java.net.URL;

class EchoClient {
public static void main(String argv[]) throws Exception {

if (argv.length < 1) {
System.out.println("Usage: java EchoClient \"MESSAGE\"");System.exit(1);}

String strMsg = argv[0];
URL url = new URL(”http://localhost:8080/ws?wsdl");

QName qname = new
QName(“http://localhost/”,“EchoServerImplService");

Service service = Service.create(url, qname);
EchoServer eif = service.getPort(EchoServer.class);
System.out.println(eif.EchoMessage(strMsg));

}
}

An Example (7/7)
EchoClient

53

54/82

Web server

Server side

@WebServi
ce

Dispatcher
SOAP

binding
JAXB

binding
Endpoint
Listener

SOAP
request

WSDL

Handler
chain

54

55/82

Client side

Web Service

WSDL

Endpoint
URL

Dynamic proxy

wsimport:
WSDL to Java

parameters
JAXB

return
value
JAXB

XService

Javax.xml.ws.Service

SOAP
response

SOAP
request

extends

Service
Endpoint
Interface

(SEI)

Invocation
Handler

55

56/82

WSDL
56

 A WSDL describes the point of contact for a service
provider, also known as the service endpoint or just
endpoint.

 Provides a formal definition of the endpoint interface

 requestors wishing to communicate with the service
provider know exactly how to structure request messages

 Establishes the physical location (address) of the service.

57/82

 <types>, the data types of input and
output data, used by the web service

 <message>, messages to be
exchanged, used by the web service

 <portType>, the operations input and
output exposed by the web service.
Note: parameters are represented as
messages

 <binding>, the coupling and protocols
used by the web service. This is were
for example SOAP can be used as
protocol

 <port> service location and binding

WSDL elements
57

58/82

Web Service Example
A Web service WSDL example:

58

59/82

Generating the service code skeleton
from the WSDL file

wsdl2java -ss -sd -uri Products.wsdl
-ss = server side; -sd = service descriptor

 A src directory is created with the source code for our server
side files

 A resources directory is created with the WSDL file for the
service and a service descriptor (services.xml) file

 A build.xml file is created in the current directory, which will be
used to create the ws deployment file

59

java2wsdl –cp . –tn . –stn calculator –cn Webservice
-cp = classpath; -tn target namespace; -stn schema target
namespace; -cn class name

← Generate WSDL from Java

← Generate scheleton java
webservice from WSDL

60/82

Summary

 WS* standards and REST usually complement each others

 Different ways to develop “Contract first” vs “Contract last”

 Need to use frameworks for support (we see Spring-WS next)

60

61/82

Spring Web Services
(Spring-WS)

62/82

Spring-WS

 A Spring “sub-project” that allows to simplify WS-* development

 You can reuse as such your Spring application context and configuration
in your application in your SOA application

 Plus, you get access to various WS-* standards

 Note that Spring-WS only supports “contract first” development

62

63/82

Spring-WS - Configuration

 See http://projects.spring.io/spring-ws/

63

<dependencies>
 <dependency>
 <groupId>org.springframework.ws</groupId>
 <artifactId>spring-ws-core</artifactId>
 <version>2.2.0.RELEASE</version>
 </dependency>
</dependencies>

<beans xmlns="http://www.springframework.org/schema/beans">
 <bean id="webServiceClient" class="WebServiceClient">
 <property name="defaultUri"
value="http://localhost:8080/WebService"/>
 </bean>
</beans>

Maven dependency

Webservice client bean

Spring-WS-Core depends
On Spring's Object/XML Mapping support (OXM)
module and on Spring XML module

64/82

Spring-WS

 Let's look at some of Spring-WS characteristics:

 MessageDispatcher & MessageDispatcherServlet

 Automatic WSDL exposure

 Endpoints & Endpoint Mapping

 Interceptors

 Exceptions

 Testing in Spring-WS

64

65/82

Spring-WS – Flow of invocations
65

1 MessageDispatcher ≠ DispatcherServlet from SpringMVC
2 MessageDispatcherServlet: a servlet that wraps MessageDispatcher
3 Exceptions thrown are taken care by any exception resolvers defined
4 Invocation chain for an endpoint: includes pre- and post-processors

Can you use a MessageDispatcher in Spring MVC DispatcherServlet?

66/82

Spring-WS – Automatic WSDL
exposure

 By defining beans using DefaultWsdl11Definition, you
can expose WSDL files to clients

66

 @Bean(name = "products")
 public DefaultWsdl11Definition productsWsdl11Definition(XsdSchema productsSchema) {
 DefaultWsdl11Definition wsdl11Definition = new DefaultWsdl11Definition();
 wsdl11Definition.setPortTypeName("productsPort");
 wsdl11Definition.setLocationUri("/");
 wsdl11Definition.setTargetNamespace("http://muni.fi.cz/pa165/ws/entities/products");
 wsdl11Definition.setSchema(productsSchema);
 return wsdl11Definition;
 }

Is it good idea to expose dynamically generated WSDL resources? What are the pros
and cons?

67/82

Spring-WS – Automatic WSDL
exposure

67

public class ServletInitializer extends AbstractAnnotationConfigMessageDispatcherServletInitializer
{
 @Override
 public boolean isTransformWsdlLocations() {
 return true;
 }
 //...
}

 By setting isTransformWsdlLocations() you can get automatic
translation of the WSDL location based on requests

68/82

Spring-WS – Endpoints
68

@Endpoint
public class BookEndpoint {
 private static final String NAMESPACE_URI = "http://muni.cz/pa165/soa";

private final BookRepository bookRepository;

@Autowired
public BookEndpoint(BookRepository bookRepository) {

this.bookRepository = bookRepository;
}

@PayloadRoot(namespace = NAMESPACE_URI, localPart = "getBookRequest")
@ResponsePayload
public GetBookResponse getBook(@RequestPayload GetBookRequest request) {

 GetBookResponse response = new GetBookResponse();

 response.setBook(bookRepository.getBookByTitle(request.getTitle()));
 return response;

}

}

69/82

Spring-WS – Endpoint Mapping

 Maps the incoming messages to the correct endpoints

 EndpointMapping returns a EndpointInvocationChain, →
endpoint that matches the incoming request and list of endpoint
interceptors for request and response

 By default, PayloadRootAnnotationMethodEndpointMapping
(using @PayloadRoot) and
SoapActionAnnotationMethodEndpointMapping (using
@SoapAction) are enabled by default

 If you want to use WS-Addressing as discussed before in the
slides, you need to use AnnotationActionEndpointMapping and
@Action and @Address in the endpoint

69

70/82

Spring-WS – SoapMessage (1/3)

 If you remember our SOAP with Attachments API for Java
(SAAJ) example, it required quite some code

 In Spring you usually mostly care about the SOAP body that
you can get in an endpoint by using @RequestPayload
annotation that gives you access to the request

 Only in cases in which you want to modify/get header
information or deal with attachments, you need to care
about headers

70

71/82

Spring-WS – SoapMessage (2/3)
71

72/82

Spring-WS – SoapMessage (3/3)

 Example, we can get the list of all “mustUnderstand”
elements from the header (see mustUnderstand)

72

@PayloadRoot(namespace = NAMESPACE_URI, localPart = "getProductRequestByName")
@ResponsePayload
public GetProductResponse getProduct(@RequestPayload GetProductRequestByName request,
 SoapHeader header) {

 // ….....

 Iterator<SoapHeaderElement> itMustUnderstand =
 header.examineMustUnderstandHeaderElements(URI);

 while (itMustUnderstand.hasNext()){
 SoapHeaderElement element = itMustUnderstand.next();
 // do something with the element in case it is not understood, return a
 SoapFault
 }

 //.......
}

73/82

Spring-WS – Interceptors (1/4)

 Although you can process SOAP message headers in
Endpoints, better is to use interceptors that will be applied
to all requests/responses or to a filtered set

 HandleRequest(..) provides the possibility to handle the
request before an endpoint is invoked. If false is returned,
the execution chain is interrupted

 HandleResponse(..) and HandleFault(..) deal with the
response after the endpoint is invoked for both the normal
and faulty case – if returning false, the response will not
be returned back

73

74/82

Spring-WS – Interceptors (2/4)

 Example

74

public class AnInterceptor implements EndpointInterceptor{

 @Override
 public boolean handleRequest(MessageContext mc, Object o) throws Exception {
 WebServiceMessage wsm = mc.getRequest(); // from here you can access the
 payload as in an enpoint
 SoapMessage sm = (SoapMessage) wsm; // cast the webservicemessage to
 soapmessage
 SoapHeader sh = sm.getSoapHeader(); // you can now use the soapheader as
 before

 //

 return true;
 }

 // other overridden necessary methods
}

75/82

Spring-WS – Interceptors (3/4)

 Where the interceptor is invoked

75

Before the EndpointAdapter calls for the
invocation of the endpoint

76/82

Spring-WS – Interceptors (4/4)

 There are some predefined interceptors that can be useful:
 PayloadLoggingInterceptor and

SoapEnvelopeLoggingInterceptor allow to log payload or
whole soap envelopes for responses and/or requests

 PayloadValidatingInterceptor to validate requests/response

76

 @Bean
 public PayloadValidatingInterceptor myPayLoadInterceptor() {
 final PayloadValidatingInterceptor interceptor = new
 PayloadValidatingInterceptor();
 interceptor.setXsdSchema(this.productsSchema());
 interceptor.setValidateRequest(true);
 interceptor.setValidateResponse(true);
 return interceptor;
 }

Which one would be more meaningful to validate? Spring docs refer to Postel's law
or robustness principle: "Be conservative in what you send, be liberal in what you
accept"

77/82

Spring-WS – Exceptions (1/2)

 Easiest way to deal with exceptions is to annotate custom
exceptions with @SoapFault that will be dealt with a pre-
configured SoapFaultAnnotationExceptionResolver

77

@SoapFault(faultCode = FaultCode.SERVER, faultStringOrReason = "Product not found.")
public class ProductNotFoundException extends RuntimeException {
 public ProductNotFoundException(String productName) {

super("could not find product " + productName);
}

}

78/82

Spring-WS – Exceptions (2/2)

 If you need a more programmatic way, you can implement
an EndpointExceptionResolver overriding method
resolveException(MessageContext, Endpoint, Exception)

 Or SimpleSoapExceptionResolver to have access at the
SOAP Fault

78

public class EndpointExceptionResolver extends SoapFaultMappingExceptionResolver {

 //...

 @Override
 protected void customizeFault(Object endpoint, Exception ex, SoapFault fault) {
 // ...
 }
}

You can filter based on
the endpoint from which
the exception comes from

You can filter based on
the exception type

Add more information to
the SOAP fault

79/82

Spring-WS – Testing (1/3)

 We use MockWebServiceClient to mock a webservice
client with some request messages for the enpoints under
test that are configured in the ApplicationContext

 The endpoints will handle the messages and return a
response

79

@ContextConfiguration(classes = {WebServiceConfig.class})
public class ProductEndpointTest extends AbstractTestNGSpringContextTests {

 @Autowired
 private ApplicationContext applicationContext;

 @BeforeClass
 public void createClient() {
 mockClient = MockWebServiceClient.createClient(applicationContext);
 }
 //...
}

80/82

Spring-WS – Testing (2/3)

 We use then MockWebServiceClient to test against
expected behaviour

80

Source requestPayload = new StringSource("<getProductRequestByName
 xmlns='http://muni.fi.cz/pa165/ws/entities/products'>"
 + "<name>No product</name>"
 + "</getProductRequestByName>");

mockClient.sendRequest(withPayload(requestPayload)).
 andExpect(serverOrReceiverFault("Product not
 found."));

Would you consider a test written using MockWebServiceClient a unit or an integration
test?
Would you mock service endpoints?

81/82

Spring-WS – Testing (3/3)

 You might also implement your own Matcher by
implementing ResponseMatcher interface

 There are however many that you can use:

81

82/82

References

 SOAP 1.2 Specifications
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/

 Spring-WS Reference
http://docs.spring.io/spring-ws/docs/2.2.3.BUILD-SNAPSHOT/reference/htmlsingle/

 Webservices Standards Overview
https://www.innoq.com/soa/ws-standards/poster/innoQ%20WS-Standards%20Poster%202007-02.pdf

82

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/
http://docs.spring.io/spring-ws/docs/2.2.3.BUILD-SNAPSHOT/reference/htmlsingle/
https://www.innoq.com/soa/ws-standards/poster/innoQ%20WS-Standards%20Poster%202007-02.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 22
	Slide 23
	Slide 24
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 42
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 62
	Slide 63
	Slide 64
	Slide 82

