
  

PA 165 – Enterprise Java

Organizational Details

22nd Sept 2015



  

Course Aim

● to understand selected chapters from advanced Java-
based system design and implementation;

● To be aware of methodological issues of high-quality 
system design and implementation and related topics;

●  to be able to work with the most important APIs from 
Java SE/EE, Spring framework, Java EE and Javascript 
frameworks for UI; 

● To get used to team work within large enterprise software 
development and with system design by applying 
enterprise patterns;



  

Summarized Content

● Intro to large (enterprise) Java-based application and systems

● Development tools (Netbeans, Maven, Git)

● Enterprise patterns (DTO, DAO) 

● Persistence/ORM (JPA/Hibernate)

● Internet applications (servlets, JSP, taglibs, Java web 
containers)

● Web application layers, security (authentication, authorization, main 
attacks), Spring MVC, client-side javascript frameworks (AngularJS), 
HTML, CSS, DOM

● Spring framework (AOP, dependency injection, security, 
transactions, Spring Boot)

● Web services (REST, WS-* standards), Spring-WS,
JAX-RS

● Messaging Systems (JMS)



  

Seminars & Project

● Working on an assignment based on what seen 
during lectures

● Will be useful for the team project, developed in 
teams of four

● Evaluation:
● 60 points for the project (3 milestones + final defence)
● 40 points for the final exam;

● More details by your instructor during the first seminar



  

The Team



  

PA 165 – Enterprise Java

Introduction to Java EE
Tools

22nd Sept 2015



  

Content

● Java EE Introduction
● Java EE Technology
● Basic concepts
● Architecture

● Tools
● Maven
● Git



  

Resources

● Effective Java (2nd 
Edition)

● Joshua Bloch
● http://amazon.com/dp/

0321356683/



  

Java EE Platform



  

What is Java EE

● Platform for modern enterprise system 
development

● Industry standard (JCP)
● Current version is Java EE 7 (JSR 342)



  

Characteristics of modern IS

● Complex and large systems

● Integrated with other systems inside and outside the 
organization

● Adaptibilty to different requirements of various customers

● Multiple platforms support

● Support for big amount of users (especially in case of web 
applications)

● Security

● Quality and reliability



  

Development process requirements

● Fast development

● Easy maintainance

● Easy extensibility and adaptibiy

● Easy integration with other systems

● Support for agile development

● Support for team and multi-team development

● Portability and compatibility (various HW, OS, DB, tools, 
application servers, etc.)

● Scalability

● Security

● Easy to test



  

Basic Concepts

● Infrastructure
● Modularity
● Independance and low invasivness
● Declarative approach
● Convention over configuration
● Following basic rules for mainainable code



  

Infrastructure

● Developer should be focused on problem 
domain he should not be spending time and 
effort with general problems which are not 
specific for given application
● Architecture, authentication, authorization, 

transaction managament, data persistence, 
communication and integration, remote access, 
presentation layer architecture, localization, etc.

● Java EE platform and frameworks are providing 
such infrastructure

● Never implement your own framework!



  

Modularity

● Application should be assembled from cooperating components

● Components should be

● Loosely coupled
● Reusable
● With well designed and separated interface
● Well tested
● Well documented (contract described with JavaDoc)

● With well desigend components, we can easily change and 
adjust application behaviour

● By changing the component
● By changing the component configuration
● By changing connection between components



  

Independance and low invasivness

● Coponents should be as less dependant as 
possible not only between each other, but also 
on specific technologies and frameworks (at 
least at interface level)

● It helps to reusability and maintainance
● POJO (plain old java object) concept



  

Imperative TX management

public void someMethod() {
 
   UserTransaction transaction = context.getUserTransaction();
 
   try {
      transaction.begin();
      doSomething();
      transaction.commit();
   } catch (Exception ex){
    try {
          transaction.rollback();
       } catch (SystemException syex){ 
           throw new EJBException
              ("Rollback failed: " + syex.getMessage());
       }
       throw new EJBException 
          ("Transaction failed: " + ex.getMessage());
    }
}



  

Declarative TX management

@TransactionAttribute(TransactionAttributeType.RequiresNew)
public void someMethod() {
     doSomething();
}



  

Convention over Configuration

● Propagated by Ruby on Rails



  

Java EE Architecture



  

Tools



  

Maven

● Software project management and 
comprehension tool.

● Embedded Tomcat
● Demo



  

Git

● Source management tool
● Demo


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

