

PA 165 – Enterprise Java

Component Design

30th Sept 2015

Content

● Well Designed Components
● Component Lifecycle and Dependency

management
● Component Testing
● Basic Enterprise Patterns

Well Designed Components

Well Designed Components

● Simple (single component = single task)
● Loosely Coupled (minimum dependencies)
● Well Defined Contract (well documented)
● Well Tested (unit tests)

Simple Components

● Single component should have just single
responsibility (single task)

● Such compoent is easy to maintain, easy to
test, more flexible and less dependant on other
components

● When making components loosely coupled,
start with making them simple (more
responsibility means more dependancies).

Example

● A is transitively
dependant on Printer
and File even it needs
just to write to screen.

Loosely Coupled Components

● Amount of dependancies between components
is minimized

● Components don't depend on specific
implementations, but on general interfaces

● Transitive dependencies (can be reduced by
separating interface and implementation)

● Big problem are especially circular
dependencies

● Too much dependencies indicates bad design

Simple Example

// Tight Coupled
public interface ProductService {

 void addProducts(ArrayList<Product> products);
 LinkedList<Product> getAllProducts();

}

// Loosely Coupled
public interface ProductService {

 void addProducts(List<Product> products);
 List<Product> getAllProducts();

}

More Complex Examples

● Table from PV168 components quiz
● PropertiesService

External Dependencies

● Try to make component independant on specific
technologies, frameworks or libraries (at least at
the API level).

● Use general types, exceptions and annotations
instead of the proprietary ones (e.g. use
@Inject instead of @Autowired).

● Avoid allways dependencies of API on another
layer technology (e.g. using classes from
frontend frameworks in business API)

Bad Examples

public interface ClientEventService {

 void saveLoginEvent(String userName, HttpServletRequest request);

}

public interface ReportService {

 List<javax.persistence.Tuple> getDailyReportData();

}

public void ContractService {

 void create(Contract contract) throws SQLException;

}

Well Defined Contract

● What should be defined
● Component behaviour in all possible situations

(especially in non-standard and erroneous ones)
● Entry conditions
● Thread safety

● Described with javadoc

Exceptions

● Use general exceptions for contract violation
● IllegalArgumentException (also for null argument)
● IllegalStateException
● UnsupportedOperationException

● Consider to use checked/unchecked exception
● Unchecked exception for contract violation or

programmer mistake (could occure anywhere)
● Checked exception for situations which should be

caller aware of

Well Defined Contract Example
package net.homecredit.biometrics.fingerprints.properties;

/**
 * This interface represents some property value. PropertyValue can be static or
 * dynamic, according to the implementation. Static value is implemented as
 * immutable class and its {@link #get()} method is always returning the same
 * value. Dynamic value can be backed by some properties store and
 * {@link #get()} method is always returning the actual value in the properties
 * store.
 *
 * @author petr.adamek@embedit.cz
 * @param <T> property value type
 */
public interface PropertyValue<T> {

 /**
 * Returns current value of associated property. Value can be {@code null} if
 * appropriate {@link PropertyDefinition} allows that.
 *
 * <p>If the PropertyValue is dynamic, current value is loaded as string from
 * underlying properties store and converted to property value type with
 * appropriate {@link PropertyConvertor}. If the conversion fails
 * due illegal string representation of property value,
 * {@link IllegalPropertyValueException} is thrown. If the value is {@code null}
 * although {@code null} values are not allowed,
 * {@link IllegalPropertyValueException} is thrown as well. If the property
 * is not available anymore (e.g. because it has been deleted from underlying
 * properties store), {@link PropertyNotFoundException} is thrown. </p>
 *
 * <p>{@link IllegalPropertyValueException} and
 * {@link PropertyNotFoundException} should be never thrown for
 * static PropertyValue.</p>
 *
 * @throws IllegalPropertyValueException when string representation of property
 * value is invalid and it can't be converted to appropriate type or when
 * the value is {@code null} although {@code null} values are not allowed
 * for given property.
 * @throws PropertyNotFoundException when the property is not available anymore.
 * @return current value of the property
 */
 T get() throws IllegalPropertyValueException, PropertyNotFoundException;

 /**
 * Methods is returning current property value as string.
 * Calling this method is equivalent of {@code String.valueOf(this.get())}.
 * Result can be different than the string representation of property
 * value used for storing into underlying properties repository!
 *
 * @return current property value as string
 */
 @Override
 String toString();

 /**
 * Returns true if this PropertyValue is dynamic.
 *
 * @return true if this PropertyValue is dynamic, false otherwise.
 */
 boolean isDynamic();

}

Reusabilty

● Avoid duplicit code, prefer to reuse components
● If the code is not exactly the same, but just

similar, make the component more general and
reusable (Design Patterns, Effective java)

● But be careful with if-statements – Replace
Conditional with Polymorphism
(https://sourcemaking.com/refactoring/replace-
conditional-with-polymorphism)

● On other hand, avoid making universal
components with currently not needed
functionality

Refactoring

● Changing code structure without changing
functionality

● Two hats principle (don't change the structure
and functionality at the same time)

● Catalog of Refactorings is useful also for writing
new code.

Resources

Refactoring: Improving the
Design of Existing Code

Martin Fowler, Kent Beck, John
Brant, William Opdyke, Don
Roberts

http://amazon.com/dp/0201485672/

Best Practices

● Make components as simple as possible, follow
single responsibility principle

● Separate interfaces from implementation,
minimize dependencies

● Try to make component independent on specific
technology (at least at API level).

● Define and document well the contract
● Don't hesitate to refactor component
● Read Effective Java and Refactoring: Improving

the Design of Existing Code.

Component Lifecycle and Dependency
management

Inversion of Control

● Component is not responsible for required
resources, it expects that all resources will be
provided by user of the component

● Hollywood principle – Don't call us, we call you
● Helps to reduce dependencies

Example

public class ContractServiceImpl implements ContractService {

 private final ContractDao contractDao;

 public ContractServiceImpl() {
 this.contractDao = new ContractDaoImpl();
 }

}

public class ContractServiceImpl implements ContractService {

 private final ContractDao contractDao;

 public ContractServiceImpl(ContractDao contractDao) {
 this.contractDao = contractDao;
 }

}

Dependency Injection

● Implementation of IoC principle
● Resources can be injected with

● Field
● Property
● Constructor

● JSR 330: Dependency Injection for Java
(@Inject, etc.)

● Qualifiers

Example

public class ContractServiceImpl implements ContractService {

 // Field injection
 @Inject
 private ContractDao contractDaoA;

 // Constructor injection
 private final ContractDao contractDaoB;

 @Inject
 public ContractServiceImpl(ContractDao contractDao) {
 this.contractDaoB = contractDao;
 }

 // Property injection
 private final ContractDao contractDaoC;

 @Inject
 public void setContractDao(ContractDao contractDao) {
 this.contractDaoC = contractDao;
 }
}

Java Naming and Directory API

● JNDI is standard way how to retrieve resources
● Allows to separate application from system

configuration (database, external services,
JMS, etc.)

JNDI Resources

public class ContractDaoImpl implements ContractDao {

 private final DataSource dataSource;

 public ContractServiceImpl() {
 Context context = new InitialContext().lookup("java:/comp/env");
 this.dataSource = (DataSource) context.lookup("jdbc/contractDb");
 }

}

public class ContractDaoImpl implements ContractDao {

 @Resource("jdbc/contractDb")
 private final DataSource dataSource;

}

Example

public class ProductDaoImpl implements ProductDao {

 private final EmbeddedDataSource dataSource;

 public ProductDaoImpl() {
 this.dataSource = new EmbeddedDataSource();
 this.dataSource.setDatabaseName("");

 }

}

public class ContractServiceImpl implements ContractService {

 private final ContractDao contractDao;

 public ContractServiceImpl(ContractDao contractDao) {
 this.contractDao = contractDao;
 }

}

Lifecycle Management

● Lifecycle management (creating and destroying
components) is usually handled by some
container, which is also providing Dependency
Injection and Resource management.

● EJB container, Web container, CDDI container,
Spring container, etc.

● Configured with annotations, xml files,
JavaConfig, etc.

Component Testing

Unit Tests

● Test of isolated component
● Deterministic (always the same initial

conditions, no random data or current time)
● Isolated (no interference with other tests)
● Border values and non-standard situations

should be tested
● Test should be easy-to-understand

Mock Objects

● Tested component is isolated from the
environment, behaviour of other objects is
simulated with Mock objects

● Easy when interfaces are separated from
implementation

● Various libraries
● Mockito (http://mockito.org)
● JMock
● EasyMock

http://mockito.org/

Demo

● Exception handling
● Hamcrest
● Mockito

● Junit Integration
● Verify
● When
● Argument matcher
● Argument capture

Gold Rule

● When the component is well designed (single
responsibility, loosely coupled), it is easy to
write unit tests.

● If it is hard to write unit test, the component has
the most probably bad design.

Basic Enterprise Patterns

Application Architecture Example

Persistance Layer (DAO)

Service Layer

Façade Layer

Database

Adapter Layer

Presentation Layer

Data Transfer Object

● Encapsulates data about some entity or entities
for transport between layers

● Purpose
● Remove dependency on entities (e.g. in service

layer API)
● Different scope (subset of attributes or agregated

information from multiple entities)

● Can be created at any Layer

Service Façade

● Encapsulates complex business logic and
expose it to the client as simple coarse-grained
API

● Service orchestration

Order Façade

Create order

Customer
Service

Create
Customer

Order
Service

Notification
Service

Create
Order

Send
Notification

Adapter

● Adapts some interface to another one.
● Can be used

● To make some component compatible with another
interface

● To convert method parameters types (e.g. Entities
to DTO and vice versa)

Questions

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

