

PA 165 – Enterprise Java

Introduction to JMS

15th Dec 2015

JMS

● Java Message Service
● API for asynchronous messaging

● JMS 1.0.2b (June 26, 2001)
● JMS 1.1 (April 12, 2002, JSR 914, J2EE 1.4)
● JMS 2.0 (May 21, 2013, JSR 343, Java EE 7

Why JMS

JMS versus synchronous WS

source system
(Web Shop)

target system
(Ordering System)

Synchronous WS

source system
(Web Shop)

target system
(Ordering System)

Asynchronous JMS Queue

JMS versus synchronous WS

Aspect / Situation Synchronous WS Asynchronous JMS Queue

Operation in target system
take some time

Source system is waiting for
the response

Calling system does not
need to wait for response

Result availability Result is available in calling
thread

Result must be sent back
asynchronously

Threads utilization Thread in source system is
blocked until the operation
in target system is finished

Thread in source system is
block only until the
message is saved

Target system is overloaded
(Scalability)

Source system is waiting for
the response, timeout can
happen

Message is waiting in the
queue and it is processed
later

Target system is down or
the network connection is
not stable
(Reliability)

Source system get timeout
or error

Message is waiting in the
queue and it is processed
later

JMS versus synchronous WS

● Pros
● Source system does not need to wait for response

from target system.
● Source system does not depend on availability and

load of target system
● Better performance, scalability and reliability

● Cons
● You need MQ provider
● Not well suitable for public internet API
● You don't have the immediate result

Basic Rule

● Don't use synchronous WS for exchange of
information which can be exchanged
asynchronously

● Avoid The Hammer Syndrome – When you hold
a hammer, each problem looks like a nail.

JMS API

JMS API

● Basic classes
● ConnectionFactory, Destination, Message

● Classic API (JMS 1.0, JMS 1.1, JMS 2.0)
● Connection, Session, MessageConsumer,

MessageProducer

● Simplified API (JMS 2.0)
● JMSContext, JMSConsumer, JMSProducer

● Legacy domain specific API (deprecated)
● QueueConnectionFactory, QueueConnection, TopicConnectionFactory, QueueSession,

QueueSender, QueueReceiver, TopicConnection, , TopicSession, TopicPublisher,
TopicSubscriber.

Connection Factory

● Entry point for sending or receiving messages
using JMS provider

● Factory for
● Connection
● JMS Context (JMS 2.0)

● Ususally provided as JNDI resource

Destination

● Abstract representation of JMS channel
● Encapsulates a provider-specific address
● Standard destination types

● Queue (point-to-point)
● Topic (publisher-subscriber)

Queue (point-to-point)

● Each message is always delivered to single
consumer
● When there is no consumer, message is waiting in

the queue
● When there is multiple consumers, message is

delivered to one (any) of them

Producer Consumer

Topic (publisher-subscriber)

● Each message is delivered to all subscribers
● If there is no subscriber, message is dropped

Publisher

Subscriber 1

Subscriber 1

Subscriber 1

How to get Destination instance

● As JNDI resource
● standard and preffered way

● createQueue(String) or createTopic(String) of
JMSContext or Session
● Create Destination object with given name
● Method does not create the physical queue or topic,

only appropriate Destination instance!

● Create the instance directly with constructor
● Usable for testing or simple example
● Makes the code dependant on specific

implementation, do not use in production code,

Get JMS resources with JNDI

// Using JNDI API

Context ctx = new InitialContext().lookup("java:/comp/env");

ConnectionFactory connectionFactory
 = (ConnectionFactory) ctx.lookup("jms/ConnectionFactory");

Queue requestQueue
 = (Queue) ctx.lookup("jms/RequestQueue");

// Using @Resource annotation

@Resource(name = "jms/ConnectionFactory")
private ConnectionFactory connectionFactory;

@Resource(name = "jms/RequestQueue")
private Queue requestQueue;

Message

● Header (defined by JMS)
● Priority, destination, expiration, message id, delivery

mode, timestamp, redelivered

● Properties (defined by application)
● Body(depends on message type)

● StreamMessage – a stream of primitive values
● MapMessage – a set of name-value pairs
● TextMessage – a String
● ObjectMessage – a Serializable Java object
● BytesMessage – a stream of uninterpreted bytes.

Classic API

Simplified API

Produce message (Classic API)

ConnectionFactory connectionFactory = ...
Destination destination = ...

Connection connection = connectionFactory.createConnection();
Session session = connection.createSession();
MessageProducer producer = session.createProducer(destination);

Message message = session.createTextMessage("MSG");

// Send the message. When the call is finisged,
// message is safely passed for delivery
producer.send(message);

// Don't forget to release all resources
// If you are using JMS 2.0, you can use try-with-resources
messageProducer.close();
session.close();
connection.close();

Produce message (Simplified API)

ConnectionFactory connectionFactory = ...
Destination destination = ...

try (JMSContext context = connectionFactory.createContext()) {

 // producer is lightweight object without close() method
 JMSProducer producer = context.createProducer();

 Message message = context.createTextMessage("Message Body");

 // Send the message. When the call is finisged,
 // message is safely passed for delivery
 producer.send(destination, message);

}

Consume message (Classic API)

ConnectionFactory connectionFactory = ...
Destination destination = ...

Connection connection = connectionFactory.createConnection();
Session session = connection.createSession();
MessageConsumer consumer = session.createConsumer(destination);

// Start to receive messages
connection.start();

// Get the next message from the queue. If the queue is empty,
// wait for the next message max 1000 milliseconds
Message message = consumer.receive(1000);

// Process the message
System.out.println(message);

// Don't forget to release all resources
// If you are using JMS 2.0, you can use try-with-resources
messageProducer.close();
session.close();
connection.close();

Consume message (Simplified API)

ConnectionFactory connectionFactory = ...
Destination destination = ...

try (JMSContext context = connectionFactory.createContext();
 JMSConsumer consumer = context.createConsumer(destination)) {

 // consumer is not lightweight object, close() must be called

 // Start to receive messages
 context.start();

 // Get the next message from the queue. If the queue is empty,
 // wait for the next message max 1000 milliseconds
 Message message = consumer.receive(1000);

 // Process the message
 System.out.println(message);

}

Asynchronous Message Handling

Message Consuming

● Synchronous message consuming
● Client has to call receive method (examples above)

● Asynchronous message consuming
● Incoming message is automatically processed with

MessageListener, registered at appropriate
MesageConsumer or JMSConsumer

● EJB Message Driven Bean
● Another way of asynchronous message processing
● Suggested way of message processing (if it is

possible to use EJB)

Consume message (Simplified API)

ConnectionFactory connectionFactory = ...
Destination destination = ...

MessageListener messageListener = (Message message) -> {
 // Process the message
 System.out.println(message);
};

try (JMSContext context = connectionFactory.createContext();
 JMSConsumer consumer = context.createConsumer(destination)) {

 consumer.setMessageListener(messageListener);

 // Start to receive messages
 context.start();

}

Message Producing

● Synchronous
●

● Asynchronous message sending (JMS 2.0)
● Client is not waiting until the message is safely

passed for delivery, but the send method returns
imidiatelly and message is sent in background
thread.

Delivery Mode

● Defines how reliable way will be the message
delivered
● PERSISTENT – Message will be stored to

persistent storage to guarantee that it will not be
lost in case of failure. This is the default mode.

● NON_PERSISTENT – Message is held only in
memory, less overhead, but message can be lost.

Must be set as parameter of MessageProducer.send(...)
method or with MessageProducer.setDeliveryMode(int)
method. Message.setJMSDeliveryMode(int) will not work
(see Javadoc for explanation)!

Set DeliveryMode (Simplified API)

ConnectionFactory connectionFactory = ...
Destination destination = ...

try (JMSContext context = connectionFactory.createContext()) {

 JMSProducer producer = context.createProducer();

 // This is the right way how to set delivery mode
 producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

 Message message = context.createTextMessage("Message Body");

 // This will not work!
 message.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

 producer.send(destination, message);

}

Concurrecy in JMS

Concurrency support in JMS

Class in classic API Class in simplified API Supports concurrent
use

Creating costs

Destination yes expensive

ConnectionFactory yes expensive

Connection N/A yes expensive

Session JMSContext no cheap

MessageProducer JMSProducer no cheap

MessageConsumer JMSConsumer no cheap

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34

