
Security primitives II

Secure channel

Secure storage

…

PA193 – Secure coding

Petr Švenda

Zdeněk Říha

Faculty of Informatics, Masaryk University, Brno, CZ

Security primitives

• Secure channel

– Communication

• Secure envelope

– Data protection

• Secure storage

– Storage

• Use standard, commonly used mechanisms

– It is very difficult to create your own mechanisms that will

be as secure as the standard ones

Secure channel

• secure channel is a way of transferring data that is
resistant to overhearing and tampering

Source: https://en.wikipedia.org/wiki/Secure_channel

• Examples
– Secure Messaging (smartcards)

• ISO 7816-4

• Open Platform / Global Platform

– SSL/TLS

– IPSEC

– VPN

Secure channel

• Authentication of parties

• Confidentiality of data

• Integrity of data

• Based on:

– Symmetric crypto

• E.g. encryption + MAC, 4 symmetric keys shared

– 2 for each direction

– Asymmetric crypto

Case study SSL/TLS

• Let’s look at the failure of SSL/TLS in more details
– Read more at:

• http://www.ieee-security.org/TC/SP2013/papers/4977a511.pdf

• Basic knowledge of SSL/TLS expected
– Mandatory server authentication

– Optional client authentication

– Authentication based on X.509 certs and private key

– PKI infrastructure to validate certs needed

– Confidentiality and integrity provided

– Non-repudiation not provided

Weaknesses in Crypto Primitives

• SSL/TLS started with 40/56 bit symmetric keys

• DES, RC2, RC4

• US export regulation

• Slow changes, backward compatibility

• Still possible to see certs with unsecure parameters

– Based on RSA-512 (!)

• By the way Google was using RSA-1024 until Nov 2013

– Based on md5

• Collision attack on certs demonstrated

PRNG problems

• Netscape browser prior 1.22 relied on PRNG

generating weak keys

• Debian problems with OpenSSL

• …

Remote timing attacks

• Against SSL servers using optimized RSA

decryption based on OpenSSL

– And that optimized decryption was default in OpenSSL
prior 0.9.7b

• the long term secret of the server was leaking

during the SSL/TLS handshake

Protocol attacks

• Ciphersuite downgrade

– In SSL 2.0

• SSL Version downgrade

– If clients misinterpret higher version error and try to

continue with a lower protocol version

• Renegotiation attack

– Renegotiate security related parameters

Trust model - X.509 Certificates

• Hostname Validation
– Do not skip the hostname validation

– Study: over 1000 out of 13500 Android applications do not
validate the hostname

– Read more at:

• http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf

– [Analysis of Android SSL (in)security]

• Parsing attacks
– Binary 0 in CN

– Something.com0other.com

Trust model - X.509 Certificates

• Anchoring trust

– Web browsers include +-150 trust points from +-50

organizations

• CA Compromise (DigiNotar)

• The power of goverments over CAs

• Transitivity of trust (basicConstrains – CA:TRUE)

– This flag must be checked otherwise anybody could

be validated as any web site

– MS CryptoAPI did not

– Apple iOS did not

Trust model - X.509 Certificates

• Revocation

– Blocking the certificates

• OCSP or CRL download

http vs. https

• Stripping TLS

– relay https pages over http

• A tool called SSLstrip exists

– a man-in-the-middle attack

• HTTP Strict Transport Security (HSTS)

– web security policy mechanism where a web server

declares that only secure HTTPS connections can be

used.

– the policy is communicated via a HTTP response header

called "Strict-Transport-Security".

Secure storage: how to keep secrets secret

• Secret data

– Symmetric encryption keys

– Asymmetric Private keys

– Passwords

– …

• Storing secrets in SW

– Completely securely – IMPOSSIBLE

• Debugging

• Paging memory to files

• Malicious administrators

• …

• Storing secrets in HW (HSM, Smartcards, …)

Secure storage

• MS Windows: Data Protection API (DPAPI)

• Mac OS X: Keychain Services API

• Linux GNOME: gnome-keyring-manager

• Linux KDE: kwallet

Need to store secrets?

• Password hashing

– Crypt (old)

– Md5 (old)

– Sha1,2

• Salting

– Attackers cannot store pre-computed hash values

– 64 bit salt means that an attacker would have to potentially

prepare 264 more hash values

Deriving keys from passwords

• Make it slow
– Avoid dictionary attacks!

• PKCS#5
– Password-Based Key Derivation Function #1 (PBKDF1)

– Password-Based Key Derivation Function #2 (PBKDF2)

– Hash the password 100x – 1000x

• In MS Crypto API use CryptDeriveKey
– With similar functionality

[CryptoWorld 11-12/2013]

Protecting secrets in Windows

• Data Protection API (DPAPI)

– CryptProtectData, CryptUnprotectData

• Data available to user

– Bound with user account, available on multiple machines

but not on other accounts

• Data available to machine

– Available to any user at the machine, not available at other

machines

– Use CRYPTPROTECT_LOCAL_MACHINE flag

Protecting secrets on Windows

• DAPI does not provide storage (only
encryption/decryption)

• You have to manage storage yourself
– Be careful to protect the encrypted data with correct ACLs

in files/registry

• Any application running on the USER can decrypt
the secrets!

• If you do not like this, use pOptionalEntropy field
– To protect your secrets with another secret

LSA interface (old stuff)

• “The Local Security Authority (LSA) is a protected

subsystem of Windows that maintains information

about all aspects of local security on a system.”

• LSA secrets:

LSA interface

• LSA secrets:

– Local data

• Can be read only at the machine storing data (L$)

– Global data

• Created on domain controller and replicated (G$)

– Machine data

• Can be accessed only by OS (M$)

– Private data

• Can be used by your application

LSA vs. DPAPI

Source: Writing secure code, 2nd edition

Managing secrets in memory

• ZeroMemory()

– Macro using memset

• Compiler optimizations can remove the call of the

function!!!

• Use SecureZeroMemory() instead

Managing secrets in Memory

• CryptProtectMemory() and CryptUnprotectMemory()

Source: MSDN

Locking Memory to Prevent Paging

• To keep your sensitive data in memory only (and not in a

paging file)

• Affects performance

• Does not prevent dumping memory to disk when hibernating

(or crash dump file)

• Does not prevent a debugger to read the memory

• Lock memory before storing the secrets in the memory

• VirtualLock()

• AllocateUserPhysicalPages()

Windows credentials manager

• Asking the user for credentials

• CredUIPromptForCredentials()

• CredUIPromptForWindowsCredentials()

– From Vista up

Protect data

• For secret keys use
– Pkcs#8

– Pkcs#12 (pfx)

• For digital signatures use
– CMS (PKCS#7)

– Secure email

• S/MIME

– Based on X.509 certificates

– Transparent vs. opaque signing

• PGP

PKCS#8

• Format for storing private key

• Independent on private key algorithm

• Key can be encrypted

• File suffix “.pkcs8”

PrivateKeyInfo ::= SEQUENCE {
version Version,

privateKeyAlgorithm AlgorithmIdentifier {{PrivateKeyAlgorithms}},

privateKey PrivateKey,

attributes [0] Attributes OPTIONAL }

PKCS#12

• Collection of cryptographic objects

• Privacy/confidentiality

– Public key privacy mode: encrypted by a public key

– Password privacy mode: encrypted by a symmetric key

derived from username and password

• Integrity modes

– Public key integrity mode: digital signature

– Password protection mode: MAC based on password

• File suffix “.p12”, “.pfx”.

PKCS#12

• “SafeContents” is made up of “SafeBags”

• SafeBag types:

– KeyBag: PKCS#8 private key

– PKCS8ShroudedKeyBag: private key, which has been

shrouded (encrypted) in accordance with PKCS #8

– CertBag: certificate (X.509, SDSI – Simple Distributed

Security Infrastructure)

– CRLBag: CRL (X.509)

– SecretBag: any other secret of a user

PKCS#7 / CMS

• Encapsulated content

• Content types:
– Data (any plaintext)

– Signed Data (digital signature based on X.509 certs)

– Enveloped Data (encrypted data)

• key transport: symmetric key encrypted by the recipient's
public key;

• key agreement: pairwise symmetric key created using the
recipient's public key and the sender's private key

• symmetric key-encryption keys: using a previously
distributed key

• passwords: key is derived from a password

– Authenticated data (MAC + MAC key)

32 I

REDUNDANCY/DUPLICATION

Redundancy/duplication

• Repeating elements

– Sometimes useful – e.g. RAID 1

• In database structures and programming

redundancy is seen as negative aspect

• Database systems

– Database normalization (1NF, 2NF, 3NF, …)

• Programming

– Avoid repeating code or data

33 I

Redundancy

• Redundant can be:

– Data

– Type

– Algorithm

34 I

Data duplication

35 I

public Position WalkNorth()

{

var player = GetPlayer();

player.Move("N");

return player.NewPosition;

}

public Position WalkSouth()

{

var player = GetPlayer();

player.Move("S");

return player.NewPosition;

}

public Position WalkEast()
{

var player = GetPlayer();

player.Move("E");

return player.NewPosition;

}

public Position WalkWest()

{

var player = GetPlayer();
player.Move("W");

return player.NewPosition;

}

public Position Walk(string direction)

{

var player = GetPlayer();

player.Move(direction);

return player.NewPosition;
}

Source: http://simpleprogrammer.com/2012/05/27/types-of-duplication-in-code/

Type duplication (C#)

36 I

public int FindIntMatch(int i)

{

var match = (int)container.Get(i);

return match;

}

public string

FindStringMatch(string s)

{

var match =

(string)container.Get(s);

return match;

}

public T FindMatch(T t)

{

var match = (T)container.Get(t);

return match;

}

Source: http://simpleprogrammer.com/2012/05/27/types-of-duplication-in-code/

Algorithm duplication

37 I

public void GoForRun()

{
GetDressed();
Run();
Shower();

}

public void

LiftWeights()
{
GetDressed();
Lift();
Shower();

}

public void DoFitnessActivity(Action activity)

{
GetDressed();
activity();
Shower();

}

Source: http://simpleprogrammer.com/2012/05/27/types-of-duplication-in-code/

Code Duplication

• Code duplication = sequence of source code that

occurs more than once, either within a program or

across different programs owned or maintained by

the same entity.

• Also known as (code) clones.

• Solution

– Clone detection + Code refactoring

38 I

Source: https://en.wikipedia.org/wiki/Duplicate_code

Example

39 I

extern int array_a[];

extern int array_b[];

int sum_a = 0;

for (int i = 0; i < 4; i++)

sum_a += array_a[i];

int average_a = sum_a / 4;

int sum_b = 0;

for (int i = 0; i < 4; i++)

sum_b += array_b[i];

int average_b = sum_b / 4;

int calc_average_of_four(int* array)

{

int sum = 0;

for (int i = 0; i < 4; i++)

sum += array[i];
return sum / 4;

}

extern int array1[];

extern int array2[];

int average1 = calcAverage(array1);

int average2 = calcAverage(array2);

Source: https://en.wikipedia.org/wiki/Duplicate_code

