
Access control

PA193 – Secure coding

Petr Švenda

Zdeněk Říha

Faculty of Informatics, Masaryk University, Brno, CZ

Access control - introduction

In the fields of physical security and information security, access control is

the selective restriction of access to a place or other resource. The act of

accessing may mean consuming, entering, or using. Permission to access

a resource is called authorization.

Source: Wikipedia

Access control - authentication

• Process on behalf of a user

• User authentication as a prerequisite of access

control

• 3 ways to authenticate users

– Something they know (PINs, passwords)

– Something they have (smartcards, tokens)

– Something they are (biometrics)

Access control paradigms

• Discretionary (DAC)
– Owner of the object can set the access rights as he/she

wishes

– The most common approach

• Mandatory (MAC)
– The access rights are restricted by an additional policy

– Multi Level Systems (MLS)

– Not very common or only with a limited functionality

• Role-based
– Access rights finely defined for a role

– Used in information systems and database systems

DAC – Access Control Matrix

Discretionary access control

• Access control matrix

• Matrix too big in practice

• Stored by columns

– Access control lists (ACL)

– Access control elements (ACE)

• Stored by rows

– Capabilities lists

– Not so common

DAC – ACL/ACE in MS Windows

Mandatory Access Control

• Typical example is the Bell-LaPadula model

• Classification/categorization of data & users

• Data – classified by confidentiality

– Unclassified, confidential, secret, top secret

• Users – classified by trustworthiness

– Unclassified, confidential, secret, top secret

MAC – Bell-LaPadula - Policy

• The simple security property

– a subject at a given security level may not read an object

at a higher security level (no read-up).

• The star-property

– a subject at a given security level must not write to any

object at a lower security level (no write-down).

Role-based access control

• The role is defined as a set of rights

• Users are assigned to roles

• Example (Oracle DBS)

– create role vyuka;

– grant CREATE SESSION, ALTER SESSION, CREATE

PROCEDURE, CREATE SEQUENCE, CREATE

SYNONYM, CREATE TABLE ... to vyuka;

– grant vyuka to zriha;

Unix users

• Users in Unix systems are represented by numbers

• User identifier (UID)

• Users are organized in groups

• Each group is identified by Group identifier (GID)

• Mapping of usernames (logins) to UID (numers) is
present in /etc/passwd file
– Read-only access to every user of a system

• Passwords of users (in a hashed form) can be
found in /etc/shadow
– Access only for Administrator(s)

Unix: the file /etc/passwd

• Contains the following fields

– account – userid

– password (salt+hash), “x” see shadow, “!” or “*” account
locked

– UID – the numerical user ID

– GID – numerical primary group ID

– GECOS – This field is optional...

– directory – the user's $HOME directory

– shell – the program to run at login

Sample /etc/passwd file

Unix: the file /etc/shadow

• Contains the following fields
– Login name

– Hashed password

– Days since Jan 1, 1970 that password was last changed

– Days before password may be changed

– Days after which password must be changed

– Days before password is to expire that user is warned

– Days after password expires that account is disabled

– Days since Jan 1, 1970 that account is disabled

– A reserved field

Sample /etc/shadow file

Unix users

• Normally each user is having one account (one UID)

– Administrator is a special user where UID=0

– Today administration should be done under standard account and
privileges obtained via sudo

– Some distributions block root login via GUI

• Services

– Nobody

• running multiple services (daemons) under a single identity…

– Each service introduces a separate user

• nfsnobody, mysql, avahi, named, …

• Android

– For each application a new user is used

Access control under UNIX

• In Unix a lot of I/O is based on (special) files

• Most of the access control is therefore based on file access

• Each file (or directory) is having

– Owner (UID) - chown

– Group (GID) - chgrp

– Access rights in the form of rwx for the user, group and all

others (rwx rwx rwx)

• R = read (files or the content of directories)

• W = write (files or add/delete files in directories)

• X = execute (files or use directories)

UNIX special permissions

• SUID/SGID bit
– For executable files

– If executed they run with privileges of the file owner

• And not the one who executed the file

– SUID – for the user

– SGID – for the group

• Sticky bit
– /tmp directory: permissions are 777 (rwx rwx rwx)

– Anybody can delete files of anybody else

• This is not good

– Sticky bit restricts that only to the owner and administrator

Example: A nice attack against NFS

• NFS = Network file system

• UNIX UIDs are 16-bit on many (older) systems

• NFS uses a 32-bit UID

– This is a feature for good portability

• NFS server uses UID of remote user for the kernel
operations (opening files etc.)

– Kernel does access control check

• NFS disallows UID 0 (root)

– For obvious reasons

– Mapped into 65534 (or –2 [16 bits]), normally the user nobody,
before passed to kernel

Source: http://nob.cs.ucdavis.edu/bishop/secprog/sans2002.pdf

Example: A nice attack against NFS

• What if NFS client uses UID of 217?

• NFS cannot use this directly in the kernel

– If the kernel works with 16 bit UIDs then the maximum UID is

216 – 1

• UID is truncated to 16 bits by NFS server

– As 217 ≠ 0, UID is not remapped

– 217 gets truncated to 16-bits

– 217 = 0000 0000 0000 0001 0000 0000 0000 0000

– So the resulting UID is 0000 0000 0000 0000 (0), and that’s
root

Source: http://nob.cs.ucdavis.edu/bishop/secprog/sans2002.pdf

Example: UIDs in practice

Source: http://docs.oracle.com/cd/E19455-01/805-7228/userconcept-35/index.html

Working with users, UIDs, …

• #include <pwd.h>

• getpwent(), setpwent(), endpwent(), getpwnam(), getpw(),

getpwuid(), putpwent()

• Supports also network users

– NIS, LDAP

• Reentrant versions

– getpwent_r(),

fgetpwent_r(),

getpwuid_r(),

getpwnam_r()

• uid_t, gid_t

struct passwd {

char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */

gid_t pw_gid; /* group ID */
char *pw_gecos; /* real name */

char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

Working with users, UIDs, …

#define _GNU_SOURCE

#include <pwd.h>

#include <stdio.h>

#define BUFLEN 4096

int

main(void)

{

struct passwd pw, *pwp;

char buf[BUFLEN];

int i;

setpwent();

while (1) {

i = getpwent_r(&pw, buf, BUFLEN, &pwp);

if (i)

break;

printf("%s (%d)\tHOME %s\tSHELL %s\n", pwp->pw_name,

pwp->pw_uid, pwp->pw_dir, pwp->pw_shell);

}

endpwent();

exit(EXIT_SUCCESS);

}

Modern Unix

• rwxrwxrwx for user, group and others is not enough

• Groups can be created by administrators only

• Modern Unix supports ACL

– commands getfacl, setfacl

Long format of ACL:

user::rw-

user:lisa:rw- #effective:r--

group::r--

group:toolies:rw- #effective:r--

mask::r--

other::r--

Short format of ACL:

u::rw-,u:lisa:rw-,g::r--,g:toolies:rw-,

m::r--,o::r--,g:toolies:rw,u:lisa:rw,u::wr,

g::r,o::r,m::r

ACL library functions

Filesystem specific attributes

• EXT2/EXT3/EXT4

– lsattr / chattr

• append only (a), compressed (c), no dump (d),
extent format (e), immutable (i), data journalling (j),

secure deletion (s), no tail-merging (t), undeletable (u),

no atime updates (A), no copy on write (C),

synchronous directory updates (D), synchronous

updates (S), and top of directory hierarchy (T).

• huge file (h), compression error (E), indexed directory

(I), compression raw access (X), and compressed dirty
file (Z)

POSIX capabilities in Unix systems

As of Linux 2.2, the power of the superuser (root) has been partitioned into

a set of discrete capabilities. Each thread has a set of effective capabili-
ties identifying which capabilities (if any) it may currently exercise. Each

thread also has a set of inheritable capabilities that may be passed through

an execve(2) call, and a set of permitted capabilities that it can make

effective or inheritable.

Source: man capget(2)

• Limiting root privileges

• In Linux kernel since 2.2

– for processes, not for files

Linux capabilities

Library functions supporting capabilities

• Library functions

– cap_set_proc(3), cap_get_proc(3), capsetp(3), capgetp(3),

cap_clear(3), cap_copy_ext(3), cap_from_text(3),

cap_get_file(3), cap_init(3)

• System calls

– capget(2), capset(2)

Access control under Unix - umask

• umask(2) – setting the umask for a process

• umask(1) - bash built-in commands

umask [-p] [-S] [mode]

The user file-creation mask is set to mode. If mode begins with a digit, it is

interpreted as an octal number; otherwise it is interpreted as a symbolic mode

mask similar to that accepted by chmod(1). If mode is omitted, the current value

of the mask is printed. The -S option causes the mask to be printed in symbolic

form; the default output is an octal number. If the -p option is supplied, and

mode is omitted, the output is in a form that may be reused as input. The return

status is 0 if the mode was successfully changed or if no mode argument was sup-

plied, and false otherwise.

Source: man umask

access(2)

int access(const char *pathname, int mode);

access() checks whether the calling process can access the file path- name. If

pathname is a symbolic link, it is dereferenced.

The mode specifies the accessibility check(s) to be performed, and is either the value

F_OK, or a mask consisting of the bitwise OR of one or more of R_OK, W_OK, and

X_OK. F_OK tests for the existence of the file. R_OK, W_OK, and X_OK test

whether the file exists and grants read, write, and execute permissions, respectively.

The check is done using the calling process's real UID and GID, rather than the effective

IDs as is done when actually attempting an operation (e.g., open(2)) on the file. This

allows set-user-ID programs to easily determine the invoking user's authority.

If the calling process is privileged (i.e., its real UID is zero), then an X_OK check is
successful for a regular file if execute permission is enabled for any of the file owner,

group, or other. Source: man access

access(2)

Warning: Using access() to check if a user is

authorized to, for example, open a file before

actually doing so using open(2) creates a security

hole, because the user might exploit the short

time interval between checking and opening the file

to manipulate it. For this reason, the use of this

system call should be avoided.

Source: man access

Links

• Hard links
– link(2) or ln(1) creates a new link to an existing file.

– This new name may be used exactly as the old one for any operation; both names
refer to the same file (and so have the same permissions and ownership) and it is
impossible to tell which name was the "original". [man link]

• Soft (symbolic) links
– symlink(2) or ln(1) creates a symbolic link

– Symbolic links are interpreted at run time as if the contents of the link had been
substituted into the path being followed to find a file or directory. Symbolic links may
contain .. path components, which (if used at the start of the link) refer to the
parent directories of that in which the link resides. A symbolic link (also known as a
soft link) may point to an existing file or to a nonexistent one; the latter case is
known as a dangling link. The permissions of a symbolic link are irrelevant; the
ownership is ignored when following the link, but is checked when removal or
renaming of the link is requested and the link is in a directory with the sticky bit set.
[man symlink]

– Symbolic links often used for attacks

• Time of check vs. time of use

TOCTOU – Time of check vs. time of use

Source: Viega, Messier: Programming cookbook for C and C++

Watch out for symbolic links

Functions that follow symbolic links automatically open, read, or write to the file whose path name is in the

symbolic link file rather than the symbolic link file itself. Your application receives no notification that a symbolic
link was followed; to your application, it appears as if the file addressed is the one that was used.

An attacker can use a symbolic link, for example, to cause your application to write the contents intended for
a temporary file to a critical system file instead, thus corrupting the system. Alternatively, the attacker can

capture data you are writing or can substitute the attacker’s data for your own when you read the temporary
file.

In general, you should avoid functions, such as chown and stat, that follow symbolic links. As with hard links,
your program should evaluate whether a symbolic link is acceptable, and if not, should handle the situation

gracefully.

Source: https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Articles/RaceConditions.html

Watch out for hard links

Functions that follow symbolic links automatically open, read, or write to the file whose path name is in the

symbolic link file rather than the symbolic link file itself. Your application receives no notification that a symbolic
link was followed; to your application, it appears as if the file addressed is the one that was used.

An attacker can use a symbolic link, for example, to cause your application to write the contents intended for
a temporary file to a critical system file instead, thus corrupting the system. Alternatively, the attacker can

capture data you are writing or can substitute the attacker’s data for your own when you read the temporary
file.

In general, you should avoid functions, such as chown and stat, that follow symbolic links. As with hard links,
your program should evaluate whether a symbolic link is acceptable, and if not, should handle the situation

gracefully.

Source: https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Articles/RaceConditions.html

Credentials of a task in Linux (cred.h in kernel)

Credentials of a task in Linux

• uid, gid

– real values (who clicked)

• euid, egid

– Effective values (used in permission checks)

• suid,sgid

– saved values

– you can temporarily drop privileges and restore them later

• fsuid, fsgid

– used in filesystem permission checks

Example: FreeBSD-SA-13:06.mmap

• Privilege escalation via mmap

The FreeBSD virtual memory system allows files to be memory-mapped. All or parts of a file can be made

available to a process via its address space. The process can then access the file using memory
operations rather than filesystem I/O calls.

The ptrace(2) system call provides tracing and debugging facilities by allowing one process (the tracing
process) to watch and control another (the traced process).

II. Problem Description

Due to insufficient permission checks in the virtual memory system, a tracing process (such as a
debugger) may be able to modify portions of the traced process's address space to which the traced

process itself does not have write access.

III. Impact

This error can be exploited to allow unauthorized modification of an arbitrary file to which the attacker has

read access, but not write access. Depending on the file and the nature of the modifications,
this can result in privilege escalation.

Example: FreeBSD-SA-12:04.sysret

• Privilege escalation when returning from kernel

I. Background

The FreeBSD operating system implements a rings model of security, where privileged

operations are done in the kernel, and most applications request access to these

operations by making a system call, which puts the CPU into the required privilege level

and passes control to the kernel.

II. Problem Description

FreeBSD/amd64 runs on CPUs from different vendors. Due to varying behaviour of

CPUs in 64 bit mode a sanity check of the kernel may be insufficient when returning from

a system call.

III. Impact

Successful exploitation of the problem can lead to local kernel privilege escalation, kernel

data corruption and/or crash.

To exploit this vulnerability, an attacker must be able to run code with user privileges on

the target system.

Example: FreeBSD-SA-12:04.sysret

Index: sys/amd64/amd64/trap.c

===

--- sys/amd64/amd64/trap.c.orig
+++ sys/amd64/amd64/trap.c (working copy)

@@ -972,4 +972,21 @@
syscallname(td->td_proc, sa.code)));

syscallret(td, error, &sa);
+

+ /*
+ * If the user-supplied value of %rip is not a canonical

+ * address, then some CPUs will trigger a ring 0 #GP during

+ * the sysret instruction. However, the fault handler would
+ * execute with the user's %gs and %rsp in ring 0 which would

+ * not be safe. Instead, preemptively kill the thread with a
+ * SIGBUS.

+ */

+ if (td->td_frame->tf_rip >= VM_MAXUSER_ADDRESS) {
+ ksiginfo_init_trap(&ksi);

+ ksi.ksi_signo = SIGBUS;
+ ksi.ksi_code = BUS_OBJERR;

+ ksi.ksi_trapno = T_PROTFLT;

+ ksi.ksi_addr = (void *)td->td_frame->tf_rip;
+ trapsignal(td, &ksi);

+ }
}

Example: FreeBSD-SA-09:17.freebsd-update

I. Background

The freebsd-update(8) utility is used to fetch, install, and rollback updates to the FreeBSD base system, and also to upgrade from one
FreeBSD release to another.

II. Problem Description

When downloading updates to FreeBSD via 'freebsd-update fetch' or 'freebsd-update upgrade', the freebsd-update(8) utility copies
currently installed files into its working directory (/var/db/freebsd-update by default) both for the purpose of merging changes to

configuration files and in order to be able to roll back installed updates.

The default working directory used by freebsd-update(8) is normally created during the installation of FreeBSD with permissions which

allow all local users to see its contents, and freebsd-update(8) does not take any steps to restrict access to files stored in said directory.

III. Impact

A local user can read files which have been updated by freebsd-update(8), even if those files have permissions which would normally not

allow users to read them. In particular, on systems which have been upgraded using 'freebsd-update upgrade', local users can read
freebsd-update's backed-up copy of the master password file.

• Inappropriate directory permissions in freebsd-

update(8)

Example: FreeBSD-SA-09:10.ipv6

• Missing permission check on SIOCSIFINFO_IN6 ioctl

I. Background

IPv6 is a new Internet Protocol, designed to replace (and avoid many of the problems with) the current

Internet Protocol (version 4). Many properties of the FreeBSD IPv6 network stack can be configured

via the ioctl(2) interface.

II. Problem Description

The SIOCSIFINFO_IN6 ioctl is missing a necessary permissions check.

III. Impact

Local users, including non-root users and users inside jails, can set some IPv6 interface properties.

These include changing the link MTU and disabling interfaces entirely. Note that this affects IPv6 only;

IPv4 functionality cannot be affected by exploiting this vulnerability.

UNIX: chroot

• chroot(1) - run command or interactive shell with special root
directory

• chroot(2) changes the root directory of the calling process to
that specified in path. This directory will be used for
pathnames beginning with /. The root directory is inherited
by all children of the calling process.

• May be OK for:

– Testing and development

– Compatibility (a special set of libraries/other files)

– Recovery (booting from CD)

• It is not OK:

– to defend against intentional tampering by privileged (root)
users (see e.g. http://www.bpfh.net/simes/computing/chroot-break.html)

See wikipedia on chroot

Chroot examples

• The Postfix mail transfer agent operates as a pipeline of

individually chrooted helper programs.

• Many FTP servers for POSIX systems use the chroot

mechanism to sandbox untrusted FTP clients. This may be
done by forking a process to handle an incoming connection,

then chrooting the child (to avoid having to populate the

chroot with libraries required for program startup).

• If privilege separation is enabled, the OpenSSH daemon will

chroot an unprivileged helper process into an empty

directory to handle pre-authentication network traffic for each

client.

See wikipedia on chroot

FreeBSD jail

The jail(2) system call allows a system administrator to lock a process

and all of its descendants inside an environment with a very limited

ability to affect the system outside that environment, even for

processes with superuser privileges. It is an extension of, but

far more powerful than, the traditional UNIX chroot(2) system call.

By design, neither the chroot(2) nor the jail(2) system call modify

existing open file descriptors of the calling process, in order to

allow programmers to make fine grained access control and privilege

separation.

The jail(8) utility creates a new jail or modifies an existing jail,

optionally imprisoning the current process (and future descendants)

inside it.

Access control in MS Windows

• There are two basic components of the access

control model:

– Access tokens, which contain information about a logged-
on user

– Security descriptors, which contain the security
information that protects a securable object

Source: MSDN

Note: Windows 95, Windows 98, Windows Me and Windows CE do not

support ACLs.

Access control in MS Windows

Source: MSDN

Access tokens

When a user logs on, the system authenticates the user's account name and
password. If the logon is successful, the system creates an access token. Every
process executed on behalf of this user will have a copy of this access token. The
access token contains security identifiers that identify the user's account and any
group accounts to which the user belongs. The token also contains a list of the
privileges held by the user or the user's groups. The system uses this token to
identify the associated user when a process tries to access a securable object or
perform a system administration task that requires privileges.

Access token

• The information in a token includes the identity and privileges of the user
account associated with the process or thread.

• Access tokens contain the following information:
– The security identifier (SID) for the user's account

– SIDs for the groups of which the user is a member

– A logon SID that identifies the current logon session

– A list of the privileges held by either the user or the user's groups

– An owner SID

– The SID for the primary group

– The default DACL that the system uses when the user creates a securable object
without specifying a security descriptor

– The source of the access token

– Whether the token is a primary or impersonation token

– An optional list of restricting SIDs

– Current impersonation levels

– Other statistics

Source: MSDN

Security descriptor

When a securable object is created, the system assigns it a security descriptor

that contains security information specified by its creator, or default security

information if none is specified. Applications can use functions to retrieve and set

the security information for an existing object. A security descriptor identifies the

object's owner and can also contain the following access control lists:

• A discretionary access control list (DACL) that identifies the users and groups

allowed or denied access to the object

• A system access control list (SACL) that controls how the system audits

attempts to access the object

An ACL contains a list of access control entries (ACEs). Each ACE specifies a set

of access rights and contains a SID that identifies a trustee for whom the rights

are allowed, denied, or audited. A trustee can be a user account, group account,
or logon session.

Source: MSDN

Security descriptors

• A security descriptor contains the security information
associated with a securable object. A security descriptor
consists of a SECURITY_DESCRIPTOR structure and its
associated security information. A security descriptor can
include the following security information:

– Security identifiers (SIDs) for the owner and primary group of an
object.

– A DACL that specifies the access rights allowed or denied to
particular users or groups.

– A SACL that specifies the types of access attempts that
generate audit records for the object.

– A set of control bits that qualify the meaning of a security
descriptor or its individual members.

Source: MSDN

SID = Security identifier

• A security identifier (SID) is a unique value of variable length used to
identify a trustee. Each account has a unique SID issued by an
authority, such as a Windows domain controller, and stored in a
security database. Each time a user logs on, the system retrieves the
user's SID from the database and places it in the user's access token.

• In addition to the uniquely-created, domain-specific SIDs assigned to
specific users and groups, there are well-known SIDs that identify
generic groups and generic users. For example, the well-known SIDs,
Everyone and World, identify a group that includes all users.

• A SID represents a user, a group or a computer.

Source: MSDN

Examples of SID

Name SID

Administrator S-1-5-21-576009780-3087749231-2261803321-500

Guest S-1-5-21-576009780-3087749231-2261803321-501

Host S-1-5-21-576009780-3087749231-2261803321-1003

UpdatusUser S-1-5-21-576009780-3087749231-2261803321-1002

zriha S-1-5-21-576009780-3087749231-2261803321-1001

Administrator S-1-5-21-1123561945-448539723-1801674531-500

ASPNET S-1-5-21-1123561945-448539723-1801674531-1004

Guest S-1-5-21-1123561945-448539723-1801674531-501

HelpAssistant S-1-5-21-1123561945-448539723-1801674531-1000

SQLDebugger S-1-5-21-1123561945-448539723-1801674531-1007

SUPPORT_388945a0 S-1-5-21-1123561945-448539723-1801674531-1002

Functions on SIDs

Source: MSDN

Access control lists

• An access control list (ACL) is a list of access control entries (ACE).
Each ACE in an ACL identifies a trustee and specifies the access
rights allowed, denied, or audited for that trustee. The security
descriptor for a securable object can contain two types of ACLs:
a DACL and a SACL.

• A discretionary access control list (DACL) identifies the trustees
that are allowed or denied access to a securable object. The system
checks the ACEs in sequence until it finds one or more ACEs that
allow all the requested access rights, or until any of the requested
access rights are denied.

• A system access control list (SACL) enables administrators to log
attempts to access a secured object. Each ACE specifies the types of
access attempts by a specified trustee that cause the system to
generate a record in the security event log.

Source: MSDN

ACL – empty & NULL

• If the DACL belonging to an object's security descriptor is set

to NULL, a null DACL is created. A null DACL grants full
access to any user that requests it; normal security checking

is not performed with respect to the object.

• A null DACL should not be confused with an empty DACL.

An empty DACL is a properly allocated and initialized DACL

containing no ACEs. An empty DACL grants no access to the

object it is assigned to.

• BTW: NULL security descriptor will create a default security

descriptor with a default DACL…

Source: MSDN

Access control entry

• An access control entry (ACE) is an element in an access control list
(ACL). An ACL can have zero or more ACEs.

• There are six types of ACEs, three of which are supported by all
securable objects. The other three types are object-specific ACEs
supported by directory service objects.

• All types of ACEs contain the following access control information:

– A security identifier (SID) that identifies the trustee to which the ACE
applies.

– An access mask that specifies the access rights controlled by the ACE.

– A flag that indicates the type of ACE (allowed, denied, audit).

– A set of bit flags that determine whether child containers or objects can
inherit the ACE from the primary object to which the ACL is attached.

Source: MSDN

Windows Access Mask Format

Source: MSDN

Dangerous ACE types

• Everyone (WRITE_DAC)

– Right to modify the DACL

• Everyone (WRITE_OWNER)

– Right to change the owner

• Everyone (FILE_ADD_FILE)

– Right to add new files including executables

Securable objects

Source: MSDN

ACE inheritance

• An object's ACL can contain ACEs that it inherited from its

parent container. For example, a registry subkey can inherit
ACEs from the key above it in the registry hierarchy.

Likewise, a file in an NTFS file system can inherit ACEs from

the directory that contains it.

• The ACE_HEADER structure of an ACE contains a set of

inheritance flags that control ACE inheritance and the effect

of an ACE on the object to which it is attached. The system

interprets the inheritance flags and other inheritance
information according to the rules of ACE inheritance.

Source: MSDN

ACE Inheritance – flags in ACE_HEADER

ACE inheritance rules

Source: MSDN

ACE inheritance

The order of ACE does matter

Note: Keep the right order also when modifying the ACL …

Source: MSDN

Security Descriptor Definition Language (SDDL)

• To specify ACL you can use the SDDL

• The format is a null-terminated string with tokens to

indicate each of the four main components of a

security descriptor: owner (O:), primary group (G:),

DACL (D:), and SACL (S:).

– O:owner_sid

– G:group_sid

– D:dacl_flags(string_ace1)(string_ace2)... (string_acen)

– S:sacl_flags(string_ace1)(string_ace2)... (string_acen)

• (A;;RPWPCCDCLCSWRCWDWOGA;;;S-1-0-0)
Source: MSDN

ACE string

• ace_type;ace_flags;rights;object_guid;inherit_object_guid;account_sid

Source: MSDN

Terminal server

• Many users can log in

• ACLs is even more important here

• In Unix it is usually expected the system is

multiuser…

Example: MS01-003

Weak Permissions on Winsock Mutex Can Allow Service Failure

Like all other objects under Windows NT 4.0, mutexes - synchronization objects that govern access to

resources - have permissions associated with them, that govern how they can be accessed. However,

a particular mutex used to govern access to a networking resource has inappropriately loose

permissions. This could enable an attacker who had the ability to run code on a local machine to

monopolize the mutex, thereby preventing any other processes from using the resource that it

controlled. This would have the effect of preventing the machine from participating in the network.

The attacker would require interactive logon access to the affected machine. This significantly limits the

scope of the vulnerability because, if normal security recommendations have been followed,

unprivileged users will not be granted interactive logon rights to critical machines like servers.

Unprivileged users typically are granted interactive logon rights to workstations and terminal servers.

However, a workstation would not be a tempting target for an attacker, because he could only use this

vulnerability to deny service to himself. The machines most likely to be affected would be Terminal

Servers.

Windows privileges

• User accounts can have privileges that allow or

disallow certain privileged operations affecting an

entire computer

– E.g. ability to log on to a computer, to debug programs of

other users, changing the system time, …

• SeBackupPrivilege

• SeDebugPrivilege

• SeLoadDriverPrivilege

• SeTakeOwnershipPrivilege

“whoami /all”

GROUP INFORMATION

Group Name Type SID Attributes

== ============ =========== =======================================

Everyone Well-known group S-1-1-0 Mandatory group, Enabled by default, Enabled group

BUILTIN\Administrators Alias S-1-5-32-544 Group used for deny only

BUILTIN\Users Alias S-1-5-32-545 Mandatory group, Enabled by default, Enabled group

NT AUTHORITY\REMOTE INTERACTIVE LOGON Well-known group S-1-5-14 Mandatory group, Enabled by default, Enabled group

NT AUTHORITY\INTERACTIVE Well-known group S-1-5-4 Mandatory group, Enabled by default, Enabled group

NT AUTHORITY\Authenticated Users Well-known group S-1-5-11 Mandatory group, Enabled by default, Enabled group

NT AUTHORITY\This Organization Well-known group S-1-5-15 Mandatory group, Enabled by default, Enabled group

LOCAL Well-known group S-1-2-0 Mandatory group, Enabled by default, Enabled group

NT AUTHORITY\NTLM Authentication Well-known group S-1-5-64-10 Mandatory group, Enabled by default, Enabled group

Mandatory Label\Střední povinná úroveň Label S-1-16-8192 Mandatory group, Enabled by default, Enabled group

PRIVILEGES INFORMATION

Privilege Name Description State

============================= ================================== ========

SeShutdownPrivilege Vypnout systém Disabled

SeChangeNotifyPrivilege Nepoužívat kontrolu procházení Enabled

SeUndockPrivilege Vyjmout počítač z dokovací staniceDisabled

SeIncreaseWorkingSetPrivilege Zvýšit pracovní sadu procesu Disabled

SeTimeZonePrivilege Změnit časové pásmo Disabled

Determine correct SIDs and privileges

1. Find you which resources you use

2. Find you which privileged API calls you use

3. Evaluate the account under which you require to

run

4. List the SIDs and privileges of the account

5. Determine which SID and privileges you need to

perform the application tasks

6. Adjust the token

Windows integrity levels

• Processes are assigned an integrity level (Vista+)

– Low, medium, high, system

• The process manager assigns the mandatory policy

options NO_READ_UP and NO_WRITE_UP to

restrict lower-integrity processes from opening a

higher-integrity process for either read or write

access.

• Also affects access to registry, folders, COM, …

See: http://msdn.microsoft.com/en-us/library/bb625957.aspx

Privilege separation

• Example:

– Low privileged client x high privileged server

privilege separation is a technique in which a program is divided into parts

which are limited to the specific privileges they require in order to perform

a specific task. This is used to mitigate the potential damage of a

computer security attack.

See Wikipedia on privilege separation

Example: Apache web server privileges

• If the Listen specified in the configuration file is default of 80 (or any
other port below 1024), then it is necessary to have root privileges in
order to start apache, so that it can bind to this privileged port. Once
the server has started and performed a few preliminary activities such
as opening its log files, it will launch several child processes which do
the work of listening for and answering requests from clients. The
main httpd process continues to run as the root user, but the child
processes run as a less privileged user.

– Unprivileged users often called apache, www, webuser, …

• Static pages: No need to be owned by apache user, RO access is
enough (accessed with apache user rights)

• Dynamic pages: Running as apache user unless suEXEC is used,
then “scripts” are running with user privileges (is part of user’s web
page)

Apache processes - example

apache 12883 0.0 0.4 50964 13704 ? S Oct20 0:00 /usr/sbin/httpd -DFOREGROUND

apache 12884 0.0 0.4 50800 12924 ? S Oct20 0:00 /usr/sbin/httpd -DFOREGROUND

apache 12887 0.0 0.4 50916 13164 ? S Oct20 0:00 /usr/sbin/httpd -DFOREGROUND

apache 14436 0.0 0.4 50676 13056 ? S Oct20 0:00 /usr/sbin/httpd -DFOREGROUND

apache 15243 0.0 0.4 50776 12932 ? S Oct20 0:00 /usr/sbin/httpd -DFOREGROUND
root 15483 0.0 0.4 46448 12960 ? Ss Oct07 1:05 /usr/sbin/httpd -DFOREGROUND

apache 17822 0.0 0.4 51232 13476 ? S 07:56 0:00 /usr/sbin/httpd -DFOREGROUND

apache 17825 0.0 0.3 50536 12364 ? S 07:56 0:00 /usr/sbin/httpd -DFOREGROUND

apache 18284 0.0 0.2 46468 8216 ? S 11:32 0:00 /usr/sbin/httpd -DFOREGROUND

apache 18523 0.0 0.2 46468 8200 ? S 13:33 0:00 /usr/sbin/httpd -DFOREGROUND
apache 18527 0.0 0.2 46468 8168 ? S 13:42 0:00 /usr/sbin/httpd -DFOREGROUND

Example: Delivering emails (postfix)

• Postfix is a email delivery program

– A “secure” replacement of Sendmail

– Principle of least priviledge

Postfix architecture (default master.cf file)
==

service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (100)

==

smtp inet n - n - - smtpd

smtps inet n - n - - smtpd

628 inet n - n - - qmqpd

pickup fifo n - n 60 1 pickup

cleanup unix n - n - 0 cleanup

qmgr fifo n - n 300 1 qmgr

tlsmgr unix - - n 1000 1 tlsmgr

rewrite unix - - n - - trivial-rewrite

bounce unix - - n - 0 bounce

defer unix - - n - 0 bounce

trace unix - - n - 0 bounce

verify unix - - n - 1 verify

flush unix n - n 1000 0 flush

proxymap unix - - n - - proxymap

smtp unix - - n - - smtp

showq unix n - n - - showq

error unix - - n - - error

retry unix - - n - - error

discard unix - - n - - discard

local unix - n n - - local

virtual unix - n n - - virtual

lmtp unix - - n - - lmtp

anvil unix - - n - 1 anvil

Scache unix - - n - 1 scache

Restricting access based on IP

• Based on IP
– Specific IP (147.251.48.3)

– Subnet (147.251.0.0/16)

• Based on hostname (depends on DNS)
– Specific hostname (aisa.fi.muni.cz)

– Group of hostnames (*.fi.muni.cz)

• Where to block
– Firewall at the router

– Firewall at the computer (personal firewall)

– TCP Wrapper

– Your application

Best practices

• Protect your resources from unauthorized access

– Good ACLs are part of your “Defence in depth” strategy

• Defend against race condition when working with

files

– Time of check, Time of use (TOCTOU)

• Minimize the time a program runs with high

privileges

• Protect sensitive data

Check error codes

• Permissions / access rights can be a reason why a

file operation fails

• Check result codes!

• Example:

– you can’t remove a directory that has anything inside it.

If a directory is in a location where other users have

access to it, any attempt to remove the directory might fail

because another process might add new files while you
are removing the old ones…

