Journal of Japanese Society for Artificial Intelligence, 14(5): 771-780, September, 1999.
(In Japanese, trandation by Naoki Abe.)

A Short Introduction to Boosting

Yoav Freund Robert E. Schapire
AT&T Labs — Research
Shannon Laboratory
180 Park Avenue
Florham Park, NJ 07932 USA
www.research.att.com/~{yoav, schapire}
{yoav, schapire} @research.att.com

Abstract
Boosting is a general method for improving the accuracy of any given learning algorithm.
This short overview paper introduces the boosting algorithm AdaBoost, and explains the un-
derlying theory of boosting, including an explanation of why boosting often does not suffer
from overfitting as well as boosting’s relationship to support-vector machines. Some examples
of recent applications of boosting are also described.

Introduction

A horse-racing gambler, hoping to maximize his winnings, decides to create a computer program
that will accurately predict the winner of a horse race based on the usual information (number of
races recently won by each horse, betting odds for each horse, etc.). To create such a program, he
asks a highly successful expert gambler to explain his betting strategy. Not surprisingly, the expert
is unable to articulate a grand set of rules for selecting a horse. On the other hand, when presented
with the data for a specific set of races, the expert has no trouble coming up with a “rule of thumb”
for that set of races (such as, “Bet on the horse that has recently won the most races” or “Bet on
the horse with the most favored odds”). Although such a rule of thumb, by itself, is obviously very
rough and inaccurate, it is not unreasonable to expect it to provide predictions that are at least a
little bit better than random guessing. Furthermore, by repeatedly asking the expert’s opinion on
different collections of races, the gambler is able to extract many rules of thumb.

In order to use these rules of thumb to maximum advantage, there are two problems faced by
the gambler: First, how should he choose the collections of races presented to the expert so as to
extract rules of thumb from the expert that will be the most useful? Second, once he has collected
many rules of thumb, how can they be combined into a single, highly accurate prediction rule?

Boosting refers to a general and provably effective method of producing a very accurate pre-
diction rule by combining rough and moderately inaccurate rules of thumb in a manner similar to

that suggested above. This short paper overviews some of the recent work on boosting, focusing
especially on the AdaBoost algorithm which has undergone intense theoretical study and empirical
testing. After introducing AdaBoost, we describe some of the basic underlying theory of boosting,
including an explanation of why it often tends not to overfit. We also describe some experiments
and applications using boosting.

Background

Boosting has its roots in a theoretical framework for studying machine learning called the “PAC”
learning model, due to Valiant [46]; see Kearns and Vazirani [32] for a good introduction to this
model. Kearns and Valiant [30, 31] were the first to pose the question of whether a “weak” learn-
ing algorithm which performs just slightly better than random guessing in the PAC model can be
“boosted” into an arbitrarily accurate “strong” learning algorithm. Schapire [38] came up with the
first provable polynomial-time boosting algorithm in 1989. A year later, Freund [17] developed
a much more efficient boosting algorithm which, although optimal in a certain sense, neverthe-
less suffered from certain practical drawbacks. The first experiments with these early boosting
algorithms were carried out by Drucker, Schapire and Simard [16] on an OCR task.

AdaBoost

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [23], solved many of the
practical difficulties of the earlier boosting algorithms, and is the focus of this paper. Pseudocode
for AdaBoost is given in Fig. 1. The algorithm takes as input a training set (1, y1), - - ., (Zm, Ym)
where each z; belongs to some domain or instance space X, and each label y; is in some label
set Y. For most of this paper, we assume Y = {—1,+1}; later, we discuss extensions to the
multiclass case. AdaBoost calls a given weak or base learning algorithm repeatedly in a series of
rounds £ = 1,...,T. One of the main ideas of the algorithm is to maintain a distribution or set of
weights over the training set. The weight of this distribution on training example % on round ¢ is
denoted Dy(i). Initially, all weights are set equally, but on each round, the weights of incorrectly
classified examples are increased so that the weak learner is forced to focus on the hard examples
in the training set.

The weak learner’s job is to find a weak hypothesis h;, : X — {—1,+1} appropriate for the
distribution D;. The goodness of a weak hypothesis is measured by its error

et = Priup, [he(z:) Zuil = Y Di(d).
i:hi(2i) £y

Notice that the error is measured with respect to the distribution D, on which the weak learner
was trained. In practice, the weak learner may be an algorithm that can use the weights D, on the
training examples. Alternatively, when this is not possible, a subset of the training examples can
be sampled according to D, and these (unweighted) resampled examples can be used to train the
weak learner.

Relating back to the horse-racing example, the instances x; correspond to descriptions of horse
races (such as which horses are running, what are the odds, the track records of each horse, etc.)

2

Given: (z1,v1),- .-, (Tm,Ym) Wherez; € X, y; € Y = {-1,+1}
Initialize D (i) = 1/m.
Fort=1,...,T:

e Train weak learner using distribution D;.
e Get weak hypothesis h; : X — {—1,+1} with error

€ = Privp, [hu(z:) # il -

1 —
e Choose a; = 3 1In (€t>.

€t
e Update:
. i Dt(Z) e % if ht(mz) =Y
D) = Z, { e if hy(xi) # v
D, (i) exp(—oyyihy(x;))

Zy
where Z; is a normalization factor (chosen so that D, will be a distribution).

Output the final hypothesis:
T
H(zx) = sign (Z atht(x)> .

t=1

Figure 1: The boosting algorithm AdaBoost.

and the labels y; give the outcomes (i.e., the winners) of each race. The weak hypotheses are
the rules of thumb provided by the expert gambler where the subcollections that he examines are
chosen according to the distribution D.

Once the weak hypothesis h; has been received, AdaBoost chooses a parameter «; as in the
figure. Intuitively, a; measures the importance that is assigned to h;. Note that iy > 0if ¢, < 1/2
(which we can assume without loss of generality), and that «; gets larger as €, gets smaller.

The distribution Dy is next updated using the rule shown in the figure. The effect of this rule
is to increase the weight of examples misclassified by h;, and to decrease the weight of correctly
classified examples. Thus, the weight tends to concentrate on “hard” examples.

The final hypothesis H is a weighted majority vote of the 7" weak hypotheses where «; is the
weight assigned to h;.

Schapire and Singer [42] show how AdaBoost and its analysis can be extended to handle weak
hypotheses which output real-valued or confidence-rated predictions. That is, for each instance z,
the weak hypothesis h; outputs a prediction h;(z) € R whose sign is the predicted label (—1 or
+1) and whose magnitude |h;(z)| gives a measure of “confidence” in the prediction. In this paper,
however, we focus only on the case of binary ({—1,+1}) valued weak-hypothesis predictions.

1.0-

0.5-

error

cumulative distribution

.

10 100 1000

rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Analyzing the training error

The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error ¢; of h; as % — 7. Since a hypothesis that guesses each instance’s class
at random has an error rate of 1/2 (on binary problems), -y; thus measures how much better than
random are h;’s predictions. Freund and Schapire [23] prove that the training error (the fraction of
mistakes on the training set) of the final hypothesis H is at most

I 2yl 0] =TT~ 197 < ex0 (—2;72) | 1)

t

Thus, if each weak hypothesis is slightly better than random so that ; > ~ for some v > 0, then
the training error drops exponentially fast.

A similar property is enjoyed by previous boosting algorithms. However, previous algorithms
required that such a lower bound ¥ be known a priori before boosting begins. In practice, knowl-
edge of such a bound is very difficult to obtain. AdaBoost, on the other hand, is adaptive in that it
adapts to the error rates of the individual weak hypotheses. This is the basis of its name — “Ada”
is short for “adaptive.”

The bound given in Eq. (1), combined with the bounds on generalization error given below,
prove that AdaBoost is indeed a boosting algorithm in the sense that it can efficiently convert
a weak learning algorithm (which can always generate a hypothesis with a weak edge for any
distribution) into a strong learning algorithm (which can generate a hypothesis with an arbitrarily
low error rate, given sufficient data).

0O 5 10 15 20 25 30 0O 5 10 15 20 25 30
boosting stumps boosting C4.5

Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set of 27 benchmark
problems as reported by Freund and Schapire [21]. Each point in each scatterplot shows the test
error rate of the two competing algorithms on a single benchmark. The y-coordinate of each point
gives the test error rate (in percent) of C4.5 on the given benchmark, and the x-coordinate gives
the error rate of boosting stumps (left plot) or boosting C4.5 (right plot). All error rates have been
averaged over multiple runs.

Generalization error

Freund and Schapire [23] showed how to bound the generalization error of the final hypothesis in
terms of its training error, the sample size m, the VC-dimension d of the weak hypothesis space and
the number of boosting rounds 7". (The VC-dimension is a standard measure of the “complexity”
of a space of hypotheses. See, for instance, Blumer et al. [5].) Specifically, they used techniques
from Baum and Haussler [4] to show that the generalization error, with high probability, is at most

Pr[H(x) # y] + O (@)

where Pr [-] denotes empirical probability on the training sample. This bound suggests that boost-
ing will overfit if run for too many rounds, i.e., as 7" becomes large. In fact, this sometimes does
happen. However, in early experiments, several authors [9, 15, 36] observed empirically that boost-
ing often does not overfit, even when run for thousands of rounds. Moreover, it was observed that
AdaBoost would sometimes continue to drive down the generalization error long after the training
error had reached zero, clearly contradicting the spirit of the bound above. For instance, the left
side of Fig. 2 shows the training and test curves of running boosting on top of Quinlan’s C4.5
decision-tree learning algorithm [37] on the “letter” dataset.

In response to these empirical findings, Schapire et al. [41], following the work of Bartlett [2],
gave an alternative analysis in terms of the margins of the training examples. The margin of

5

16 35
IR IR 3
N ,xn, ¥
14 X B
30 7 RONTR Ao =K
[- TS - ; ¥
T ; VI 3
12 * F ==
25 % 5 g8 o
R T A I o 15| »/./",.ﬂll/
5 s o R u-w
m 8 1o 20 -
B 4 8) X
6 > 7 Aow e
n} 15 2 0 e T B
[—
R M s x A
4 F w T
AdaBoost —+— g i 4 AdaBoost —+—
Sleeping-experts ---x--- 10 - Sleeping-experts --—----
2 3 Rocchio - / Rocchio ---%--
Naive-Bayes - Naive-Bayes -
PITFIDF --m-- 4 PITFIDF --m—
0 . n 5 . . | .
3 4 5 6 4 6 8 10 12 14 16 18 20
Number of Classes Number of Classes

Figure 4: Comparison of error rates for AdaBoost and four other text categorization methods
(naive Bayes, probabilistic TF-IDF, Rocchio and sleeping experts) as reported by Schapire and
Singer [43]. The algorithms were tested on two text corpora — Reuters newswire articles (left)
and AP newswire headlines (right) — and with varying numbers of class labels as indicated on the
x-axis of each figure.

example (x,y) is defined to be
Yy Z ahy (33)
t
PIL
t
It is a number in [—1, +1] which is positive if and only if H correctly classifies the example. More-
over, the magnitude of the margin can be interpreted as a measure of confidence in the prediction.

Schapire et al. proved that larger margins on the training set translate into a superior upper bound
on the generalization error. Specifically, the generalization error is at most

Pr[margin(z, y) < 6] + O (\/ %) 3)

for any € > 0 with high probability. Note that this bound is entirely independent of 7', the number
of rounds of boosting. In addition, Schapire et al. proved that boosting is particularly aggressive at
reducing the margin (in a quantifiable sense) since it concentrates on the examples with the smallest
margins (whether positive or negative). Boosting’s effect on the margins can be seen empirically,
for instance, on the right side of Fig. 2 which shows the cumulative distribution of margins of the
training examples on the “letter” dataset. In this case, even after the training error reaches zero,
boosting continues to increase the margins of the training examples effecting a corresponding drop
in the test error.

Attempts (not always successful) to use the insights gleaned from the theory of margins have
been made by several authors [7, 27, 34].

The behavior of AdaBoost can also be understood in a game-theoretic setting as explored by
Freund and Schapire [22, 24] (see also Grove and Schuurmans [27] and Breiman [8]). In particular,
boosting can be viewed as repeated play of a certain game, and AdaBoost can be shown to be a

2)

6

special case of a more general algorithm for playing repeated games and for approximately solving
a game. This also shows that boosting is closely related to linear programming and online learning.

Relation to support-vector machines

The margin theory points to a strong connection between boosting and the support-vector machines
of Vapnik and others [6, 12, 47]. To clarify the connection, suppose that we have already found
the weak hypotheses that we want to combine and are only interested in choosing the coefficients
ay. One reasonable approach suggested by the analysis of AdaBoost’s generalization error is to
choose the coefficients so that the bound given in Eq. (3) is minimized. In particular, suppose
that the first term is zero and let us concentrate on the second term so that we are effectively
attempting to maximize the minimum margin of any training example.! To make this idea precise,
let us denote the vector of weak-hypothesis predictions associated with the example (z,y) by
h(z) = (hi(x), he(z), ..., hy(x)) which we call the instance vector and the vector of coefficients
by a = {1, @, . . ., an) wWhich we call the weight vector. Using this notation and the definition
of margin given in Eq. (2) we can write the goal of maximizing the minimum margin as

h(z)
maXmin (a (‘/’U’L))yl

4
& Nl Tz ®

where, for boosting, the norms in the denominator are defined as:

lells =3 lanl, [h(z)]|oe = max [y ()] -

t

(When the h,’s all have range {—1, +1}, ||h(z)|| is simply equal to 1.)
In comparison, the explicit goal of support-vector machines is to maximize a minimal margin
of the form described in Eq. (4), but where the norms are instead Euclidean:

lled]s = \/ﬁ Ih(z)[|2 = 1/Zt: hi()? .

Thus, SVM’s use the ¢, norm for both the instance vector and the weight vector, while AdaBoost
uses the £, norm for the instance vector and #; norm for the weight vector.

When described in this manner, SVM and AdaBoost seem very similar. However, there are
several important differences:

e Different norms can result in very different margins. The difference between the norms
41, ¢4 and /., may not be very significant when one considers low dimensional spaces. How-
ever, in boosting or in SVM, the dimension is usually very high, often in the millions or
more. In such a case, the difference between the norms can result in very large differences

'Of course, AdaBoost does not explicitly attempt to maximize the minimal margin. Nevertheless, Schapire
et al.’s [41] analysis suggests that the algorithm does try to make the margins of all the training examples as large
as possible, so in this sense, we can regard this maximum minimal margin algorithm as an illustrative approximation
of AdaBoost. In fact, algorithms that explicitly attempt to maximize minimal margin have not been experimentally as
successful as AdaBoost [7, 27].

in the margin values. This seems to be especially so when there are only a few relevant
variables so that o can be very sparse. For instance, suppose the weak hypotheses all have
range {—1,+1} and that the label y on all examples can be computed by a majority vote of
k of the weak hypotheses. In this case, it can be shown that if the number of relevant weak
hypotheses & is a small fraction of the total number of weak hypotheses then the margin
associated with AdaBoost will be much larger than the one associated with support vector
machines.

e The computation requirements are different. The computation involved in maximizing
the margin is mathematical programming, i.e., maximizing a mathematical expression given
a set of inequalities. The difference between the two methods in this regard is that SVM cor-
responds to quadratic programming, while AdaBoost corresponds only to linear program-
ming. (In fact, as noted above, there is a deep relationship between AdaBoost and linear
programming which also connects AdaBoost with game theory and online learning [22].)

e A different approach is used to search efficiently in high dimensional space. Quadratic
programming is more computationally demanding than linear programming. However, there
is a much more important computational difference between SVM and boosting algorithms.
Part of the reason for the effectiveness of SVM and AdaBoost is that they find linear classi-
fiers for extremely high dimensional spaces, sometimes spaces of infinite dimension. While
the problem of overfitting is addressed by maximizing the margin, the computational prob-
lem associated with operating in high dimensional spaces remains. Support vector machines
deal with this problem through the method of kernels which allow algorithms to perform
low dimensional calculations that are mathematically equivalent to inner products in a high
dimensional “virtual” space. The boosting approach is instead to employ greedy search:
from this perspective, the weak learner is an oracle for finding coordinates of h(z) that have
a non-negligible correlation with the label y. The reweighting of the examples changes the
distribution with respect to which the correlation is measured, thus guiding the weak learner
to find different correlated coordinates. Most of the actual work involved in applying SVM
or AdaBoost to specific classification problems has to do with selecting the appropriate ker-
nel function in the one case and weak learning algorithm in the other. As kernels and weak
learning algorithms are very different, the resulting learning algorithms usually operate in
very different spaces and the classifiers that they generate are extremely different.

Multiclass classification

So far, we have only considered binary classification problems in which the goal is to distinguish
between only two possible classes. Many (perhaps most) real-world learning problems, however,
are multiclass with more than two possible classes. There are several methods of extending Ada-
Boost to the multiclass case.

The most straightforward generalization [23], called AdaBoost.M1, is adequate when the weak
learner is strong enough to achieve reasonably high accuracy, even on the hard distributions created
by AdaBoost. However, this method fails if the weak learner cannot achieve at least 50% accuracy
when run on these hard distributions.

1O7T197

4:1/0.27,4/0.17 5:0/0.26,5/0.17 7:4/0.25,9/0.18 1:9/0.15,7/0.15 2:0/0.29,2/0.19 9:7/0.25,9/0.17

271079

3:5/0.28,3/0.28 9:7/0.19,9/0.19 4:1/0.23,4/0.23 4:1/0.21,4/0.20 4:9/0.16,4/0.16 9:9/0.17,4/0.17

1177497

4:4/0.18,9/0.16 4:4/0.21,1/0.18 7:7/0.24,9/0.21 9:9/0.25,7/0.22 4:4/0.19,9/0.16 9:9/0.20,7/0.17

Figure 5: A sample of the examples that have the largest weight on an OCR task as reported
by Freund and Schapire [21]. These examples were chosen after 4 rounds of boosting (top
line), 12 rounds (middle) and 25 rounds (bottom). Underneath each image is a line of the form
d:{1 Jw,la/we, where d is the label of the example, ¢; and /5 are the labels that get the highest and
second highest vote from the combined hypothesis at that point in the run of the algorithm, and w1,
wo are the corresponding normalized scores.

For the latter case, several more sophisticated methods have been developed. These generally
work by reducing the multiclass problem to a larger binary problem. Schapire and Singer’s [42]
algorithm AdaBoost.MH works by creating a set of binary problems, for each example x and
each possible label y, of the form: “For example z, is the correct label y or is it one of the other
labels?” Freund and Schapire’s [23] algorithm AdaBoost.M2 (which is a special case of Schapire
and Singer’s [42] AdaBoost.MR algorithm) instead creates binary problems, for each example x
with correct label y and each incorrect label y’ of the form: “For example z, is the correct label y
ory'?”

These methods require additional effort in the design of the weak learning algorithm. A dif-
ferent technique [39], which incorporates Dietterich and Bakiri’s [14] method of error-correcting
output codes, achieves similar provable bounds to those of AdaBoost.MH and AdaBoost.M2, but
can be used with any weak learner which can handle simple, binary labeled data. Schapire and
Singer [42] give yet another method of combining boosting with error-correcting output codes.

Experiments and applications

Practically, AdaBoost has many advantages. It is fast, simple and easy to program. It has no
parameters to tune (except for the number of round 7'). It requires no prior knowledge about
the weak learner and so can be flexibly combined with any method for finding weak hypotheses.
Finally, it comes with a set of theoretical guarantees given sufficient data and a weak learner that
can reliably provide only moderately accurate weak hypotheses. This is a shift in mind set for the
learning-system designer: instead of trying to design a learning algorithm that is accurate over the
entire space, we can instead focus on finding weak learning algorithms that only need to be better
than random.

On the other hand, some caveats are certainly in order. The actual performance of boosting on
a particular problem is clearly dependent on the data and the weak learner. Consistent with theory,
boosting can fail to perform well given insufficient data, overly complex weak hypotheses or weak
hypotheses which are too weak. Boosting seems to be especially susceptible to noise [13] (more
on this later).

AdaBoost has been tested empirically by many researchers, including [3, 13, 15, 29, 33, 36, 45].
For instance, Freund and Schapire [21] tested AdaBoost on a set of UCI benchmark datasets [35]
using C4.5 [37] as a weak learning algorithm, as well as an algorithm which finds the best “decision
stump” or single-test decision tree. Some of the results of these experiments are shown in Fig. 3.
As can be seen from this figure, even boosting the weak decision stumps can usually give as
good results as C4.5, while boosting C4.5 generally gives the decision-tree algorithm a significant
improvement in performance.

In another set of experiments, Schapire and Singer [43] used boosting for text categorization
tasks. For this work, weak hypotheses were used which test on the presence or absence of a word
or phrase. Some results of these experiments comparing AdaBoost to four other methods are
shown in Fig. 4. In nearly all of these experiments and for all of the performance measures tested,
boosting performed as well or significantly better than the other methods tested. Boosting has also
been applied to text filtering [44], “ranking” problems [19] and classification problems arising in
natural language processing [1, 28].

The generalization of AdaBoost by Schapire and Singer [42] provides an interpretation of
boosting as a gradient-descent method. A potential function is used in their algorithm to asso-
ciate a cost with each example based on its current margin. Using this potential function, the
operation of AdaBoost can be interpreted as a coordinate-wise gradient descent in the space of
linear classifiers (over weak hypotheses). Based on this insight, one can design algorithms for
learning popular classification rules. In recent work, Cohen and Singer [11] showed how to apply
boosting to learn rule lists similar to those generated by systems like RIPPER [10], IREP [26] and
C4.5rules [37]. In other work, Freund and Mason [20] showed how to apply boosting to learn a
generalization of decision trees called “alternating trees.”

A nice property of AdaBoost is its ability to identify outliers, i.e., examples that are either
mislabeled in the training data, or which are inherently ambiguous and hard to categorize. Because
AdaBoost focuses its weight on the hardest examples, the examples with the highest weight often
turn out to be outliers. An example of this phenomenon can be seen in Fig. 5 taken from an OCR
experiment conducted by Freund and Schapire [21].

When the number of outliers is very large, the emphasis placed on the hard examples can

10

become detrimental to the performance of AdaBoost. This was demonstrated very convincingly
by Dietterich [13]. Friedman et al. [25] suggested a variant of AdaBoost, called “Gentle AdaBoost”
which puts less emphasis on outliers. In recent work, Freund [18] suggested another algorithm,
called “BrownBoost,” which takes a more radical approach that de-emphasizes outliers when it
seems clear that they are “too hard” to classify correctly. This algorithm is an adaptive version of
Freund’s [17] “boost-by-majority” algorithm. This work, together with Schapire’s [40] work on
“drifting games,” reveal some interesting new relationships between boosting, Brownian motion,
and repeated games while raising many new open problems and directions for future research.

References

[1] Steven Abney, Robert E. Schapire, and Yoram Singer. Boosting applied to tagging and PP
attachment. In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, 1999.

[2] Peter L. Bartlett. The sample complexity of pattern classification with neural networks: the
size of the weights is more important than the size of the network. IEEE Transactions on
Information Theory, 44(2):525-536, March 1998.

[3] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, to appear.

[4] Eric B. Baum and David Haussler. What size net gives valid generalization? Neural Compu-
tation, 1(1):151-160, 1989.

[5] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learn-
ability and the Vapnik-Chervonenkis dimension. Journal of the Association for Computing
Machinery, 36(4):929-965, October 1989.

[6] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual ACM Workshop on Computa-
tional Learning Theory, pages 144-152, 1992.

[7] Leo Breiman. Arcing the edge. Technical Report 486, Statistics Department, University of
California at Berkeley, 1997.

[8] Leo Breiman. Prediction games and arcing classifiers. Technical Report 504, Statistics De-
partment, University of California at Berkeley, 1997.

[9] Leo Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-849, 1998.

[10] William Cohen. Fast effective rule induction. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 115-123, 1995.

[11] William W. Cohen and Yoram Singer. A simple, fast, and effective rule learner. In Proceed-
ings of the Sixteenth National Conference on Artificial Intelligence, 1999.

11

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273-297, September 1995.

Thomas G. Dietterich. An experimental comparison of three methods for constructing en-
sembles of decision trees: Bagging, boosting, and randomization. Machine Learning, to
appear.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2:263-286, January
1995.

Harris Drucker and Corinna Cortes. Boosting decision trees. In Advances in Neural Infor-
mation Processing Systems 8, pages 479-485, 1996.

Harris Drucker, Robert Schapire, and Patrice Simard. Boosting performance in neural net-
works. International Journal of Pattern Recognition and Artificial Intelligence, 7(4):705—
719, 1993.

Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation,
121(2):256-285, 1995.

Yoav Freund. An adaptive version of the boost by majority algorithm. In Proceedings of the
Twelfth Annual Conference on Computational Learning Theory, 1999.

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm
for combining preferences. In Machine Learning: Proceedings of the Fifteenth International
Conference, 1998.

Yoav Freund and Llew Mason. The alternating decision tree learning algorithm. In Machine
Learning: Proceedings of the Sixteenth International Conference, 1999. to appear.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Ma-
chine Learning: Proceedings of the Thirteenth International Conference, pages 148-156,
1996.

Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting. In
Proceedings of the Ninth Annual Conference on Computational Learning Theory, pages 325—
332, 1996.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139,
August 1997.

Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, to appear.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a sta-
tistical view of boosting. Technical Report, 1998.

12

[26] Johannes Fiirnkranz and Gerhard Widmer. Incremental reduced error pruning. In Machine
Learning: Proceedings of the Eleventh International Conference, pages 70-77, 1994.

[27] Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the margin of
learned ensembles. In Proceedings of the Fifteenth National Conference on Artificial Intelli-
gence, 1998.

[28] Masahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. Using decision trees to construct
a practical parser. Machine Learning, 34:131-149, 1999.

[29] Jeffrey C. Jackson and Mark W. Craven. Learning sparse perceptrons. In Advances in Neural
Information Processing Systems 8, pages 654-660, 1996.

[30] Michael Kearns and Leslie G. Valiant. Learning Boolean formulae or finite automata is
as hard as factoring. Technical Report TR-14-88, Harvard University Aiken Computation
Laboratory, August 1988.

[31] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean formu-
lae and finite automata. Journal of the Association for Computing Machinery, 41(1):67-95,
January 1994.

[32] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning The-
ory. MIT Press, 1994.

[33] Richard Maclin and David Opitz. An empirical evaluation of bagging and boosting. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence, pages 546-551,
1997.

[34] Llew Mason, Peter Bartlett, and Jonathan Baxter. Direct optimization of margins improves
generalization in combined classifiers. Technical report, Deparment of Systems Engineering,
Australian National University, 1998.

[35] C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1998.
www.ics.uci.edu/~mlearn/MLRepository.html.

[36] J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 725-730, 1996.

[37] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[38] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227,
1990.

[39] Robert E. Schapire. Using output codes to boost multiclass learning problems. In Machine
Learning: Proceedings of the Fourteenth International Conference, pages 313-321, 1997.

[40] Robert E. Schapire. Drifting games. In Proceedings of the Twelfth Annual Conference on
Computational Learning Theory, 1999.

13

[41] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the mar-
gin: A new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651-1686, October 1998.

[42] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated
predictions. In Proceedings of the Eleventh Annual Conference on Computational Learning
Theory, pages 80-91, 1998. To appear, Machine Learning.

[43] Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for text catego-
rization. Machine Learning, to appear.

[44] Robert E. Schapire, Yoram Singer, and Amit Singhal. Boosting and Rocchio applied to text
filtering. In SIGIR "98: Proceedings of the 21st Annual International Conference on Research
and Development in Information Retrieval, 1998.

[45] Holger Schwenk and Yoshua Bengio. Training methods for adaptive boosting of neural net-
works. In Advances in Neural Information Processing Systems 10, pages 647-653, 1998.

[46] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142,
November 1984.

[47] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

14

