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SLT

views the problem of "learning" from a statistical perspective

aim (as for any theory): model some phenomena so that we

can make predictions about them

other equally valid theories exist: Bayesian inference,

inductive inference, statistical physics, "traditional" statistical

analysis, etc.

some assumptions need to be made which may define which

approach is more suitable in different contexts
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In SLT:

we assume data is generated by some underlying (unknown)

distribution P(x, y)

a sample of n observations i.i.d. is drawn from P and is

available for the learner: S = {(xi , yi) ∈ Rd × {±1}|i = 1, . . . , n}
there is a learning algorithm A that chooses a function

f = AF (S) from a function space F as a results of training on

S

generalization error (expected error):

ǫ(S,A,F ) = E(x,y)[l(AF (S), x, y)]

where l is a loss function
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we are interested not only in ES [ǫ(S,A,F )] but also in the

distribution of ǫ(S,A,F )
classifier consistency:

lim
n→∞
ES [ǫ(S,A,F )] = ǫBayes

where ǫBayes is the Bayes risk

the distribution of ǫ(S,A,F ) depends on the algorithm, F
and n
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classical statistics: investigates mostly the mean value of the

distribution of ǫ

SLT: looks also at the tails; derives probabilistic bounds on the

generalization error

hence PAC: probably approximately correct - bound the

probability of being "deceived" and set it equal to some δ
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What is the probability of being deceived by a "bad" function f? i.e.

what is the probability of having a perfect training, but a true error

above some ǫ?

PS {ErrS(f) = 0,Err(f) > ǫ} = (1 − Err(f))n

≤ (1 − ǫ)n

≤ exp(−ǫn)

By taking ǫ = 1
n

ln 1
δ

leads to

PS

{

ErrS(f) = 0,Err(f) >
1

n
ln

1

δ

}

≤ δ
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Now consider a (countable) set of functions F = {f1, . . . , fk , . . . }
and let the probability of being misled by fk less than qkδ

(
∑

k qk ≤ 1). Then

PS

{

∃fk : ErrS(fk ) = 0,Err(fk ) >
1

n
ln

1

qkδ

}

≤ δ
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Theorem

Given a countable set of functions F and qk ≤ 1, with probability at

least 1 − δ over random samples of size n, the generalization error

of a function fk ∈ F with zero training error is bounded by

Err(fk ) ≤
1

n

(

ln
1

qk

+ ln
1

δ

)

Notes:

ln(1/qk ) can be thought of as a "complexity" (description

length) of the function fk
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use 0-1 loss: 1
2
|yi − f(xi , α)| ∈ {0, 1}

the expected error (expected risk or actual risk) is

R(α) =

∫

1

2
|y − f(x, α)| dP(x, y)

the empirical risk is measured over an observed set (here of

size n):

Remp(α) =
1

2n

n
∑

i=1

|yi − f(xi , α)|
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for such losses, the following bound holds (Vapnik, 1995): for

η ∈ [0, 1], with probability 1 − η,

R(α) ≤ Remp(α) +

√

h

n
log

2n

h
+

h

n
− 1

n
log
η

4

h is a non-negative integer called Vapnik-Chervonenkis (VC)

dimension and is a measure of the capacity of the set of

functions f

the 2nd term of the rhs in above bound (
√
. . .) is called the VC

confidence

notes: the bound is independent of P(x, y); if we knew h we

could compute rhs
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VC dimension is a characteristic of the set of functions

F = {f(x, α)}
we restrict the analysis to functions f ∈ {±1}
n points can be labeled in 2n distinct ways

if for any labeling of the set of points, a function f(x, α) can be

found in F , then we say the F is shattering the set of points

the VC dimension (h) of F is the maximum number of points

that can be shattered by F
if the VC dim of F is h it means that there exists at least one

set of h points that can be shattered, and not that all such sets

can be shattered
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Shattering points with oriented hyperplanes in Rd

The VC dimension of the set of oriented hyperplanes in Rd is d +1.
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Notes:

h does not depend on the number of parameters a family of

functions has

for 2 machines having null empirical risk, the one with smaller

h has better generalization guarantees

a k−NN classifier with k = 1 has h = ∞ and null empirical

risk→ the bound becomes useless

h depends on the class of functions F , while R and Remp

depend on the particular function selected by the learning

machine
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Structural risk minimization

h1

h2

h3

hk

we introduce a structure over the set of functions, such that

h1 < h2 < · · · < hk < . . .

idea: find that subset of functions which minimizes the

empirical risk, while controlling the complexity
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(Reminder)

2
|w|

− w0

|w|

w

− ξ

|w|

minimizew,w0,ξ

1

2
〈w,w〉+Ω(ξ)

subject to yi(〈w, xi〉+ w0 ≥ 1 − ξ, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

Ω(ξ) = C
∑

i ξ
p

i
; p=1→ 1-norm (L1) soft margin SVM and

p = 2→ 2-Norm (L2) soft margin SVM

w0 can be computed from w0 = yi − 〈w, xi〉 and a more stable

solution is obtained by averaging over all support vectos

(SVs):

w0 =
1

|SV |
∑

i∈SV

(yi − 〈w, xi〉)
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L1 SVM

Dual optimization problem (from KKT conditions):

maximizeα

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyj〈xi , xj〉

subject to

n
∑

i=1

yiαi = 0

(box conditions) C ≥ αi ≥ 0, i = 1, . . . , n
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Notes:

if αi = 0 then ξi = 0 and it follows that xi is correctly classified

if 0 < αi < C then yi(〈w, xi〉+ w0) − 1 + ξi = 0 and ξi = 0

meaning that xi is an unbounded support vector

if αi = C then yi(〈w, xi〉+ w0) − 1 + ξi = 0 and ξi > 0 meaning

that xi is a bounded support vector. Moreover, if 0 ≥ ξi < 1

then xi is correctly classified, otherwise it is misclassified

w0 is obtained as before, but averaging over unbounded SVs

the discriminant function is

h(x) =
∑

i∈SV

αiyi〈xi , x〉+ w0















> 0, predict y = +1

< 0, predict y = −1
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L2 SVM

For convenience, we take Ω(ξ) = C/2
∑

i ξ
2
i
, which leads to the

dual optimization

maximizeα

n
∑

i=1

αi −
1

2

n
∑

i,j=1

yiyjαiαj

(

〈xi , xj〉+
δij

C

)

subject to

n
∑

i=1

yiαi = 0

αi ≥ 0, i = 1, . . . , n

where δij is Kronecker’s delta function.
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Notes:

w0 is computed from averaging over terms of the form

yi −
n

∑

j=1

αiyi

(

〈xi , xj〉+
δij

C

)

the decision function remains the same
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The kernel trick

the SVM problem was formulated in terms of inner products

let there a mapping Φ : Rd 7→ H (from input space into

feature space) and suppose that there exists a "kernel

function" such that

K(xi , xj) = 〈Φ(xi),Φ(xj)〉

H may be infinite-dimensional, ex.

K(xi , xj) = exp













−
‖xi − xj‖2

2σ2













if we replace 〈xi , xj〉 with K(xi , xj) in the linear SVM, we obtain

a nonlinear SVM!
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Φ(x)

Discriminant function:

h(x) =
∑

i∈SV

αiyiK(xi , x) + w0
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Which functions can be used as kernels?

For some kernels, it is easy to find the corresponding mapping Φ:

for ex., K(xi , xj) = 〈xi , xj〉2 corresponds to

Φ : R2 7→ R3, Φ(x) =





















x2
1√

2x1x2

x2
2





















In general, for a kernel there may exist several possible mappings

Φ.

from Burges: A tutorial on support vector machines for pattern recognition
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(Theoretical conditions for kernels)

Mercer’s conditions

There exists a mapphing Φ and an expansion

K(x, x) =
∑

i

Φ(x)Φ(z)

if and only if, for any g(x) such that
∫

g(x)2 dx < ∞ then

∫

K(x, y)g(x)g(z) dx dz ≥ 0
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if the Mercer’s conditions are not satisfied, there might exist

cases from which the optimization problem has no solution

the space which is generated by the kernel space is called

Reproducing Kernel Hilbert Space

kernel matrix (Gram matrix): Kij = K(xi , xj); Hessian matrix:

Hij = yiyjK(xi , xj)

K is positive semi-definite

in L2 SVM, the diagonal of K is augmented by 1/C thus

potentially transforming K into a positive definite matrix

all information about the data is concentrated into K

K can be seen as defining a similarity between samples
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Commonly used kernels:

linear kernel: K(x, z) = 〈x, z〉
polynomial kernel: K(x, z) = (〈x, z〉+ 1)p

radial basis function (RBF) kernel: K(x, z) = exp

(

− ‖xi−xj‖2
2σ2

)

sigmoid kernel: K(x, y) = tanh(κ〈x, z〉 − δ): this kernel does

not always satisfy the Mercer conditions!
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Kernels - closure properties

If K1, and K2 are some kernels, and a ∈ R+, f a real valued

function, φ : Rd 7→ Rm and B a symmetric positive semi-definite

d × d matrix, then the following are kernels:

K1(x, z) + K2(x, z)

aK1(x, z)

K1(x, z)K2(x, z)

K(x, z) = f(x)f(z)

K1(φ(x), φ(bz))

K(x, z) = xtBz
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The solution of the optimization problem is

global: any local solution of a convex optimization problem is

also a global solution

unique: if the Hessian matrix is positive definite the solution is

guaranteed to be unique

In the case the solution is not unique:

it is still global!

if w1 and w2 are solutions, then there exists a path

w(τ) = τw1 + (1 − τ)w2 with 0 ≤ τ ≤ 1, such that w(τ) is also

a solution
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for a Mercer kernel K , the VC dimension of the SVM is

dim(H) + 1

the VC dimension of the RKHS generated by the polynomial

kernel is
(

d+p−1
p

)

where p is the degree of the polynomial

the VC dimension in the case of an RBF is infinite

How comes that SVM can have very good generalization

performance, even in the case of an infinite VC dimension??

Hint: it has to do with the large margin...

Another bound on the generalization error:

E[P(error)] ≤ E[no. of SVs]

n

where E[no. of SVs] is the expected number of support vectors of

all training sets of size n
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Platt scaling

Idea: apply a logistic transformation to the classifier score (margin):

P(y = +1|x) = 1

1 + exp(αh(x) + β)

The parameters α and β are found by optimization.
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Some remarks

SVM have a good overall performance of a large number of

problems - but they are not the "Swiss knife" of pattern

recognition

one key ingredient: choosing the right kernel

another key ingredient: choosing the right formulation of the

problem

in general, there are a number of parameters (e.g. C and p or

σ) that need to be tuned

C can be used to re-balance the classes: C = C+ + C− and

assign different weights to each class

support vector regression and support vector density

estimation
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why not replace the inner product with kernels in other

methods as well?

apply the same reasoning in the case of regression...

this leads to Kernel LDA, Kernel PCA, Kernel Perceptron, etc

etc
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(Mika et al. Fisher Discriminant Analysis with Kernels, 1999)

Fisher criterion:

w∗ = arg max
w

wtSbw

wtSww

Suppose now that this is carried out in the feature space: means

and scatter matrices are computed on the transformed data.
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(Sketch) This can still be expressed in terms of operations in the

input space. Let µΦ = 1/n
∑

i Φ(xi) be the mean in the feature

space (for each of the classes you have a similar mean).

The weight vector has the form w =
∑

i αiΦ(xi). So the product

〈w,µ〉 will be of the form

〈w,µ〉 = 1

n

∑

i,j

αjK(xi , xj)
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