

PA196: Pattern Recognition 08. Multiple classifier systems (cont'd)

Dr. Vlad Popovici popovici@iba.muni.cz

Institute of Biostatistics and Analyses Masaryk University, Brno

General idea

Outline

AdaBoost

- Introduction
- Basic AdaBoost
- Different views on AdaBoost
- An additive logistic regression perspective

Bagging (Breiman, 1996)

- bagging = bootstrap aggregation
- create T bootstrap samples X_t by sampling with replacement
- train a classifier on each X_t
- aggregate the classifications by plurality voting to obtain the aggregated classifier H
- a similar approach works for regression
- works well with unstable classifiers (with high variance): decision trees, neural networks

Why does bagging work?

• reduces variance (due to sampling in the test sets):

$$\mathbb{E}[(y - H(\mathbf{x}))^2] = (y - \mathbb{E}[H(\mathbf{x})])^2 + \mathbb{E}[(H(\mathbf{x}) - \mathbb{E}[(H(\mathbf{x}))])^2]$$
$$= \text{bias}^2 + \text{variance}$$

• the bias of *H* remains approximately the same as for *h*_t:

$$\operatorname{Bias}(H) = \frac{1}{T} \sum_{t=1}^{T} \operatorname{Bias}(h_t)$$

• but the variance is reduced:

$$\operatorname{Var}(H) \approx \frac{1}{T}\operatorname{Var}(h_1)$$

Variants:

- draw random subsamples of data → "Pasting"
- draw random subsets of features → "Random Subspaces"
- $\bullet\,$ draw random subsamples and random features \rightarrow "Random Patches"

Outline

Random forests

AdaBoost

- Introduction
- Basic AdaBoost
- Different views on AdaBoost
- An additive logistic regression perspective

Idea: induce randomness in the base classifier (tree) and combine the predictions of an ensemble of such trees (forest) by averaging or majority vote.

- refinement of bagging trees
- (1st level of randomness) grow the trees on bootstrap samples
- (2nd level of randomness) when growing a tree, at each node consider only a random subset of features (typically \sqrt{d} or $\log_2 d$ features)
- for each tree, the error rate for observation left out from the learning set is monitored ("out-of-bag" error rate)
- the result is a collection of "de-correlated" trees that by averaging/voting should lead to decreased variance of the final predictor

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Outline

Random for

AdaBoost

- Introduction
- Basic AdaBoost
- Different views on AdaBoost
- An additive logistic regression perspective

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Outline

Random forests

AdaBoost

- Introduction
- Basic AdaBoost
- Different views on AdaBoost
- An additive logistic regression perspective

General approach

(I will follow Freund & Schapire's tutorial on boosting)

- let $S = \{(\mathbf{x}_i, y_i) | i = 1, ..., n\}$ be a data set with $y_i \in \{\pm 1\}$ and \mathbf{x}_i a *d*-dimensional vector of features x_{ij}
- let there exist a learner (or a few) able to produce some basic classifiers h_t, based on sets such as S
- h_t will be called "weak classifiers" and the condition is that $Err(h_t) = 0.5 \epsilon_t$ where $0 < \epsilon \le 0.5$
- for each iteration t = 1,..., T produce a version of the training set S_t on which h_t are fit and then, assemble their predictions

- how to select the training points at each round?
 → concentrate on most difficult points
- how to combine the weak classifiers?
 - \rightarrow take the (weighted) majority vote

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Boosting

A general methodology of producing highly accurate predictors based on averaging some weak classifiers.

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Context

- PAC framework:
 - a strong-PAC algorithm:
 - for any distribution (of data)
 - $\forall \epsilon > 0, \forall \delta > 0$
 - given enough data (i.i.d. from the distribution)
 - with probability at least 1 δ , the algorithm will find a classifier with error $\leq \epsilon$
 - a weak-PAC algorithm: the same conditions, but the guaranteed error is $\epsilon \geq \frac{1}{2} \gamma$
- when weak-PAC learnability leads to strong-PAC?

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

AdaBoost

- a development of previous "boosting" algorithms
- first to reach widespread applicability, due to simplicity of the implementation and good observed performance (in addition to theoretical performance)
- Freund & Schapire (EuroCOLT, 1995); the more complete version: "A decision-theoretic generalization of on-line learning and an application to boosting", J. Comp Sys Sc 1997
- AdaBoost: adaptive boosting

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Outline

Random forests

AdaBoost

Introduction

Basic AdaBoost

- Different views on AdaBoost
- An additive logistic regression perspective

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Basic AdaBoost

Input: a training set $S = \{(\mathbf{x}_i, y_i)\}$ and the number of iterations T**Output:** final classifier H as a combination of weak classifiers h_t **for** t = 1 **to** T **do** construct a distribution D_t on $\{1, ..., n\}$ find a weak classifier

 $h_t: X \to \{-1, +1\}$

which minimizes the error ϵ_t on D_t ,

$$\epsilon_t = \Pr_{D_t}[h_t(\mathbf{x}_i) \neq y_i]$$

end for

How to construct D_t ?

- let $D_1(i) = 1/n$ (uninformative priors)
- given D_t and a weak classifier h_t ,

$$D_{t+1} = \frac{D_t(i)}{Z_t} \times \begin{cases} \exp(-\alpha_t) & \text{if } h_t(\mathbf{x}_i) = y_i \\ \exp(\alpha_t) & \text{if } h_t(\mathbf{x}_i) \neq y_i \end{cases} = \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(\mathbf{x}_i))$$

• Z_t is a properly chosen normalization constant

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \in \mathbb{R}_+$$

What about the final decision/classifier?

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

How to use D_t for training a classifier?

- either generate a new training sample from S by sampling according to D_t, or
- use directly the sample weights for constructing h_t

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

(Classical) Example (Freund & Schapire)

Initial state:

weak classifiers: single variable threshold function

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

(Classical) Example (Freund & Schapire)

Iteration 1:

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

(Classical) Example (Freund & Schapire)

Iteration 2:

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

(Classical) Example (Freund & Schapire)

Iteration 3:

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

(Classical) Example (Freund & Schapire)

Final classifier:

Training error theorem: let $\epsilon_t < 1/2$ be the error rate at step *t* and let $\gamma_t = 1/2 - \epsilon_t$, then the training error of the final classifier is upper bounded by

$$\operatorname{Err}_{\operatorname{train}}(H) \leq \exp\left(-2\sum_{t=1}^{T}\gamma_t^2\right)$$

- then if $\forall t : \gamma_t \ge \gamma > 0$, $\operatorname{Err}_{\operatorname{train}} \le \exp(-2\gamma^2 T)$
- it follows that $\text{Err}_{\text{train}} \to 0$ as $T \to \infty$
- if $\gamma_t \gg \gamma$ the convergence is much faster

What about overfitting?

- Occam's razor suggests that simpler rules are preferable
- for SVMs, sparser models (less SVs) have better generalization properties
- AdaBoost?

What about overfitting?

- Occam's razor suggests that simpler rules are preferable
- for SVMs, sparser models (less SVs) have better generalization properties
- AdaBoost?
- practice shows that AdaBoost is resistant to overfitting, in normal conditions

What about overfitting?

- Occam's razor suggests that simpler rules are preferable
- for SVMs, sparser models (less SVs) have better generalization properties
- AdaBoost?
- practice shows that AdaBoost is resistant to overfitting, in normal conditions
- in highly noisy conditions, AdaBoost can overfit! Regularized versions exist to tackle this situation

Where does the robustness (to overfitting) come from?

- it's a matter of margin! (most likely)
- define the margin as the "strength of the vote", i.e. "weighted fraction of correct votes" - "weighted fraction of incorrect votes"

The output from the final classifier (before sign()) $\in [-1, 1]$:

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Example (from F&S's tutorial): the "letters" data set from UCI, C4.5 weak classifiers

Vlad

PA196: Pattern Recognition

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

...and a real world example: prediction of pCR in breast cancer

- AdaBoost with weighted top scoring pairs weak classifiers
- data: MDA gene expression data (~22,000 variables) from MAQC project: n = 130 training samples, n = 100 testing samples
- data comes different hospitals, clinical series, no much control on the representativeness of the training set
- endpoint: pathologic complete response (pCR)

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Training and testing errors (with functional margin)

Vlad

AdaBoost with wTSP

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

iterations = 1, $err_{tr} = 0.17$, $err_{ts} = 0.39$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

iterations = 5, $err_{tr} = 0.02$, $err_{ts} = 0.34$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

iterations = 10, $err_{tr} = 0.0, err_{ts} = 0.31$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

iterations = 50, $err_{tr} = 0.0$, $err_{ts} = 0.23$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

iterations = 100, $err_{tr} = 0.0$, $err_{ts} = 0.22$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Ideas:

- large margin allows a sparser approximation of the final classifier, hence the final classifier should have better generalization properties than its size would suggest
- the AdaBoost increases the margin as T grows and decreases the effective complexity of the final classifier
- $\forall \theta > 0$, $\text{Err}(H) \le \hat{\Pr}[\text{margin} \le \theta] + O(\sqrt{h/n}/\theta)$ where *h* is the "complexity" of weak classifiers
- $\hat{\Pr}[\text{margin} \le \theta] \to 0$ exponentially fast in *T* if $\gamma_t > \theta$

Bagging AdaBoost **Basic AdaBoost** Different views on AdaBoost An additive logistic regression perspective

Outline

AdaBoost

- Introduction
- Basic AdaBoost
- Different views on AdaBoost
- An additive logistic regression perspective

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

A few different interpretations

- game theory: AdaBoost classifier as a solution of a minmax game
- Ioss minimization
- additive logistic model
- maximum entropy
- etc. etc.

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

AdaBoost as a minimizer of exponential loss

- let L(y, f(x)) be the loss function measuring the discrepancies between true target (label or real value) y and the predicted value f(x)
- it can be shown that AdaBoost minimizes (remember the scaling factor Z_t?)

$$\prod_{t} Z_t = \frac{1}{n} \sum_{i} \exp(-y_i f(\mathbf{x}_i))$$

where $f(\mathbf{x}) = \sum_t \alpha_t h_t(\mathbf{x})$

- $yf(\mathbf{x})$ is the (functional) margin, similar to SVM
- exponential loss is an upper bound of the 0-1 loss
- AdaBoost is a greedy procedure for loss minimization: *α_t* and *h_t* are chosen locally to minimize the current loss

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Coordinate descent [Breiman]

- let $\{h_1, \ldots, h_m\}$ be the space of all weak classifiers
- the goal is to find β₁,...,β_m (coordinates in the space of weak classifiers) where the loss

$$L(\beta_1,\ldots,\beta_m) = \sum_i \exp(-y_i \sum_k \beta_k h(\mathbf{x}_i))$$

is minimized

- o coordinate descent procedure:
 - start with $\beta_k = 0$
 - at each step: choose coordinate β_k (on axis h_t) and update it by an increment α_t
 - α_t is chosen to maximize the decrease in loss
- this is the very procedure implemented by AdaBoost

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Outline

Random forests

AdaBoost

- Introduction
- Basic AdaBoost
- Different views on AdaBoost
- An additive logistic regression perspective

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Gradient descent optimization (reminder)

- let Ω be a differentiable optimization criterion
- let $x_k = x_{k-1} \gamma \nabla \Omega(x_{k-1})$, then for some small $\gamma > 0$ $\Omega(x_k) \le \Omega(x_{k-1})$

Issues:

- slow convergence
- sensitive to initial point

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Gradient descent in function space

- in the following, we will generalize from ±1-valued classifiers to real-valued functions
- change of notation: F becomes the generalized version of H and f the generalized version of h, respectively
- $F_M(\mathbf{x}) = \sum_{1}^{M} f_m(\mathbf{x})$ is evaluated at each \mathbf{x}
- gradient (steepest) descent:

$$f_m(\mathbf{x}) = -\rho_m g_m(\mathbf{x}) = -\rho_m \nabla_F \left[\mathsf{E}_{y,\mathbf{x}} \left[L(y, F(\mathbf{x})) \right] \right]_{F=F_{m-1}}$$

$$\rho_m = \arg\min_{\rho} \mathsf{E}_{y,\mathbf{x}} \left[L(y, F_{m-1}(\mathbf{x}) - \rho g_m(\mathbf{x})) \right]$$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Additive models

Friedman, Hastie, Tibshirani, Additive logistic regression: a statistical view of boosting, The Annals of Statistics, 2000.

• regression models: let $y \in \mathbb{R}$ and model the mean:

$$\mathsf{E}\left[y|\mathbf{x}\right] = \sum_{j=1}^{p} f_j(x_j),$$

where $\mathbf{x} = (x_1, \ldots, x_p) \in \mathbb{R}^p$.

 iteratively update (backfit) the current approximation until convergence:

$$f_j(x_j) \leftarrow \mathsf{E}\left[y - \sum_{k \neq j} f_k(x_k) \mid x_j\right].$$

• the final solution, $F(\mathbf{x}) = \sum_{j=1}^{p} f_j(x_j)$, is a minimizer of $E[(y - F(\mathbf{x}))^2]$.

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Extended additive models

consider a family of functions

$$f_m(\mathbf{x}) = \beta_m b(\mathbf{x}; \gamma_m).$$

- $b(\cdot)$: basis functions (linear, sigmoid, RBF, wavelets,...)
- Notes on basis functions:
 - span a function subspace
 - they need not be orthogonal, nor form a complete/minimal base
 - they can be chosen to form a *redundant dictionary*: matching pursuit
- applications in (statistical) signal processing; image compression; multi–scale data analysis;...

Fitting the model:

generalized backfitting:

$$\{\beta_m, \gamma_m\} \leftarrow \arg\min_{\beta, \gamma} \mathsf{E}\left[\left(y - \left(\sum_{k \neq m} \beta_k b(\mathbf{x}; \gamma_k) + \beta b(\mathbf{x}; \gamma)\right)\right)^2\right]$$

• greedy optimization: let $F_M(\mathbf{x}) = \sum_{1}^{M} \beta_m b(\mathbf{x}; \gamma_m)$ be the solution after *M* iterations; the successive approximations are

$$\{\beta_m, \gamma_m\} = \arg\min_{\beta, \gamma} \mathsf{E}\left[\left(y - (F_{m-1}(\mathbf{x}) + \beta b(\mathbf{x}; \gamma))^2\right]\right]$$

\rightarrow matching pursuit; in classification: kernel matching pursuit

Mallat, Zhang, Matching pursuit with time-frequency dictionaries, 1993 Vincent, Bengio, Kernel matching pursuit, 2002 Popovici, Thiran, Kernel matching pursuit for large datasets, 2005

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

From regression to classification

- goal (for binary problems): estimate $Pr(y = 1|\mathbf{x})$
- Iogistic regression:

$$\ln \frac{\Pr(y=1|\mathbf{x})}{\Pr(y=-1|\mathbf{x})} = F_M(\mathbf{x})$$

with $F_M(\mathbf{x}) \in \mathbb{R}$.

- $\Leftrightarrow p(\mathbf{x}) = \Pr(y = 1 | \mathbf{x}) = \frac{\exp(F_M(\mathbf{x}))}{1 + \exp(F_M(\mathbf{x}))}$
- *F_M* is obtained by minimizing the *expected loss*:

$$F_{M}(\mathbf{x}) = \arg\min_{F} \mathsf{E}_{y,\mathbf{x}} \left[L(y, F(\mathbf{x})) \right] = \arg\min_{F} \mathsf{E}_{\mathbf{x}} \left[\mathsf{E}_{y} \left[L(y, F(\mathbf{x})) \right] | \mathbf{x} \right]$$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Generalized boosting algorithm

- 1: given $\{(\mathbf{x}_i, y_i) | i = 1, ..., N\}$, let $F_0(\mathbf{x}) = f_0(\mathbf{x})$
- 2: for all m = 1, ..., M do
- 3: compute the current negative gradient:

$$z_i = -\nabla_F L(F)\Big|_{F=F_{m-1}} = -\left.\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F}\right|_{F=F_{m-1}(\mathbf{x}_i)}$$

and fit f_m using the new set $\{(\mathbf{x}_i, z_i) | i = 1, \dots, N\}$

4: find the step-size

$$c_m = \arg\min_c \sum_{i=1}^N L(y_i, F_{m-1}(\mathbf{x}_i) + cf_m(\mathbf{x}_i))$$

- 5: let $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + c_m f_m(\mathbf{x})$
- 6: end for
- 7: **return** final classifier sign $[F_M(\mathbf{x})]$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Which loss function?

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Exponential loss

$$L(y,F) = \mathsf{E}\big[e^{-yF(\mathbf{x})}\big]$$

Notes:

L(y, F) is minimized at

$$F(\mathbf{x}) = \frac{1}{2} \ln \frac{\Pr(y=1|\mathbf{x})}{\Pr(y=-1|\mathbf{x})}$$

- $\frac{yF(\mathbf{x})}{\|F\|}$ is called *margin of sample* $\mathbf{x} \Rightarrow L(y, F)$ forces margin maximization
- L is differentiable and an upper bound of 1[yF(x)<0]
- L has the same population minimizer as the binomial log–likelihood

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

AdaBoost builds an additive logistic regression model

- 1: let $w_i = 1/N$
- 2: for all m = 1, ..., M do
- 3: fit the weak classifier $f_m(\mathbf{x}) \in \{\pm 1\}$ using the weights w_i on the training data
- 4: $err_m = E_w \left[\mathbf{1}_{[y \neq f_m(\mathbf{x})]} \right] \{ \text{ expectation with respect to weights! } \}$
- 5: $c_m = \ln \frac{1 err_m}{err_m}$ (note: $c_m = 2 \arg \min_c L(\sum_{1}^{m-1} f_i + cf_m)$)
- 6: update the weights

$$w_i \leftarrow w_i \exp\left(c_m \mathbf{1}_{[y_i \neq f_m(\mathbf{x}_i)]}\right), \ i = 1, \dots, N$$

and normalize such that ||w|| = 1

- 7: end for
- 8: **return** final classifier sign $\left[\sum_{m=1}^{M} c_m f_m(\mathbf{x})\right]$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Real AdaBoost: stagewise optimization of exponential loss

- 1: let $w_i = 1/N$
- 2: for all m = 1, ..., M do
- 3: fit the *weak classifier* using the weights *w_i* on the training data and obtain the posteriors

$$p_m(\mathbf{x}) = \hat{P}_w(y = 1 | \mathbf{x}) \in [0, 1]$$

4: let $f_m(\mathbf{x}) = \frac{1}{2} \ln \frac{p_m(\mathbf{x})}{1 - p_m(\mathbf{x})}$ {note: this is the local minimizer of *L*}

5: update the weights

$$w_i \leftarrow w_i \exp\left(-y_i f_m(\mathbf{x}_i)\right), \ i = 1, \dots, N$$

and normalize such that ||w|| = 1

- 6: end for
- 7: **return** final classifier sign $\left[\sum_{m=1}^{M} f_m(\mathbf{x})\right]$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

LogitBoost: stagewise opt. of binomial log-likelihood

Let
$$y^* = (1 + y)/2 \in \{0, 1\}$$
 and
 $Pr(y^* = 1 | \mathbf{x}) = p = \exp(F(\mathbf{x}))/(\exp(F(\mathbf{x})) + \exp(-F(\mathbf{x})))$

1: let $w_i = 1/N$, $p_i = 1/2$, $\forall i = 1, ..., N$, $F(\mathbf{x}) = 0$

2: for all
$$m = 1, ..., M$$
 do

3: let
$$z_i = \frac{y_i^* - p_i}{p_i(1-p_i)}$$
 { new responses, instead of y}

4: let
$$w_i = p_i(1 - p_i)$$

- 5: fit f_m by weighted least–square regression of z_i to \mathbf{x}_i using weights w_i
- 6: update $F \leftarrow F + 1/2f_m$
- 7: update $p \leftarrow \exp(F)/(\exp(F) + \exp(-F))$
- 8: end for
- 9: **return** final classifier sign $\left[\sum_{m=1}^{M} f_m(\mathbf{x})\right]$

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Which weak learner?

- any classifier with an error rate < 0.5
- decision stumps (classification tree with 1 node)
- classical classification trees
- top scoring pairs classifier
- linear (logistic) regression (an example later)
- radial basis functions
- . . .

Introduction Basic AdaBoost Different views on AdaBoost An additive logistic regression perspective

Practical issues

- the weak classifier should not be too strong
- AdaBoost or LogitBoost are good first choices for classification problems
- stopping rules:
 - quit when the weak classifier cannot fit the data anymore
 - choose M by an inner cross-validation or independent data set
 - use AIC, BIC, MDL as criteria for choosing M

