

Lecture 4 OBJECT ORIENTED ANALYSIS

PB007 Software Engineering I Faculty of Informatics, Masaryk University Fall 2015

- ♦ UML Objects and classes [Lecture 3]
- ♦ Finding analysis classes [Lecture 3]
- \diamond Relationships between objects and classes
 - Links
 - Associations
 - Dependencies
- \diamond Inheritance and polymorphism

♦ UML State diagram

Relationships Between Objects and Classes

Lecture 4/Part 1

© Clear View Training 2010 v2.6

♦ Links are connections between objects

- Think of a link as a telephone line connecting you and a friend.
 You can send messages back and forth using this link
- ♦ Links are the way that objects communicate
 - Objects send messages to each other via links
 - Messages invoke operations
- OO programming languages implement links as object references or pointers
 - When an object has a stored reference to another object, we say that there is a **link** between the objects

Object diagrams

- Paths in UML diagrams can be drawn as orthogonal, oblique or curved lines
- We can combine paths into a tree if each path has the same properties

What is an association?

- ♦ Associations are relationships between classes
- Associations between classes indicate that there may be links between objects of those classes, while links indicates that there must be associations

Can there be a communication between objects of two classes that have no association between them?

UML 2 NO THE UNITAR PROCESS Association syntax reading association direction employs name Person Company 0..*/ multiplicity navigability role names employer employee Person Company 1 0.

- An association can have role names OR an association name
- Multiplicity is a constraint that specifies the number of objects that can participate in a relationship at any point in time
 - If multiplicity is not explicitly stated in the model then it is undecided – there is no default multiplicity

multiplicity: min..max0..1zero or 11exactly 10..*zero or more1..*1 or more1..61 to 6

Multiplicity exercise

\diamond How many

- Employees can a Company have?
- Employers can a Person have?
- Owners can a BankAccount have?
- Operators can a BankAccount have?
- BankAccounts can a Person have?
- BankAccounts can a Person operate?

Reflexive associations: file system example

Hierarchies and networks

Navigability

 Navigability indicates that it is possible to traverse from an object of the source class to objects of the target class

An Order object stores a list of Products Navigable

Not navigable

A Product object does not store a list of Orders

- Can there be a communication in a direction not supported by the navigability?
- Are some of the cases on the right equivalent?

♦ An association is (through its role name) a representation of an attribute

♦ Use associations when:

- The target class is an important part of the model
- The target class is a class that you have designed yourself

♦ Use attributes when:

- The target class is not important, e.g. a primitive type such as number, string
- The target class is just an implementation detail such as a bought-in component or a library component e.g. Java.util.Vector (from the Java standard libraries)

Association classes

- \diamond Where do we record the Person's salary?
- ♦ We model the association itself as an association class. Exactly one instance of this class exists for each link between a Person and a Company.
- ♦ We can place the salary and any other attributes or operations which are really features of the association into this class

14

If we use an association class, then a particular Person can have only one Job with a particular Company

Person can have multiple jobs with the same Company, then we must use a reified association

F	Compony	1	0*	Job	0*	1	Doroon	
)	Company			salary:double			Person	

Dependencies

- - In other words, the client **depends** in some way on the supplier
 - Weaker type of relationship than **association**
 - Can there be both association and dependency between two classes?
- \diamond Three types of dependency:
 - Usage the client uses some of the services made available by the supplier to implement its own behavior – this is the most commonly used type of dependency
 - Abstraction a shift in the level of abstraction. The supplier is more abstract than the client
 - Permission the supplier grants some sort of permission for the client to access its contents – this is a way for the supplier to control and limit access to its contents

Usage dependencies

♦ Stereotypes

- **«use»** the client makes use of the supplier to implement its behaviour
- «call» the client operation invokes the supplier operation
- «parameter» the supplier is a parameter of the client operation
- «send» the client (an operation) sends the supplier (a signal) to some unspecified target
- «instantiate» the client is an instance of the supplier

♦ Abstraction dependencies

- «trace» the client and the supplier represent the same concept but at different points in development
- «substitute» the client may be substituted for the supplier at runtime. The client and supplier must realize a common contract. Use in environments that *don't* support specialization/generalization
- **«refine»** the client represents a fuller specification of the supplier
- «derive» the client may be derived from the supplier. The client is logically redundant, but may appear for implementation reasons

♦ Permission dependencies

- «access» the public contents of the supplier package are added as private elements to the namespace of the client package
- «import» the public contents of the supplier package are added as public elements to the namespace of the client package
- «permit» the client element has access to the supplier element despite the declared visibility of the supplier

♦ Links – relationships between objects

- ♦ Associations relationships between classes
 - role names
 - multiplicity
 - navigability
 - association classes

♦ Dependencies – relationships between model elements

- usage
- abstraction
- permission

Inheritance and polymorphism

Lecture 4/Part 2

© Clear View Training 2010 v2.6

Generalisation

A relationship between a more general element and a more specific element (with more information)

Class inheritance

- Subclasses inherit all features of their superclasses:
 - attributes
 - operations
 - relationships
 - stereotypes, tags, constraints
- ♦ Subclasses can add new features
- Subclasses can override superclass operations
- We can use a subclass instance anywhere a superclass instance is expected

Substitutability

Principle

UML 2 NO THE UNITED PROCESS

What's wrong with

UML 2 NO THE UNITAR PROCESS urva Ento Overriding Shape draw(g: Graphics) What's wrong with getArea(): int the superclass? getBoundingArea(): int Circle Square draw(g: Graphics) draw(g: Graphics) getArea(): int getArea(): int width x height π x radius²

- ♦ Subclasses often need to **override** superclass behaviour
- ♦ To override a superclass operation, a subclass must provide an operation with the same signature
 - The operation signature is the operation name, return type and types of all the parameters

- We can't provide an implementation for Shape :: draw(g: Graphics) or for Shape :: getArea() : int because we don't know how to draw or calculate the area for a "shape"!
- ♦ Operations that lack an implementation are **abstract operations**
- A class with any abstract operations can't be instantiated and is
 therefore an abstract class

Exercise

Polymorphism

- ♦ Polymorphism = "many forms"
 - A polymorphic operation has many implementations
 - Square and Circle provide implementations for the polymorphic operations Shape::draw() and Shape::getArea()
- The operation in Shape superclass defines a contract for the subclasses.

A Canvas object has a collection of *Shape* objects where each *Shape* may be a Square or a Circle

What happens?

 \diamond Each class of object has its own implementation of the s1:Circle draw() operation 1.draw() \diamond On receipt of the draw() 2.draw(message, each s2:Square object invokes the :Canvas draw() operation 3.draw() specified by its class s3:Circle 4.draw() \diamond We can say that each object "decides" how to interpret the draw() message based on its class s4:Circle

BankAccount example

 We have overridden the deposit() operation even though it is not abstract.

- ♦ Generalisation, specialisation, inheritance
- ♦ Subclasses
 - inherit all features from their parents including constraints and relationships
 - may add new features, constraints and relationships
 - may override superclass operations
- ♦ A class that can't be instantiated is an abstract class

UML State Diagram

Lecture 4/Part 3

© Clear View Training 2010 v2.6

State machines

- ♦ Models life stages of a single model element e.g. object, use case, module
- ♦ Every state machine exists in the context of a particular model element that:
 - Has a clear life history modelled as a progression of states, transitions and events
 - Responds to events dispatched from outside of the element
- \diamond There are two types of state machines:
 - Behavioural state machines define the behaviour of a model element
 - Protocol state machines model the protocol of a classifier
 - E.g. call conditions and call ordering of an interface that itself has no behaviour

♦ State = a situation or condition during the life of an object

- Determined at any point in time by the values of its attributes, the relationships to other objects, or the activities it is performing.
- Every state machine should have one initial state which indicates the first state of the sequence
- Unless the states cycle endlessly, state machines should have a final state which terminates its lifecycle

How many states?

Color
red : int green : int blue : int

State syntax

 Actions are instantaneous and uninterruptible 	state name	EnteringPassword
 Entry actions occur 	entry and \int	entry/display passwd dialog
immediately on state entry	exit actions	exit/validate password
 Exit actions occur immediately on state leaving 	internal ∫	keypress/ echo "*"
♦ Internal transitions occur	transitions	help/display help
within the state. They do	internal	∖ do/get password
not fire transition to a new	activity	
state	Action syntax	: eventTrigger / action

 Activities take a finite amount of time and are interruptible Action syntax: eventTrigger / action Activity syntax: do / activity

Transitions

Choice and junction pseudo states

- Choice pseudo state directs its single incoming transition to one of its outgoing transitions
 - Each outgoing transition must have a mutually exclusive guard condition
 - Equivalent to two outgoing transitions from one state
- Junction pseudo state connects multiple incoming transitions into one (or more) transitions.
 - When there are more outgoing transitions, they must have guard conditions

Events

- The specification of a noteworthy occurrence that has location in time and space"
- ♦ Events trigger transitions in state machines
- Events can be shown externally, on transitions, or internally within states (internal transitions)
- \diamond There are four types of event:
 - Call event
 - Signal event
 - Change event
 - Time event

Call event

- A call for an operation execution
- The event should have the same signature as an operation of the context class
- A sequence of actions may be specified for a call event - they may use attributes and operations of the context class
- The return value must match the return type of the operation

Signal events

 \diamond A signal is a package of information that is sent asynchronously between objects

> «signal» OverdrawnAccount

date : Date accountNumber : long amountOverdrawn : long

Change events

- The action is performed when the Boolean expression transitions from false to true
 - The event is edge triggered on a false to true transition
 - The values in the Boolean expression must be constants, globals or attributes of the context class
- A change event implies continually testing the condition whilst in the state

Time events

- Time events occur when a time expression becomes true
- There are two keywords, after and when
- \diamond Elapsed time:
 - after(3 months)
- ♦ Absolute time:
 - when(date =20/3/2000)

Context: CreditAccount class

Composite states

- Have one or more regions that each contain a nested submachine
 - Simple composite state
 - exactly one region

- Orthogonal composite state
 - two or more regions
- ♦ The final state terminates its enclosing region – all other regions continue to execute
- The terminate pseudo-state terminates the whole state machine

Simple composite states

- \diamond Has two or more regions
- When we enter the superstate, both submachines start executing concurrently - this is an implicit fork

Synchronized exit - exit the superstate when *both* regions have terminated

Unsynchronized exit - exit the superstate when *either* region terminates. The other region continues

- ♦ Behavioral and protocol state machines
- ♦ States
 - Initial and final
 - Exit and entry actions, activities
- ♦ Transitions
 - Guard conditions, actions
- ♦ Events
 - Call, signal, change and time
- ♦ Composite states
 - Simple and orthogonal composite states

