
Lecture 7

HIGH-LEVEL DESIGN AND IMPLEMENTATION

PB007	
 So(ware	
 Engineering	
 I	

Faculty	
 of	
 Informa:cs,	
 Masaryk	
 University	

Fall	
 2015	

1	
 ©	
 Barbora	
 Bühnová	

2	

Outline

² Low-level design
² Implementation issues

² UML Interaction diagrams

B.	
 Bühnová,	
 FI	
 MU,	
 PB007	
 2	

Low-level Design

Lecture	
 7/Part	
 1	

3	
 B.	
 Bühnová,	
 FI	
 MU,	
 PB007	

Low-level design

Purpose:
²  Include all code-level details into the model

² Decide how exactly the system shall be implemented
² Typically an implicit part of implementation

² Techniques

§  Design patterns
§  SOLID principles
§  Guidelines for dependable/testable/.. programming

Chapter	
 7	
 Design	
 and	
 implementa:on	
 4	

Design patterns

² A design pattern is a way of reusing abstract knowledge
about a problem and its solution in object-oriented world.
§  Pattern descriptions make use of object-oriented characteristics

such as inheritance, polymorphism and interface realization.

² A pattern is a description of the problem and the essence
of its solution.
§  Not a concrete design but a template for a design solution that

can be instantiated in different ways.

²  It should be sufficiently abstract to be reusable in
different settings.

5	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

The “Gang of Four” design patterns

²  Introduced in a book by GoF in 1995
² Collection of 23 classic software design

patterns divided into three groups:
§  Creational
§  Structural
§  Behavioral

² Observer pattern
§  Behavioral pattern
§  Separates the display of object

state from the object itself when
multiple displays of state are
needed.

6	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

A UML model of the Observer pattern

7	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Design problems

² Be aware that any design problem you are facing may
have an associated pattern that can be applied.
§  Tell several objects that the state of some other object has

changed (Observer pattern).
§  Tidy up the interfaces to a number of related objects that have

often been developed incrementally (Façade pattern).
§  Allow classes with incompatible interfaces to work together by

wrapping a new interface around that of an already existing class
(Adapter pattern).

§  Reduce the cost of creating and manipulating a large number of
similar objects (Flyweight pattern).

§  Restrict object creation for a class to only one instance
(Singleton pattern).

8	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

SOLID principles

² The “first five principles” identified by Robert C. Martin in
the early 2000s that stand for five basic principles of
object-oriented programming and design.

² Single responsibility

² Open/closed

² Liskov substitution

²  Interface segregation

² Dependency inversion

B.	
 Bühnová,	
 FI	
 MU,	
 PB007	
 9	

Single responsibility principle

² The principle states that every class should have a
single responsibility, and that responsibility should be
entirely encapsulated by the class.

² A responsibility can be understood as a reason to
change, so a class or module should have one, and only
one, reason to change.

² As an example, consider a module that compiles and
prints a report. Such a module can be changed for two
reasons – because the content or the format changes.
§  If there is a change to the report compilation process, there is

greater danger that the printing code breaks.

B.	
 Bühnová,	
 FI	
 MU,	
 PB007	
 10	

Open/closed principle

² The principle states that software entities (classes,
modules, functions, etc.) should be open for extension,
but closed for modification.

² Use inheritance and interfaces to avoid code changes
when extending system functionality.

B.	
 Bühnová,	
 FI	
 MU,	
 PB007	
 11	

Component

Specialization1 Specialization2

Interface

Implementation1 Implementation2

Liskov substitution principle

² The principle states that, in a computer program, if S is a
subtype of T, then objects of type T may be replaced
with objects of type S without altering any of the
desirable properties of that program (correctness, task
performed, etc.).

B.	
 Bühnová,	
 FI	
 MU,	
 PB007	
 12	

Rectangle

Square

width and height can be
changed independently

width and height must not
be changed independently

T

S

Interface segregation principle

² The principle states that no client should be forced to
depend on methods it does not use.

²  ISP splits large interfaces into smaller and more specific
“role” interfaces so that clients will only have to know
about the methods that are of interest to them.

²  ISP is intended to keep a system decoupled and thus
easier to refactor, change, and redeploy.

B.	
 Bühnová,	
 FI	
 MU,	
 PB007	
 13	

iATM
iWithdraw

iChangePIN

iCheckBalance

Dependency inversion principle

² The principle refers to a specific form of decoupling
where conventional dependency relationships
established from high-level modules to low-level
modules are inverted. The principle states:

² A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

² B. Abstractions should not depend upon details. Details
should depend upon abstractions.

B.	
 Bühnová,	
 FI	
 MU,	
 PB007	
 14	

iSwitchable Switch Light Switch Light

Clean code by Robert C. Martin

² A handbook of agile software craftsmanship

² Guidelines for:
§  Meaningful names
§  Functions
§  Comments
§  Formatting
§  Objects and data structures
§  Error handling
§  Concurrency
§  … and others

² Smells and heuristics

B.	
 Bühnová,	
 FI	
 MU,	
 PB007	
 15	

Design for non-functional qualities

² Design patterns and programming principles help us to
implement specific functionality while maintaining high
code quality
§  Respect of design patterns and principles improves system

maintainability

² What if also other non-functional qualities are of high
importance?

² Are there any “patterns” for dependability, performance,
testability, etc.?

16	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Programming guidelines for Dependability

	

1. 	
 Limit	
 the	
 visibility	
 of	
 informa4on	
 in	
 a	
 program	

2. 	
 Check	
 all	
 inputs	
 for	
 validity	

3. 	
 Provide	
 a	
 handler	
 for	
 all	
 excep4ons	

4. 	
 Minimize	
 the	
 use	
 of	
 error-­‐prone	
 constructs	

5. 	
 Provide	
 restart	
 capabili4es	

6. 	
 Check	
 array	
 bounds	

7. 	
 Include	
 4meouts	
 when	
 calling	
 external	
 components	

8. 	
 Name	
 all	
 constants	
 that	
 represent	
 real-­‐world	
 values	

	

17	
 Chapter	
 13	
 Dependability	
 Engineering	

Limit the visibility of information in a
program

² Program components should only be allowed access to
data that they need for their implementation.

² This means that accidental corruption of parts of the
program state by these components is impossible.

² You can control visibility by making data representation
private and only allowing access to the data through
predefined operations such as get() and set().

Chapter	
 13	
 Dependability	
 Engineering	
 18	

Check all inputs for validity

² Range checks
§  Check that the input falls within a known range.

² Size checks
§  Check that the input does not exceed some maximum size e.g.

40 characters for a name.

² Representation checks
§  Check that the input does not include characters that should not

be part of its representation e.g. names do not include numerals.

² Reasonableness checks
§  Use information about the input to check if it is reasonable rather

than an extreme value.

Chapter	
 13	
 Dependability	
 Engineering	
 19	

Provide a handler for all exceptions

² A program exception is an
error or unexpected event.

² Exception handling constructs
allow for such events to be
handled without the need for
continual status checking to
detect exceptions.

20	
 Chapter	
 13	
 Dependability	
 Engineering	

Exception handling

² Exception handling is a mechanism that implements
some level of fault tolerance.

² Exception handling strategies delegate responsibility to:
§  Caller. Signal to a calling component that an exception has

occurred and provide information about the type of exception.
§  Callee. Carry out some alternative processing to the processing

where the exception occurred. This is only possible where the
exception handler has enough information to recover from the
problem that has arisen.

§  Controller. Pass control to a run-time support system to handle
the exception.

Chapter	
 13	
 Dependability	
 Engineering	
 21	

Minimize the use of error-prone constructs

² Program faults are usually a consequence of human
error because programmers lose track of the
relationships between the different parts of the system

² This is made worse by error-prone constructs in that they
are inherently complex or do not check for mistakes.

² Unconditional branch (goto) statements
² Pointers

§  When referring to the wrong memory areas can corrupt data.

² Dynamic memory allocation
§  Run-time allocation can cause memory overflow.

Chapter	
 13	
 Dependability	
 Engineering	
 22	

Error-prone constructs

² Parallelism
§  Can result in unforeseen interaction between processes.

² Recursion
§  Errors in recursion can cause memory overflow.

² Aliasing
§  Using more than 1 name to refer to the same state variable.

² Floating-point numbers
§  Inherently imprecise, leading to invalid comparisons.

²  Interrupts
§  Interrupts can cause a critical operation to be terminated.

23	
 Chapter	
 13	
 Dependability	
 Engineering	

Provide restart capabilities

² For systems that involve long transactions or user
interactions, you should always provide a restart
capability that allows the system to restart after failure
without users having to redo everything that they have
done.

² Restart depends on the type of system
§  Keep copies of forms so that users don’t have to fill them in

again if there is a problem
§  Save state periodically and restart from the saved state

Chapter	
 13	
 Dependability	
 Engineering	
 24	

Check array bounds

²  In some programming languages, such as C or C++, it is
possible to address a memory location outside of the
range allowed for in an array declaration.

² This leads to the well-known ‘buffer overflow’
vulnerability where attackers write executable code into
memory by deliberately writing beyond the top element in
an array.

²  If your language does not include bound checking, you
should therefore always check that an array access is
within the bounds of the array.

Chapter	
 13	
 Dependability	
 Engineering	
 25	

Include timeouts when calling external
components

²  In a distributed system, failure of a remote computer can
be ‘silent’ so that programs expecting a service from that
computer may never receive that service or any
indication that there has been a failure.

² To avoid this, you should always include timeouts on all
calls to external components.

² After a defined time period has elapsed without a
response, your system should then assume failure and
take whatever actions are required to recover from this.

Chapter	
 13	
 Dependability	
 Engineering	
 26	

Name all constants that represent real-world
values

² Always give constants that reflect real-world values
(such as tax rates) names rather than using their
numeric values and always refer to them by name

² You are less likely to make mistakes and type the wrong
value when you are using a name rather than a value.

² This means that when these ‘constants’ change (for
sure, they are not really constant), then you only have to
make the change in one place in your program.

Chapter	
 13	
 Dependability	
 Engineering	
 27	

Programming guidelines for Performance

² Reduce the resources required for processing individual
algorithms or computations.
§  Increase computational efficiency.
§  Reduce computational overhead.

² Reduce the number of processed computations.
§  Manage the frequency of event processing.
§  Batch data for processing (e.g. within backup activities).

² Control the use of resources.
§  Bound execution times and queue sizes.
§  Schedule non-urgent resource usage to off-peak hours.
§  Assign priorities.

28	
 ©	
 So(ware	
 Architecture	
 in	
 Prac:ce	
 	

by	
 L.	
 Bass,	
 P.	
 Clements	
 and	
 R.	
 Kazman	

Implementation Issues

Lecture	
 7/Part	
 2	

29	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Implementation issues

² Some implementation issues that are often not covered
in programming texts:
§  Reuse Most modern software is constructed by reusing existing

components or systems. When you are developing software, you
should make as much use as possible of existing code.

§  Configuration management During the development process,
you have to keep track of the many different versions of each
software component in a configuration management system.

§  Host-target development Production software does not usually
execute on the same computer as the software development
environment. Rather, you develop it on one computer (the host
system) and execute it on a separate computer (the target
system).

30	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Reuse

² From the 1960s to the 1990s, most new software was
developed from scratch, by writing all code in a high-
level programming language.
§  The only significant reuse or software was the reuse of functions

and objects in programming language libraries.

² Costs and schedule pressure mean that this approach
became increasingly unviable, especially for commercial
and Internet-based systems.

² An approach to development based around the reuse of
existing software emerged and is now generally used for
business and scientific software.

31	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Reuse levels

² The object level
§  At this level, you directly reuse objects from a library rather than

writing the code yourself.

² The component level
§  Components are collections of objects and object classes that

you reuse in application systems.

² The system level
§  At this level, you reuse entire application systems.

² The abstraction level
§  At this level, you don’t reuse software directly but use knowledge

of successful abstractions in the design of your software.

32	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Reuse costs

² The costs of the time spent in looking for software to
reuse and assessing whether it meets your needs.

² Where applicable, the costs of buying the reusable
software. For large off-the-shelf systems, these costs
can be very high.

² The costs of adapting and configuring the reusable
software components or systems to reflect the
requirements of the system that you are developing.

² The costs of integrating reusable software elements
with each other (if you are using software from different
sources) and with the new code that you developed.

33	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Configuration management

² Configuration management is the name given to the
general process of managing a changing software
system.

² The aim of configuration management is to support the
system integration process so that all developers can
access the project code and documents in a controlled
way, find out what changes have been made, and
compile and link components to create a system.

34	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Configuration management activities

² Version management, where support is provided to keep
track of the different versions of software components.
Version management systems include facilities to coordinate
development by several programmers.

² System integration, where support is provided to help
developers define what versions of components are used to
create each version of a system. This description is then used
to build a system automatically by compiling and linking the
required components.

² Problem tracking, where support is provided to allow users
to report bugs and other problems, and to allow all developers
to see who is working on these problems and when they are
fixed.

35	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Host-target development

² Most software is developed on one computer (the host),
but runs on a separate machine (the target).

² More generally, we can talk about a development
platform and an execution platform.
§  A platform is more than just hardware.
§  It includes the installed operating system plus other supporting

software such as a database management system or, for
development platforms, an interactive development environment.

² Development platform usually has different installed
software than execution platform; these platforms may
have different architectures.

36	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

Key points

² When developing software, you should always consider
the possibility of reusing existing software, either as
components, services or complete systems.

² Configuration management is the process of managing
changes to an evolving software system. It is essential
when a team of people are cooperating to develop
software.

² Most software development is host-target
development. You use a development environment on a
host machine to develop the software, which is
transferred to a target machine for execution.

37	
 Chapter	
 7	
 Design	
 and	
 implementa:on	

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 38	

Lecture	
 7/Part	
 3	

Interaction Diagrams

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 39	

Interaction diagrams

²  Sequence diagrams
§  Emphasize time-ordered sequence of message sends
§  Show interactions arranged in a time sequence
§  Are the richest and most expressive interaction diagram
§  Do not show object relationships explicitly - these can be inferred from

message sends
²  Communication diagrams

§  Emphasize the structural relationships between objects
§  Use communication diagrams to make object relationships explicit

²  Timing diagrams
§  Emphasize the real-time aspects of an interaction

²  Interaction overview diagrams
§  Show how complex behavior is realized by a set of simpler interactions

(discussed earlier together with Activity diagrams)

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 40	

Sequence diagram syntax

²  Interactions are captured via lifelines (participants in the interaction) and
messages (communications between lifelines)

²  Activations indicate when a lifeline has focus of control - they are often omitted from
sequence diagrams

:Registrar
:RegistrationManager

uml:Course

addCourse("UML")

«create»

notes can form
a "script"
describing the
flow

lifeline
sd AddCourse

object creation message

synchronous
message

object is
created at
this point

message
return

activation

The Registrar selects
"add course".

The system creates
the new Course.

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 41	

Lifelines

²  A lifeline represents a single participant in an interaction
§  Shows how a classifier instance may participate in the interaction

²  Lifelines have:
§  name - the name used to refer to the lifeline in the interaction
§  selector - a boolean condition that selects a specific instance
§  type - the classifier that the lifeline represents an instance of

²  They must be uniquely identifiable within an interaction by name, type or both

²  The lifeline has the same icon as the classifier that it represents

jimsAccount [id = "1234"] : Account

name selector type

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 42	

Messages

²  A message represents a communication between two lifelines

synchronous
message

asynchronous
send

message
return

arrow type

creation :A

type of
message

destruction

found
message

lost
message

calling an operation synchronously
the sender waits for the receiver to complete

calling an operation asynchronously, sending a signal
the sender does not wait for the receiver to complete

semantics

returning from a synchronous operation call
the receiver returns focus of control to the sender

the sender creates the target

the sender destroys the receiver

the message is sent from outside the scope of the interaction

the message fails to reach its destination

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 43	

Deletion and self-delegation

²  Self delegation is when a lifeline sends a message to itself
§  Generates a nested activation

:Registrar
:RegistrationManager uml:Course

deleteCourse("UML")

sd DeleteCourse

object is
deleted at
this point

«destroy»

self delegation

findCourse("UML")

nested activation

RegistrationManager

addCourse()
findCourse()
deleteCourse()

Course

0..*

1

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 44	

Combined fragments – opt and alt

²  OPT semantics:
§  single operand that

executes if the
condition is true

²  ALT semantics:
§  two or more operands

each protected by its
own condition

§  an operand executes if
its condition is true

§  use else to indicate the
operand that executes
if none of the
conditions are true

:A :B :C :D

opt [condition]
do this if condition is true

alt
do this if condition1 is true

[condition1]

[condition2]
do this if condition2 is true

[else]
do this if neither condition is true

sd example of opt and alt

IF .. THEN
SELECT .. CASE

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 45	

Combined fragments – loop and break

²  LOOP semantics:
§  Loop min times, then loop (max – min)

times while condition is true

²  LOOP syntax:
§  A loop without min, max or condition is

an infinite loop
§  condition can be

•  Boolean expression
•  Plain text expression provided it is clear!

²  Break specifies what happens when the
loop is broken out of:
§  The break fragment executes
§  The rest of the loop after the break does

not execute

²  The break fragment is outside the loop
and so should overlap it as shown

:A :B

loop min, max [condition]

do something

sd examples of loop

loop [condition]

do something

loop while guard
condition is true

break on breaking out do this

do something else
must be global
relative to loop

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 46	

Loop idioms

type of loop semantics loop expression

infinite loop keep looping forever loop *

for i = 1 to n
 {body}

repeat (n) times loop n

while(booleanExpression)
 {body}

repeat while booleanExpression
is true

loop [booleanExpression]

repeat
 {body}
while(booleanExpression)

execute once then repeat while
booleanExpression is true

loop 1, * [booleanExpression]

forEach object in collection
 {body}

Execute the loop once for each
object in a collection

loop [for each object in collection]

forEach object in ObjectType
 {body}

Execute the loop once for each
object of a particular type

loop [for each object in :ObjectType]

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 47	

The rest of the operators

operator long name semantics

par parallel Both operands execute in parallel

seq weak
sequencing

The operands execute in parallel subject to the constraint that
event occurrences on the same lifeline from different operands must
happen in the same sequence as the operands

ref reference The combined fragment refers to another interaction

strict strict
sequencing

The operands execute in strict sequence

neg negative The combined fragment represents interactions that are invalid

critical critical region The interaction must execute atomically without interruption

ignore ignore Specifies that some messages are intentionally ignored in the
interaction

consider consider Lists the messages that are considered in the interaction (all others
are ignored)

assert assertion The operands of the combined fragments are the only valid
continuations of the interaction

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 48	

addCourse("UML")

uml = Course("UML")

addCourse("UML")

Sequence diagrams in design

:Registrar
:RegistrationUI

uml:Course

sd AddCourse - design

:RegistrationManager :DBManager

save(uml)

²  Could you draw a UML Class diagram corresponding to the
sequence diagram above?

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 49	

²  Communication diagrams emphasize the structural aspects of an
interaction - how lifelines connect together
§  Compared to sequence diagrams they are semantically weaker
§  Object diagrams are a special case of communication diagrams

2: addCourse("MDA")

:Registrar

:RegistrationManager

mda:Course

uml:Course

1: addCourse("UML") 1.1: «create»

2.1: «create»

sd AddCourses

link

message sequence number

lifeline

object creation
message

Communication diagram syntax

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 50	

Iteration

²  Iteration is shown by
using the iteration
specifier (*), and an
optional iteration clause
§  There is no prescribed

UML syntax for iteration
clauses

§  Use code or pseudo
code

²  To show that messages
are sent in parallel use
the parallel iteration
specifier, *//

iteration clause

1: printCourses()

:Registrar

:RegistrationManager

[i]:Course

1.1.1: print()

1.1 * [for i = 1 to n] : printCourse(i)

sd PrintCourses

iteration specifier

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 51	

Branching

²  Branching is modelled by prefixing the sequence number with a guard
condition
§  There is no prescribed UML syntax for guard conditions
§  In the example above, we use the variable found. This is true if both the

student and the course are found, otherwise it is false

:RegistrationManager
1: register ("Jim", "UML")

:Registrar

course:Course

1.3 [found] : register(student)

1.1: student = findStudent("Jim")

1.4 [!found] : error()

1.2: course = findCourse("UML")

sd register student for course

It’s hard
to show
branching
clearly!

found = (student != null) & (course != null)

guard condition

return value from message

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 52	

{t <= 15} {t = 10} {t > 30}

{t <= 15} {t = 30}

Timing diagrams

²  Emphasize the real-time
aspects of an interaction

²  Used to model timing
constraints

²  Lifelines, their states or
conditions are drawn
vertically, time horizontally

²  It's important to state the
time units you use in the
timing diagram

sd IntruderThenFire

soundingFireAlarm

soundingIntruderAlarm

off

:S
ire

n

0 10 20 30 40 50

state or
condition

lifeline

intruder

intruder

fire

time in minutes

event

timing ruler

duration constraint

60

resting

70 80 90 100

sd IntruderThenFire

sounding
Intruder
Alarm :S

ire
n

off resting
sounding
Intruder
Alarm

sounding
fire Alarm

state or condition all times in minutes

compact
form

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 53	

{t <= 0.016}

{t <= 0.016}

soundIntruderAlarm() soundIntruderAlarm()

soundFireAlarm()

Messages on timing diagrams

²  You can show
messages between
lifelines on timing
diagrams

²  Each lifeline has its
own partition

sd SirenBehavior

soundingIntruderAlarm

off :S
ire

n

{t <= 15}

triggered

notTriggered

:In
tru

de
rS

en
so

rM
on

ito
r

{t <= 15} {t = 30}

all times in minutes

resting

triggered

notTriggered

:F
ire

S
en

so
rM

on
it

or

soundingFireAlarm

messages

©	
 Clear	
 View	
 Training	
 2010	
 v2.6	
 54	

Key points

² There are four types of interaction diagrams:
§  Sequence diagrams – emphasize time-ordered sequence of

message sends
§  Communication diagrams – emphasize the structural

relationships between lifelines
§  Timing diagrams – emphasize the real-time aspects of an

interaction
§  Interaction overview diagrams – show how complex behavior is

realized by a set of simpler interactions; presented together with
Activity diagrams

