
Lecture 9

TESTING, VERIFICATION AND VALIDATION

PB007	 So(ware	 Engineering	 I	
Faculty	 of	 Informa:cs,	 Masaryk	 University	
Fall	 2015	

1	 ©	 Barbora	 Bühnová	

Outline

² Validation and verification

² Static analysis

² Testing and its stages

² Testing of non-functional properties

2	

Validation and Verification

Lecture	 9/Part	 1	

3	 Chapter	 8	 So(ware	 tes:ng	

Program testing

²  Testing is intended to show that a program does what it is
intended to do and to discover program defects before it is
put into use.

² When you test software, you execute a program using artificial
data.

² You check the results of the test run for errors, anomalies or
information about the program’s non-functional attributes.

² Can reveal the presence of errors NOT their
absence.

²  Testing is part of a more general verification and validation
process, which also includes static validation techniques.

Chapter	 8	 So(ware	 tes:ng	 4	

Testing process goals

² Validation testing
§  To demonstrate to the developer and the system customer that

the software meets its requirements
§  This means that there should be at least one test for every

requirement or system feature.
§  A successful test shows that the system operates as intended.

² Defect testing
§  To discover faults or defects in the software where its

behaviour is incorrect or not in conformance with its specification
§  A successful test is a test that makes the system perform

incorrectly and so exposes a defect in the system.

5	 Chapter	 8	 So(ware	 tes:ng	

² Validation:
 "Are we building the right product”.

² The software should meet user expectations, conform to
user requirements (high-level user specification).

² Verification:
 "Are we building the product right”.

² The software should be defect-free, conform to low-level
programmer specification (e.g. test cases).

Validation vs. Verification

6	 Chapter	 8	 So(ware	 tes:ng	

² Static verification. Concerned with analysis of
the static system representation to discover problems
– e.g. software inspections
§  May be supplement by tool-based document and code analysis.

² Dynamic verification. Concerned with exercising and
observing product behaviour
– e.g. software testing
§  The system is executed with test data and its operational

behaviour is observed.

Static and dynamic verification

7	 Chapter	 8	 So(ware	 tes:ng	

Inspections and testing

8	 Chapter	 8	 So(ware	 tes:ng	

Static Analysis

Lecture	 9/Part	 2	

9	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Static analysis

² Static analysis techniques are system verification
techniques that don’t involve executing a program.

² Static analysis includes techniques such as
§  Inspections and reviews
§  Automated program analysis
§  Formal verification
§  Model checking

² Static analysis has its value whenever it is cheaper to
find and remove faults than to pay for system failure
– in critical systems namely.

10	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Software inspections

² These involve people examining the source
representation with the aim of discovering anomalies
and defects.

²  Inspections do not require execution of a system so
may be used before implementation.

² They may be applied to any representation of the system
(requirements, design, configuration data, test data, etc).

² They have been shown to be an effective technique for
discovering program errors.

11	 Chapter	 8	 So(ware	 tes:ng	

Advantages of inspections

² During testing, errors can mask (hide) other errors.
Because inspection is a static process, you don’t have to
be concerned with interactions between errors.

²  Incomplete versions of a system can be inspected
without additional costs. If a program is incomplete, then
you need to develop specialized test harnesses to test
the parts that are available.

² As well as searching for program defects, an inspection
can also consider broader quality attributes of a program,
such as compliance with standards, portability and
maintainability.

Chapter	 8	 So(ware	 tes:ng	 12	

Automated static analysis

² Static analysers are software tools for source text
processing.

² They parse the program text and try to discover
potentially erroneous conditions and bring these to the
attention of the V & V team.

² They are very effective as an aid to inspections - they
are a supplement to but not a replacement for
inspections.

13	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Automated static analysis checks

Fault class Static analysis check

Data faults Variables used before initialization
Variables declared but never used
Variables assigned twice but never used between assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening assignment

Interface faults Parameter-type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management faults Unassigned pointers
Pointer arithmetic
Memory leaks

14	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Levels of automated static analysis

² Characteristic error checking
§  The static analyzer can check for patterns in the code that are

characteristic of errors made by programmers using a
particular language.

² User-defined error checking
§  Users of a programming language define error patterns, thus

extending the types of error that can be detected. This allows
specific rules that apply to a program to be checked.

² Assertion checking
§  Developers include formal assertions in their program and

relationships that must hold. The static analyzer symbolically
executes the code and highlights potential problems.

15	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Use of automated static analysis

² Particularly valuable when a language such as C is used
which has weak typing and hence many errors are
undetected by the compiler.

² Particularly valuable for security checking – the static
analyzer can discover areas of vulnerability such as
buffer overflows or unchecked inputs.

² Static analysis is now routinely used in the development
of many safety and security critical systems.

16	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Verification and formal methods

² Formal methods can be used when a mathematical
specification of the system is produced.

² They are the ultimate static verification technique that
may be used at different stages in the development
process:
§  A formal specification may be developed and mathematically

analyzed for consistency. This helps discover specification errors
and omissions.

§  Formal arguments that a program conforms to its mathematical
specification may be developed. This is effective in discovering
programming and design errors.

17	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Arguments for formal methods

² Producing a mathematical specification requires a
detailed analysis of the requirements and this is likely
to uncover errors.

² Concurrent systems can be analysed to discover race
conditions that might lead to deadlock. Testing for
such problems is very difficult.

² They can detect implementation errors before testing
when the program is analyzed alongside the
specification.

18	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Arguments against formal methods

² Require specialised notations that are hard to
understand for domain experts.

² Very expensive to develop a specification and to
show that a program meets that specification.

² Proofs may contain errors.

²  It may be possible to reach the same level of confidence
in a program more cheaply using other V & V
techniques.

19	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Model checking

²  Involves creating an extended finite state model of a
system and, using a specialized system (a model
checker), checking that model for errors.

² Checks formal model against formal specification.

20	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Model checking

21	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

² The model checker explores all possible paths through
the model and checks that a user-specified property is
valid for each path.

² Model checking is particularly valuable for verifying
concurrent systems, which are hard to test.

² Although model checking is computationally very
expensive, it is now practical to use it in the verification
of small to medium sized critical systems.

Key points

²  Inspections and reviews involve people examining the
source representation with the aim of discovering
anomalies and defects.

² Static analysis is an approach to V & V that examines
the source code (or other representation) of a system,
looking for errors and anomalies.

² Model checking is a formal approach to static analysis
that exhaustively checks all states in a system for
potential errors.

22	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Testing and its Stages

Lecture	 9/Part	 3	

23	 Chapter	 8	 So(ware	 tes:ng	

Topics covered

² Development testing
§  Unit testing
§  Component testing
§  System testing

² Release testing

² User testing
§  Alpha testing
§  Beta testing
§  Acceptance testing

24	 Chapter	 8	 So(ware	 tes:ng	

Stages of testing

² Development testing, where the system is tested during
development to discover bugs and defects.

² Release testing, where a separate testing team test a
complete version of the system before it is released to
users.

² User testing, where users or potential users of a system
test the system in their own environment.

Chapter	 8	 So(ware	 tes:ng	 25	

Development testing

² Development testing includes all testing activities that
are carried out by the team developing the system.
§  Unit testing, where individual program units or object classes

are tested. Unit testing should focus on testing the functionality
of objects or methods.

§  Component testing, where several individual units are
integrated to create composite components. Component testing
should focus on testing component interfaces.

§  System testing, where some or all of the components in a
system are integrated and the system is tested as a whole.
System testing should focus on testing component interactions.

Chapter	 8	 So(ware	 tes:ng	 26	

Unit testing

² Unit testing is the process of testing individual
components in isolation.

²  It is a defect testing process.

² Units may be:
§  Individual functions or methods within an object
§  Object classes with several attributes and methods
§  Composite components with defined interfaces used to access

their functionality.

27	 Chapter	 8	 So(ware	 tes:ng	

Object class testing

² Complete test coverage of a class involves
§  Testing all operations associated with an object
§  Setting and interrogating all object attributes
§  Exercising the object in all possible states.

²  Inheritance makes it more difficult to design object class
tests as the information to be tested is not localised.

28	 Chapter	 8	 So(ware	 tes:ng	

Example: Weather station testing

² Define test cases for each method and attribute usage in
isolation (e.g. reportWeather()) or interaction if needed
(e.g. shutdown() and restart()).

² Using a state model, identify
sequences of state transitions to be
tested and the event sequences to
cause these transitions

² For example:
§  Shutdown -> Running-> Shutdown
§  Running-> Collecting-> Running->

Summarizing -> Transmitting -> Running

29	 Chapter	 8	 So(ware	 tes:ng	

Automated testing

² Whenever possible, unit testing should be automated
so that tests are run and checked without manual effort.

² Test automation frameworks (such as JUnit) can be used
to write and run program tests.

² Unit testing frameworks provide generic test classes that
you extend to create specific test cases. They can then
run all of the tests and report, often through some GUI,
on the success of the tests.

² Test structure: setup – call – assertion evaluation,
which compares the result of the call with the expected
result

Chapter	 8	 So(ware	 tes:ng	 30	

Testing strategies

² Partition testing, where you identify groups of inputs
that have common characteristics and should be
processed in the same way.
§  You should choose tests from within each of these groups.
§  Focus on both the expected inputs (verifying normal execution)

and abnormal inputs (localizing defects).

² Guideline-based testing, where you use testing
guidelines to choose test cases.
§  These guidelines reflect previous experience of the kinds of

errors that programmers often make when developing
components.

Chapter	 8	 So(ware	 tes:ng	 31	

Partition testing

²  Input data and output results often fall into different
classes where all members of a class are related.

² The classes form equivalence partitions where the
program behaves in an equivalent way for each member.

² Test cases should be chosen from each partition.

32	 Chapter	 8	 So(ware	 tes:ng	

Equivalence partitions

33	 Chapter	 8	 So(ware	 tes:ng	

² Consider a program that accepts 4 to 8 inputs which are
five-digit integers greater than 10,000, but smaller than
100,000.

Testing guidelines

² General testing guidelines
§  Choose inputs that force the system to generate all error messages.
§  Design inputs that cause input buffers to overflow.
§  Repeat the same input or series of inputs numerous times.
§  Force invalid outputs to be generated
§  Force computation results to be too large or too small.

² Guidelines for testing sequences
§  Test software with sequences which have only a single value.
§  Use sequences of different sizes in different tests.
§  Derive tests so that the first, middle and last elements of the

sequence are accessed.
§  Test with sequences of zero length.

34	 Chapter	 8	 So(ware	 tes:ng	

Component testing

² Software components are often composite components
that are made up of several interacting objects.
§  For example, in the weather station system, the reconfiguration

component includes objects that deal with each aspect of the
reconfiguration.

² You access the functionality of these objects through
the defined component interface.

² Testing composite components should therefore focus
on showing that the component interface behaves
according to its specification.
§  You can assume that unit tests on the individual objects within

the component have been completed.

Chapter	 8	 So(ware	 tes:ng	 35	

Interface testing

² Objectives are to detect faults due to interface errors or
invalid assumptions about interfaces.

36	 Chapter	 8	 So(ware	 tes:ng	

Interface errors

²  Interface misuse
§  A calling component calls another component and makes an

error in its use of its interface e.g. parameters in the wrong
order.

²  Interface misunderstanding
§  A calling component embeds assumptions about the

behaviour of the called component which are incorrect.

² Timing errors
§  The called and the calling component operate at different speeds

and out-of-date information is accessed.
§  The caller is violating the protocol (assumed ordering of

service calls) of the calling component.

37	 Chapter	 8	 So(ware	 tes:ng	

Interface testing guidelines

² Design tests so that parameters to a called procedure
are at the extreme ends of their ranges.

² Always test pointer parameters with null pointers.

² Design tests which cause the component to fail.

² Use stress testing in message passing systems.

²  In shared memory systems, vary the order in which
components are activated.

38	 Chapter	 8	 So(ware	 tes:ng	

System testing

² System testing checks that components are compatible,
interact correctly and transfer the right data at the right
time across their interfaces.

² The focus in system testing is testing the interactions
between components.

² System testing during development involves integrating
components to create a version of the system and then
testing the integrated system.
§  Components developed by different teams and third-party

components are integrated at this stage. System testing is a
collective rather than an individual process.

39	 Chapter	 8	 So(ware	 tes:ng	

Testing policies

² Exhaustive system testing is impossible so testing
policies which define the required system test coverage
may be developed.

² Examples of testing policies:
§  All system functions that are accessed through menus should

be tested.
§  Combinations of functions (e.g. text formatting) that are

accessed through the same menu must be tested.
§  Where user input is provided, all functions must be tested with

both correct and incorrect input.
§  All use cases must be executed during testing.

Chapter	 8	 So(ware	 tes:ng	 40	

Test-driven development

² Test-driven development (TDD) is an approach to
program development in which tests are written before
code and ‘passing’ the tests is the driver of development.

 Is TDD connected with a specific process method?

41	 Chapter	 8	 So(ware	 tes:ng	

Benefits of test-driven development

² Code coverage
§  Every code segment that you write has at least one associated

test so all code written has at least one test.

² Regression testing
§  A regression test suite is developed incrementally as a program

is developed.

² Simplified debugging
§  When a test fails, it should be obvious where the problem lies.

The newly written code needs to be checked and modified.

² System documentation
§  The tests themselves are a form of documentation that describe

what the code should be doing.
42	 Chapter	 8	 So(ware	 tes:ng	

Regression testing

² Regression testing is testing the system to check that
changes have not ‘broken’ previously working code.

²  In a manual testing process, regression testing is
expensive but, with automated testing, it is simple and
straightforward. All tests are rerun every time a change is
made to the program.

² Tests must run ‘successfully’ before the change is
committed.

43	 Chapter	 8	 So(ware	 tes:ng	

Release testing

² Release testing is the process of testing a particular release
of a system that is intended for use.

² The primary goal of the release testing process is to
convince the supplier of the system that it is good enough
for use.
§  Release testing, therefore, has to show that the system delivers

its specified functionality, performance and dependability, and
that it does not fail during normal use.

§  The use-cases developed to identify system requirements can be
used as a basis for release testing.

² Release testing is usually a black-box testing process
where tests are only derived from the system specification.

44	 Chapter	 8	 So(ware	 tes:ng	

Release testing and system testing

² Release testing is a form of system testing.

²  Important differences:
§  A separate team that has not been involved in the system

development, should be responsible for release testing.
§  System testing by the development team should focus on

discovering bugs in the system (defect testing).
The objective of release testing is to check that the system
meets its requirements and is good enough for external use
(validation testing).

45	 Chapter	 8	 So(ware	 tes:ng	

Requirements based testing

² Requirements-based testing involves examining each
requirement and developing a test or tests for it.

² MHC-PMS requirement:
§  If a patient is known to be allergic to any particular medication,

then prescription of that medication shall result in a warning
message being issued to the system user.

§  Tests:
•  Patient record with no allergies. Prescribe medication. Check that a

warning message is not issued by the system.
•  Patient record with a known allergy. Prescribe the medication to that

the patient is allergic to, and check that the warning is issued.
•  Prescribe two drugs that the patient is allergic to. Check that two

warnings are correctly issued.

46	 Chapter	 8	 So(ware	 tes:ng	

User testing

² User or customer testing is a stage in the testing process
in which users or customers provide input and advice on
system testing.

² User testing is essential, even when comprehensive
system and release testing have been carried out.
§  The reason for this is that influences from the user’s working

environment have a major effect on the reliability, performance,
usability and robustness of a system.

47	 Chapter	 8	 So(ware	 tes:ng	

Types of user testing

² Alpha testing
§  Users of the software work with the development team to test the

software at the developer’s site.

² Beta testing
§  A release of the software is made available to users to allow

them to experiment and to raise problems that they discover with
the system developers.

² Acceptance testing
§  Customers test a system to decide whether it is ready to be

accepted from the developer and deployed in their environment.
§  Systematic activity with defined test criteria, test plan and result

reports.

48	 Chapter	 8	 So(ware	 tes:ng	

Key points

² Development testing
§  Unit testing – methods, classes, components
§  Component testing – interface testing
§  System testing – integration testing
§  Test Driven Development
§  Regression testing

² Release testing

² User testing
§  Alpha testing
§  Beta testing
§  Acceptance testing

Chapter	 8	 So(ware	 tes:ng	 49	

Testing of Non-Functional Properties

Lecture	 9/Part	 4	

50	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Topics covered

² Performance testing

² Reliability testing

² Security testing

51	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Performance testing

² Release testing may involve testing the emergent
properties of a system, such as performance and
reliability.

² Tests should reflect the profile of use of the system.

² Performance tests usually involve planning a series of
tests where the load is steadily increased until the
system performance becomes unacceptable.

² Stress testing is a form of performance testing where
the system is deliberately overloaded to test its failure
behaviour.

52	 Chapter	 8	 So(ware	 tes:ng	

Reliability testing

² Reliability validation involves exercising the program to
assess whether or not it has reached the required level
of reliability.

² Reliability measurement requires a specially designed
data set that reflects expected system usage (unlike in
defect testing where atypical usage receives higher
attention), i.e. replicates expected input patterns.

53	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Reliability measurement problems

² Operational profile uncertainty
§  The operational profile may not be an accurate reflection of the

real use of the system.

² Statistical uncertainty
§  You need a statistically significant number of failures to compute

the reliability but highly reliable systems will rarely fail.

² Recognizing failure
§  It is not always obvious when a failure has occurred as there

may be conflicting interpretations of a specification.

² High costs of test data generation
§  Costs can be very high if the test data for the system cannot be

generated automatically.

54	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Security testing

² Testing the extent to which the system can protect itself
from external attacks.

²  Problems with security testing
§  Security requirements are ‘shall not’ requirements i.e. they

specify what should not happen. It is not usually possible to
define security requirements as simple constraints that can be
checked by the system.

§  The people attacking a system are intelligent and look for
vulnerabilities. They can experiment to discover weaknesses and
loopholes in the system.

² Static analysis may be used to guide the testing team to
areas of the program that may include errors and
vulnerabilities.

55	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Security validation

² Experience-based validation
§  The system is reviewed and analysed against the types of attack

that are known to the validation team.

² Tiger teams
§  A team is established whose goal is to breach the security of the

system by simulating attacks on the system.

² Tool-based validation
§  Various security tools such as password checkers are used to

analyse the system in operation.

² Formal verification
§  The system is verified against a formal security specification.

56	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

Key points

² Performance testing tests system performance
properties.

² Reliability testing relies on testing the system with a
data set that reflects the operational profile of the
software.

² Security validation may be carried out using
experience-based analysis, tool-based analysis or ‘tiger
teams’ that simulate attacks on a system.

57	 Chapter	 15	 Dependability	 and	 Security	
Assurance	

