
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 7: Entity-Relationship Model

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan7.2Database System Concepts - 6th Edition

Chapter 7: Entity-Relationship Model

 Design Process

 Modeling

 Constraints

 E-R Diagram

 Design Issues

 Weak Entity Sets

 Extended E-R Features

 Design of the Bank Database

 Reduction to Relation Schemas

 Database Design

 UML

©Silberschatz, Korth and Sudarshan7.3Database System Concepts - 6th Edition

Modeling

 A database can be modeled as:

 a collection of entities,

 relationship among entities.

 An entity is an object that exists and is distinguishable from other

objects.

 Example: specific person, company, event, plant

 Entities have attributes

 Example: people have names and addresses

 An entity set is a set of entities of the same type that share the same

properties.

 Example: set of all persons, companies, trees, holidays

©Silberschatz, Korth and Sudarshan7.4Database System Concepts - 6th Edition

Entity Sets instructor and student

instructor_ID instructor_name student-ID student_name

©Silberschatz, Korth and Sudarshan7.5Database System Concepts - 6th Edition

Relationship Sets

 A relationship is an association among several entities

Example:

44553 (Peltier) advisor 22222 (Einstein)

student entity relationship set instructor entity

 A relationship set is a mathematical relation among n 2 entities, each

taken from entity sets

{(e1, e2, … en) | e1 E1, e2 E2, …, en En}

where (e1, e2, …, en) is a relationship

 Example:

(44553,22222) advisor

©Silberschatz, Korth and Sudarshan7.6Database System Concepts - 6th Edition

Relationship Set advisor

©Silberschatz, Korth and Sudarshan7.7Database System Concepts - 6th Edition

Relationship Sets (Cont.)

 An attribute can also be property of a relationship set.

 For instance, the advisor relationship set between entity sets
instructor and student may have the attribute date which tracks when
the student started being associated with the advisor

©Silberschatz, Korth and Sudarshan7.8Database System Concepts - 6th Edition

Degree of a Relationship Set

 binary relationship

 involve two entity sets (or degree two).

 most relationship sets in a database system are binary.

 Relationships between more than two entity sets are rare. Most

relationships are binary. (More on this later.)

Example: students work on research projects under the

guidance of an instructor.

 relationship proj_guide is a ternary relationship between

instructor, student, and project

©Silberschatz, Korth and Sudarshan7.9Database System Concepts - 6th Edition

Attributes

 An entity is represented by a set of attributes, that is descriptive

properties possessed by all members of an entity set.

 Example:

instructor = (ID, name, street, city, salary)

course= (course_id, title, credits)

 Domain – the set of permitted values for each attribute

 Attribute types:

 Simple and composite attributes.

 Single-valued and multivalued attributes

 Example: multivalued attribute: phone_numbers

 Derived attributes

 Can be computed from other attributes

 Example: age, given date_of_birth

©Silberschatz, Korth and Sudarshan7.10Database System Concepts - 6th Edition

Composite Attributes

©Silberschatz, Korth and Sudarshan7.11Database System Concepts - 6th Edition

Mapping Cardinality Constraints

 Express the number of entities to which another entity can be

associated via a relationship set.

 Most useful in describing binary relationship sets.

 For a binary relationship set the mapping cardinality must be one of

the following types:

 One to one

 One to many

 Many to one

 Many to many

©Silberschatz, Korth and Sudarshan7.12Database System Concepts - 6th Edition

Mapping Cardinalities

One to one One to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

©Silberschatz, Korth and Sudarshan7.13Database System Concepts - 6th Edition

Mapping Cardinalities

Many to

one
Many to many

Note: Some elements in A and B may not be mapped to any

elements in the other set

©Silberschatz, Korth and Sudarshan7.14Database System Concepts - 6th Edition

Keys

 A super key of an entity set is a set of one or more attributes

whose values uniquely determine each entity.

 A candidate key of an entity set is a minimal super key

 ID is candidate key of instructor

 course_id is candidate key of course

 Although several candidate keys may exist, one of the candidate

keys is selected to be the primary key.

©Silberschatz, Korth and Sudarshan7.15Database System Concepts - 6th Edition

Keys for Relationship Sets

 The combination of primary keys of the participating entity sets

forms a super key of a relationship set.

 (s_id, i_id) is the super key of advisor

 NOTE: this means a pair of entity sets can have at most one

relationship in a particular relationship set.

 Example: if we wish to track multiple meeting dates between

a student and her advisor, we cannot assume a relationship

for each meeting. We can use a multivalued attribute

though

 Must consider the mapping cardinality of the relationship set when

deciding what are the candidate keys

 Need to consider semantics of relationship set in selecting the

primary key in case of more than one candidate key

©Silberschatz, Korth and Sudarshan7.16Database System Concepts - 6th Edition

Redundant Attributes

 Suppose we have entity sets

 instructor, with attributes including dept_name

 department

and a relationship

 inst_dept relating instructor and department

 Attribute dept_name in entity instructor is redundant since there is an

explicit relationship inst_dept which relates instructors to departments

 The attribute replicates information present in the relationship, and

should be removed from instructor

 BUT: when converting back to tables, in some cases the attribute

gets reintroduced, as we will see.

©Silberschatz, Korth and Sudarshan7.17Database System Concepts - 6th Edition

E-R Diagrams

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Attributes listed inside entity rectangle

 Underline indicates primary key attributes

©Silberschatz, Korth and Sudarshan7.18Database System Concepts - 6th Edition

Entity With Composite, Multivalued, and Derived

Attributes

©Silberschatz, Korth and Sudarshan7.19Database System Concepts - 6th Edition

Relationship Sets with Attributes

©Silberschatz, Korth and Sudarshan7.20Database System Concepts - 6th Edition

Roles

 Entity sets of a relationship need not be distinct

 Each occurrence of an entity set plays a ―role‖ in the relationship

 The labels ―course_id‖ and ―prereq_id‖ are called roles.

©Silberschatz, Korth and Sudarshan7.21Database System Concepts - 6th Edition

Cardinality Constraints

 We express cardinality constraints by drawing either a directed line
(), signifying ―one,‖ or an undirected line (—), signifying ―many,‖
between the relationship set and the entity set.

 One-to-one relationship:

 A student is associated with at most one instructor via the
relationship advisor

 A student is associated with at most one department via
stud_dept

©Silberschatz, Korth and Sudarshan7.22Database System Concepts - 6th Edition

One-to-One Relationship

 one-to-one relationship between an instructor and a student

 an instructor is associated with at most one student via advisor

 and a student is associated with at most one instructor via

advisor

©Silberschatz, Korth and Sudarshan7.23Database System Concepts - 6th Edition

One-to-Many Relationship

 one-to-many relationship between an instructor and a student

 an instructor is associated with several (including 0) students

via advisor

 a student is associated with at most one instructor via advisor,

©Silberschatz, Korth and Sudarshan7.24Database System Concepts - 6th Edition

Many-to-One Relationships

 In a many-to-one relationship between an instructor and a student,

 an instructor is associated with at most one student via

advisor,

 and a student is associated with several (including 0)

instructors via advisor

©Silberschatz, Korth and Sudarshan7.25Database System Concepts - 6th Edition

Many-to-Many Relationship

 An instructor is associated with several (possibly 0) students via

advisor

 A student is associated with several (possibly 0) instructors via

advisor

©Silberschatz, Korth and Sudarshan7.26Database System Concepts - 6th Edition

Participation of an Entity Set in a

Relationship Set

 Total participation (indicated by double line): every entity in the

entity set participates in at least one relationship in the relationship

set

 E.g., participation of section in sec_course is total

 every section must have an associated course

 Partial participation: some entities may not participate in any

relationship in the relationship set

 Example: participation of instructor in advisor is partial

©Silberschatz, Korth and Sudarshan7.27Database System Concepts - 6th Edition

Alternative Notation for Cardinality Limits

 Cardinality limits can also express participation constraints

©Silberschatz, Korth and Sudarshan7.28Database System Concepts - 6th Edition

E-R Diagram with a Ternary Relationship

©Silberschatz, Korth and Sudarshan7.29Database System Concepts - 6th Edition

Cardinality Constraints on Ternary

Relationship

 We allow at most one arrow out of a ternary (or greater degree)

relationship to indicate a cardinality constraint

 E.g., an arrow from proj_guide to instructor indicates each student has

at most one guide for a project

 If there is more than one arrow, there are two ways of defining the

meaning.

 E.g., a ternary relationship R between A, B and C with arrows to B

and C could mean

1. each A entity is associated with a unique entity from B and C or

2. each pair of entities from (A, B) is associated with a unique C

entity, and each pair (A, C) is associated with a unique B

 Each alternative has been used in different formalisms

 To avoid confusion we outlaw more than one arrow

©Silberschatz, Korth and Sudarshan7.30Database System Concepts - 6th Edition

Weak Entity Sets

 An entity set that does not have a primary key is referred to as a

weak entity set.

 The existence of a weak entity set depends on the existence of a

identifying entity set

 It must relate to the identifying entity set via a total, one-to-many

relationship set from the identifying to the weak entity set

 Identifying relationship depicted using a double diamond

 The discriminator (or partial key) of a weak entity set is the set of

attributes that distinguishes among all the entities of a weak entity

set.

 The primary key of a weak entity set is formed by the primary key of

the strong entity set on which the weak entity set is existence

dependent, plus the weak entity set’s discriminator.

©Silberschatz, Korth and Sudarshan7.31Database System Concepts - 6th Edition

Weak Entity Sets (Cont.)

 We underline the discriminator of a weak entity set with a dashed

line.

 We put the identifying relationship of a weak entity in a double

diamond.

 Primary key for section – (course_id, sec_id, semester, year)

©Silberschatz, Korth and Sudarshan7.32Database System Concepts - 6th Edition

Weak Entity Sets (Cont.)

 Note: the primary key of the strong entity set is not explicitly stored

with the weak entity set, since it is implicit in the identifying

relationship.

 If course_id were explicitly stored, section could be made a strong

entity, but then the relationship between section and course would

be duplicated by an implicit relationship defined by the attribute

course_id common to course and section

©Silberschatz, Korth and Sudarshan7.33Database System Concepts - 6th Edition

E-R Diagram for a University Enterprise

©Silberschatz, Korth and Sudarshan7.34Database System Concepts - 6th Edition

Reduction to Relational Schemas

©Silberschatz, Korth and Sudarshan7.35Database System Concepts - 6th Edition

Reduction to Relation Schemas

 Entity sets and relationship sets can be expressed uniformly as

relation schemas that represent the contents of the database.

 A database which conforms to an E-R diagram can be represented by

a collection of schemas.

 For each entity set and relationship set there is a unique schema that

is assigned the name of the corresponding entity set or relationship

set.

 Each schema has a number of columns (generally corresponding to

attributes), which have unique names.

©Silberschatz, Korth and Sudarshan7.36Database System Concepts - 6th Edition

Representing Entity Sets With Simple Attributes

 A strong entity set reduces to a schema with the same attributes

student(ID, name, tot_cred)

 A weak entity set becomes a table that includes a column for the primary

key of the identifying strong entity set

section (course_id, sec_id, sem, year)

©Silberschatz, Korth and Sudarshan7.37Database System Concepts - 6th Edition

Representing Relationship Sets

 A many-to-many relationship set is represented as a schema with

attributes for the primary keys of the two participating entity sets, and any

descriptive attributes of the relationship set.

 Example: schema for relationship set advisor

advisor = (s_id, i_id)

©Silberschatz, Korth and Sudarshan7.38Database System Concepts - 6th Edition

Redundancy of Schemas

 Many-to-one and one-to-many relationship sets that are total on the
many-side can be represented by adding an extra attribute to the
―many‖ side, containing the primary key of the ―one‖ side

 Example: Instead of creating a schema for relationship set inst_dept,
add an attribute dept_name to the schema arising from entity set
instructor

©Silberschatz, Korth and Sudarshan7.39Database System Concepts - 6th Edition

Redundancy of Schemas (Cont.)

 For one-to-one relationship sets, either side can be chosen to act
as the ―many‖ side

 That is, extra attribute can be added to either of the tables
corresponding to the two entity sets

 If participation is partial on the ―many‖ side, replacing a schema by
an extra attribute in the schema corresponding to the ―many‖ side
could result in null values

 The schema corresponding to a relationship set linking a weak
entity set to its identifying strong entity set is redundant.

 Example: The section schema already contains the attributes
that would appear in the sec_course schema

©Silberschatz, Korth and Sudarshan7.40Database System Concepts - 6th Edition

Composite and Multivalued Attributes

 Composite attributes are flattened out by creating a

separate attribute for each component attribute

 Example: given entity set instructor with

composite attribute name with component

attributes first_name and last_name the schema

corresponding to the entity set has two attributes

name_first_name and name_last_name

 Prefix omitted if there is no ambiguity

 Ignoring multivalued attributes, extended instructor

schema is

 instructor(ID,

first_name, middle_initial, last_name,

street_number, street_name,

apt_number, city, state, zip_code,

date_of_birth)

©Silberschatz, Korth and Sudarshan7.41Database System Concepts - 6th Edition

Composite and Multivalued Attributes

 A multivalued attribute M of an entity E is represented by a separate

schema EM

 Schema EM has attributes corresponding to the primary key of E

and an attribute corresponding to multivalued attribute M

 Example: Multivalued attribute phone_number of instructor is

represented by a schema:

inst_phone= (ID, phone_number)

 Each value of the multivalued attribute maps to a separate tuple of

the relation on schema EM

 For example, an instructor entity with primary key 22222 and

phone numbers 456-7890 and 123-4567 maps to two tuples:

(22222, 456-7890) and (22222, 123-4567)

©Silberschatz, Korth and Sudarshan7.42Database System Concepts - 6th Edition

Multivalued Attributes (Cont.)

 Special case:entity time_slot has only one attribute other than the

primary-key attribute, and that attribute is multivalued

 Optimization: Don’t create the relation corresponding to the entity,

just create the one corresponding to the multivalued attribute

 time_slot(time_slot_id, day, start_time, end_time)

 Caveat: time_slot attribute of section (from sec_time_slot) cannot be

a foreign key due to this optimization

 This can be solved by defining unique constraint on time_slot_id.

©Silberschatz, Korth and Sudarshan7.43Database System Concepts - 6th Edition

Design Issues

 Use of entity sets vs. attributes

 Use of phone as an entity allows extra information about phone numbers

(plus multiple phone numbers)

©Silberschatz, Korth and Sudarshan7.44Database System Concepts - 6th Edition

Design Issues

 Use of entity sets vs. relationship sets

Possible guideline is to designate a relationship set to describe an action

that occurs between entities

©Silberschatz, Korth and Sudarshan7.45Database System Concepts - 6th Edition

Design Issues

 Binary versus n-ary relationship sets

Although it is possible to replace any nonbinary (n-ary, for n > 2)

relationship set by a number of distinct binary relationship sets, a n-ary

relationship set shows more clearly that several entities participate in a

single relationship.

 Placement of relationship attributes

e.g., attribute date as attribute of advisor or as attribute of student

©Silberschatz, Korth and Sudarshan7.46Database System Concepts - 6th Edition

Binary Vs. Non-Binary Relationships

 Some relationships that appear to be non-binary may be better

represented using binary relationships

 E.g., A ternary relationship parents, relating a child to his/her

father and mother, is best replaced by two binary relationships,

father and mother

 Using two binary relationships allows partial information (e.g.,

only mother being know)

 But there are some relationships that are naturally non-binary

 Example: proj_guide

©Silberschatz, Korth and Sudarshan7.47Database System Concepts - 6th Edition

Converting Non-Binary Relationships to Binary Form

 In general, any non-binary relationship can be represented using
binary relationships by creating an artificial entity set.

 Replace R between entity sets A, B and C by an entity set E, and
three relationship sets:

1. RA, relating E and A 2. RB, relating E and B
3. RC, relating E and C

 Create a special identifying attribute for E

 Add any attributes of R to E

 For each relationship (ai , bi , ci) in R, create

1. a new entity ei in the entity set E 2. add (ei , ai) to RA

3. add (ei , bi) to RB 4. add (ei , ci) to RC

©Silberschatz, Korth and Sudarshan7.48Database System Concepts - 6th Edition

Converting Non-Binary Relationships

(Cont.)

 Also need to translate constraints

 Translating all constraints may not be possible

 There may be instances in the translated schema that

cannot correspond to any instance of R

 Exercise: add constraints to the relationships RA, RB and

RC to ensure that a newly created entity corresponds to

exactly one entity in each of entity sets A, B and C

 We can avoid creating an identifying attribute by making E a

weak entity set (described shortly) identified by the three

relationship sets

©Silberschatz, Korth and Sudarshan7.49Database System Concepts - 6th Edition

Extended ER Features

©Silberschatz, Korth and Sudarshan7.50Database System Concepts - 6th Edition

Extended E-R Features: Specialization

 Top-down design process; we designate subgroupings within an entity set

that are distinctive from other entities in the set.

 These subgroupings become lower-level entity sets that have attributes or

participate in relationships that do not apply to the higher-level entity set.

 Depicted by a triangle component labeled ISA (E.g., instructor ―is a‖

person).

 Attribute inheritance – a lower-level entity set inherits all the attributes

and relationship participation of the higher-level entity set to which it is

linked.

©Silberschatz, Korth and Sudarshan7.51Database System Concepts - 6th Edition

Specialization Example

©Silberschatz, Korth and Sudarshan7.52Database System Concepts - 6th Edition

Extended ER Features: Generalization

 A bottom-up design process – combine a number of entity sets

that share the same features into a higher-level entity set.

 Specialization and generalization are simple inversions of each

other; they are represented in an E-R diagram in the same way.

 The terms specialization and generalization are used

interchangeably.

©Silberschatz, Korth and Sudarshan7.53Database System Concepts - 6th Edition

Specialization and Generalization (Cont.)

 Can have multiple specializations of an entity set based on different

features.

 E.g., permanent_employee vs. temporary_employee, in addition to

instructor vs. secretary

 Each particular employee would be

 a member of one of permanent_employee or temporary_employee,

 and also a member of one of instructor, secretary

 The ISA relationship also referred to as superclass - subclass

relationship

©Silberschatz, Korth and Sudarshan7.54Database System Concepts - 6th Edition

Design Constraints on a

Specialization/Generalization

 Constraint on which entities can be members of a given lower-level entity

set.

 condition-defined

 Example: all customers over 65 years are members of senior-

citizen entity set; senior-citizen ISA person.

 user-defined

 Constraint on whether or not entities may belong to more than one lower-

level entity set within a single generalization.

 Disjoint

 an entity can belong to only one lower-level entity set

 Noted in E-R diagram by having multiple lower-level entity sets link

to the same triangle

 Overlapping

 an entity can belong to more than one lower-level entity set

©Silberschatz, Korth and Sudarshan7.55Database System Concepts - 6th Edition

Design Constraints on a

Specialization/Generalization (Cont.)

 Completeness constraint -- specifies whether or not an entity in

the higher-level entity set must belong to at least one of the lower-

level entity sets within a generalization.

 total: an entity must belong to one of the lower-level entity sets

 partial: an entity need not belong to one of the lower-level

entity sets

©Silberschatz, Korth and Sudarshan7.56Database System Concepts - 6th Edition

Aggregation

 Consider the ternary relationship proj_guide, which we saw earlier

 Suppose we want to record evaluations of a student by a guide on a

project

©Silberschatz, Korth and Sudarshan7.57Database System Concepts - 6th Edition

Aggregation (Cont.)

 Relationship sets eval_for and proj_guide represent overlapping

information

 Every eval_for relationship corresponds to a proj_guide

relationship

 However, some proj_guide relationships may not correspond to

any eval_for relationships

 So we can’t discard the proj_guide relationship

 Eliminate this redundancy via aggregation

 Treat relationship as an abstract entity

 Allows relationships between relationships

 Abstraction of relationship into new entity

©Silberschatz, Korth and Sudarshan7.58Database System Concepts - 6th Edition

Aggregation (Cont.)

 Without introducing redundancy, the following diagram represents:

 A student is guided by a particular instructor on a particular project

 A student, instructor, project combination may have an associated

evaluation

©Silberschatz, Korth and Sudarshan7.59Database System Concepts - 6th Edition

Representing Specialization via

Schemas

 Method 1:

 Form a schema for the higher-level entity

 Form a schema for each lower-level entity set, include primary key

of higher-level entity set and local attributes

schema attributes

person ID, name, street, city

student ID, tot_cred

employee ID, salary

 Drawback: getting information about, an employee requires

accessing two relations, the one corresponding to the low-level

schema and the one corresponding to the high-level schema

©Silberschatz, Korth and Sudarshan7.60Database System Concepts - 6th Edition

Representing Specialization as Schemas

(Cont.)

 Method 2:

 Form a schema for each entity set with all local and inherited attributes

schema attributes

person ID, name, street, city

student ID, name, street, city, tot_cred

employee ID, name, street, city, salary

 If specialization is total, the schema for the generalized entity set

(person) not required to store information

 Can be defined as a ―view‖ relation containing union of

specialization relations

 But explicit schema may still be needed for foreign key constraints

 Drawback: name, street and city may be stored redundantly for people

who are both students and employees

©Silberschatz, Korth and Sudarshan7.61Database System Concepts - 6th Edition

Schemas Corresponding to Aggregation

 To represent aggregation, create a schema containing

 primary key of the aggregated relationship,

 the primary key of the associated entity set

 any descriptive attributes

©Silberschatz, Korth and Sudarshan7.62Database System Concepts - 6th Edition

Schemas Corresponding to

Aggregation (Cont.)
 For example, to represent aggregation manages between

relationship works_on and entity set manager, create a schema

eval_for (s_ID, project_id, i_ID, evaluation_id)

 Schema proj_guide is redundant provided we are willing to store null

values for attribute manager_name in relation on schema manages

©Silberschatz, Korth and Sudarshan7.63Database System Concepts - 6th Edition

E-R Design Decisions

 The use of an attribute or entity set to represent an object.

 Whether a real-world concept is best expressed by an entity set or

a relationship set.

 The use of a ternary relationship versus a pair of binary

relationships.

 The use of a strong or weak entity set.

 The use of specialization/generalization – contributes to modularity

in the design.

 The use of aggregation – can treat the aggregate entity set as a

single unit without concern for the details of its internal structure.

©Silberschatz, Korth and Sudarshan7.64Database System Concepts - 6th Edition

Alternative ER Notations

 Chen, IDE1FX, …

©Silberschatz, Korth and Sudarshan7.65Database System Concepts - 6th Edition

Alternative ER Notations

Chen IDE1FX (Crows feet notation)

©Silberschatz, Korth and Sudarshan7.66Database System Concepts - 6th Edition

UML

 UML: Unified Modeling Language

 UML has many components to graphically model different aspects

of an entire software system

 UML Class Diagrams correspond to E-R Diagram, but several

differences.

©Silberschatz, Korth and Sudarshan7.67Database System Concepts - 6th Edition

ER vs. UML Class Diagrams

*Note reversal of position in cardinality constraint depiction

©Silberschatz, Korth and Sudarshan7.68Database System Concepts - 6th Edition

ER vs. UML Class Diagrams

ER Diagram Notation Equivalent in UML

*Generalization can use merged or separate arrows independent

of disjoint/overlapping

©Silberschatz, Korth and Sudarshan7.69Database System Concepts - 6th Edition

UML Class Diagrams (Cont.)

 Binary relationship sets are represented in UML by just drawing a

line connecting the entity sets. The relationship set name is written

adjacent to the line.

 The role played by an entity set in a relationship set may also be

specified by writing the role name on the line, adjacent to the entity

set.

 The relationship set name may alternatively be written in a box,

along with attributes of the relationship set, and the box is

connected, using a dotted line, to the line depicting the relationship

set.

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 7

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

