
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 11: Indexing and Hashing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan11.2Database System Concepts - 6th Edition

Chapter 11: Indexing and Hashing

 Basic Concepts

 Ordered Indices

 B+-Tree Index Files

 B-Tree Index Files

 Static Hashing

 Dynamic Hashing

 Comparison of Ordered Indexing and Hashing

 Index Definition in SQL

 Multiple-Key Access

©Silberschatz, Korth and Sudarshan11.3Database System Concepts - 6th Edition

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.

 E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up records in a

file.

 An index file consists of records (called index entries) of the form

 Index files are typically much smaller than the original file

 Two basic kinds of indices:

 Ordered indices: search keys are stored in sorted order

 Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

©Silberschatz, Korth and Sudarshan11.4Database System Concepts - 6th Edition

Query Types & Index Evaluation Metrics

 Query types:

 Exact-match query: records with a specified value in the attribute

 Range (interval) query: records with an attribute value falling in a

specified range of values

 Index evaluation metrics:

 Access types supported efficiently (types of queries)

 Access time

 Insertion time

 Deletion time

 Space overhead

©Silberschatz, Korth and Sudarshan11.5Database System Concepts - 6th Edition

Ordered Indices

 In an ordered index, index entries are stored sorted on the search key

value. E.g., author catalog in library.

 Primary index: in a sequential file, the index whose search key

specifies the sequential order of the file.

 Also called clustering index

 The search key of a primary index is usually but not necessarily the

primary key.

 Secondary index: an index whose search key specifies an order

different from the sequential order of the file.

 Also called non-clustering index

 Index-sequential file: sequential file with a primary index.

©Silberschatz, Korth and Sudarshan11.6Database System Concepts - 6th Edition

Dense Index Files

 Dense index — Index record appears for every search-key

value in the file.

 E.g. index on ID attribute of instructor relation

©Silberschatz, Korth and Sudarshan11.7Database System Concepts - 6th Edition

Dense Index Files (Cont.)

 Dense index on dept_name, with instructor file sorted on

dept_name

©Silberschatz, Korth and Sudarshan11.8Database System Concepts - 6th Edition

Sparse Index Files

 Sparse Index: contains index records for only some search-key

values.

 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

 Find index record with largest search-key value < K

 Search file sequentially starting at the record to which the index

record points

©Silberschatz, Korth and Sudarshan11.9Database System Concepts - 6th Edition

Sparse Index Files (Cont.)

 Compared to dense indices:

 Less space and less maintenance overhead for insertions and

deletions.

 Generally slower than dense index for locating records.

 Good tradeoff: sparse index with an index entry for every block in file,

corresponding to least search-key value in the block.

©Silberschatz, Korth and Sudarshan11.10Database System Concepts - 6th Edition

Multilevel Index

 If primary index does not fit in memory, access becomes

expensive.

 Solution: treat primary index kept on disk as a sequential file

and construct a sparse index on it.

 outer index – a sparse index of primary index

 inner index – the primary index file

 If even outer index is too large to fit in main memory, yet

another level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion

from the file.

©Silberschatz, Korth and Sudarshan11.11Database System Concepts - 6th Edition

Multilevel Index (Cont.)

©Silberschatz, Korth and Sudarshan11.12Database System Concepts - 6th Edition

Index Update: Deletion

 Single-level index entry deletion:

 Dense indices – deletion of search-key is similar to file record

deletion.

 Sparse indices –

 if an entry for the search key exists in the index, it is

deleted by replacing the entry in the index with the next

search-key value in the file (in search-key order).

 If the next search-key value already has an index entry, the

entry is deleted instead of being replaced.

 If deleted record was the

only record in the file with its

particular search-key value,

the search-key is deleted

from the index also.

©Silberschatz, Korth and Sudarshan11.13Database System Concepts - 6th Edition

Index Update: Insertion

 Single-level index insertion:

 Perform a lookup using the search-key value appearing in the

record to be inserted.

 Dense indices – if the search-key value does not appear in

the index, insert it.

 Sparse indices – if index stores an entry for each block of the

file, no change needs to be made to the index unless a new

block is created.

 If a new block is created, the first search-key value

appearing in the new block is inserted into the index.

 Multilevel index insertion and deletion:

 algorithms are simple extensions of the single-level algorithms

©Silberschatz, Korth and Sudarshan11.14Database System Concepts - 6th Edition

Secondary Indices

 Frequently, one wants to find all the records whose values in

a certain field (which is not the search-key of the primary

index) satisfy some condition.

 Example 1: In the instructor relation stored sequentially by

ID, we may want to find all instructors in a particular

department

 Example 2: as above, but where we want to find all

instructors with a specified salary or with salary in a

specified range of values

 We can have a secondary index with an index record for

each search-key value

©Silberschatz, Korth and Sudarshan11.15Database System Concepts - 6th Edition

Secondary Indices Example

 Index record points to a bucket that contains pointers to all the

actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on salary field of instructor

©Silberschatz, Korth and Sudarshan11.16Database System Concepts - 6th Edition

Primary and Secondary Indices

 Indices offer substantial benefits when searching for records.

 BUT: Updating indices imposes overhead on database

modification -- when a file is modified, every index on the file

must be updated,

 Sequential scan using primary index is efficient, but a

sequential scan using a secondary index is expensive

 Each record access may fetch a new block from disk

 Block fetch requires about 5 to 10 milliseconds, versus

about 100 nanoseconds for memory access

©Silberschatz, Korth and Sudarshan11.17Database System Concepts - 6th Edition

B+-Tree Index Files

 Disadvantage of indexed-sequential files

 performance degrades as file grows, since many overflow
blocks get created.

 Periodic reorganization of entire file is required.

 Advantage of B+-tree index files:

 automatically reorganizes itself with small, local, changes,
in the face of insertions and deletions.

 Reorganization of entire file is not required to maintain
performance.

 (Minor) disadvantage of B+-trees:

 extra insertion and deletion overhead, space overhead.

 Advantages of B+-trees outweigh disadvantages

 B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

©Silberschatz, Korth and Sudarshan11.18Database System Concepts - 6th Edition

Example of B+-Tree

©Silberschatz, Korth and Sudarshan11.19Database System Concepts - 6th Edition

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and

n children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

 If the root is not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in

the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

©Silberschatz, Korth and Sudarshan11.20Database System Concepts - 6th Edition

B+-Tree Node Structure

 Typical node

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes)

or pointers to records or buckets of records (for leaf nodes).

 The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)

©Silberschatz, Korth and Sudarshan11.21Database System Concepts - 6th Edition

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi points to a file record with

search-key value Ki,

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less

than or equal to Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

©Silberschatz, Korth and Sudarshan11.22Database System Concepts - 6th Edition

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf

nodes. For a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points are

less than K1

 For 2 i n – 1, all the search-keys in the subtree to which

Pi points have values greater than or equal to Ki–1 and less

than Ki

 All the search-keys in the subtree to which Pn points have

values greater than or equal to Kn–1

©Silberschatz, Korth and Sudarshan11.23Database System Concepts - 6th Edition

Example of B+-tree

 Leaf nodes must have between 3 and 5 values

 ((n–1)/2 and n –1).

 Non-leaf nodes other than root must have between 3

and 6 children

 (n/2 and n).

 Root must have at least 2 children.

B+-tree for instructor file (n = 6)

©Silberschatz, Korth and Sudarshan11.24Database System Concepts - 6th Edition

Observations about B+-trees

 Since the inter-node connections are done by pointers,

“logically” close blocks need not be “physically” close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse

indices.

 The B+-tree contains a relatively small number of levels

Level below root has at least 2* n/2 values

Next level has at least 2* n/2 * n/2 values

 .. etc.

 If there are K search-key values in the file, the tree height is

no more than logn/2(K)

 thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled

efficiently, as the index can be restructured in logarithmic time

(as we shall see).

©Silberschatz, Korth and Sudarshan11.25Database System Concepts - 6th Edition

Queries on B+-Trees
 Find record with search-key value V.

1. C=root

2. While C is not a leaf node {

1. Let i be least value s.t. V Ki.

2. If no such exists, set C = last non-null pointer in C

3. Else { if (V= Ki) Set C = Pi +1 else set C = Pi}

}

3. Let i be least value s.t. Ki = V

4. If there is such a value i, follow pointer Pi to the desired record.

5. Else no record with search-key value k exists.

©Silberschatz, Korth and Sudarshan11.26Database System Concepts - 6th Edition

Handling Duplicates

 With duplicate search keys

 In both leaf and internal nodes,

we cannot guarantee that K1 < K2 < K3 < . . . < Kn–1

but can guarantee K1 K2 K3 . . . Kn–1

 Search-keys in the subtree to which Pi points

are Ki,, but not necessarily < Ki,

To see why, suppose same search key value V is present
in two leaf node Li and Li+1. Then in parent node Ki must
be equal to V

©Silberschatz, Korth and Sudarshan11.27Database System Concepts - 6th Edition

Handling Duplicates

 We modify find procedure as follows

 traverse Pi even if V = Ki

 As soon as we reach a leaf node C check if C has

only search key values less than V

if so set C = right sibling of C before checking

whether C contains V

 Procedure printAll

 uses modified find procedure to find first

occurrence of V

 Traverse through consecutive leaves to find all

occurrences of V

** Errata note: modified find procedure missing in first printing of 6th edition

©Silberschatz, Korth and Sudarshan11.28Database System Concepts - 6th Edition

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree is no

more than logn/2(K).

 A node is generally the same size as a disk block, typically 4

kilobytes

 and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed in a lookup.

 Contrast this with a balanced binary tree with 1 million search key

values — around 20 nodes are accessed in a lookup

 above difference is significant since every node access may need

a disk I/O, costing around 20 milliseconds

©Silberschatz, Korth and Sudarshan11.29Database System Concepts - 6th Edition

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value would appear

2. If the search-key value is already present in the leaf node

1. Add record to the file

2. If necessary add a pointer to the bucket.

3. If the search-key value is not present, then

1. add the record to the main file (and create a bucket if

necessary)

2. If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node

3. Otherwise, split the node (along with the new (key-value,

pointer) entry) as discussed in the next slide.

©Silberschatz, Korth and Sudarshan11.30Database System Concepts - 6th Edition

Updates on B+-Trees: Insertion (Cont.)

 Splitting a leaf node:

 take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first n/2 in the original

node, and the rest in a new node.

 let the new node be p, and let k be the least key value in p. Insert

(k,p) in the parent of the node being split.

 If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found.

 In the worst case the root node may be split increasing the height

of the tree by 1.

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams

Next step: insert entry with (Califieri,pointer-to-new-node) into parent

©Silberschatz, Korth and Sudarshan11.31Database System Concepts - 6th Edition

B+-Tree Insertion

B+-Tree before and after insertion of “Adams”

©Silberschatz, Korth and Sudarshan11.32Database System Concepts - 6th Edition

B+-Tree Insertion

B+-Tree before and after insertion of “Lamport”

©Silberschatz, Korth and Sudarshan11.33Database System Concepts - 6th Edition

 Splitting a non-leaf node: when inserting (k,p) into an already full internal

node N

 Copy N to an in-memory area M with space for n+1 pointers and n

keys

 Insert (k,p) into M

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N’

 Insert (K n/2,N’) into parent N

 Read pseudocode in book!

Srinivasan

Insertion in B+-Trees (Cont.)

Califieri Einstein Gold Srinivasan Califieri Einstein

Gold

©Silberschatz, Korth and Sudarshan11.34Database System Concepts - 6th Edition

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the main file and

from the bucket (if present)

 Remove (search-key value, pointer) from the leaf node if there is no

bucket or if the bucket has become empty

 If the node has too few entries due to the removal, and the entries in

the node and a sibling fit into a single node, then merge siblings:

 Insert all the search-key values in the two nodes into a single node

(the one on the left), and delete the other node.

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted

node, from its parent, recursively using the above procedure.

©Silberschatz, Korth and Sudarshan11.35Database System Concepts - 6th Edition

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal, but the

entries in the node and a sibling do not fit into a single node, then

redistribute pointers:

 Redistribute the pointers between the node and a sibling such that

both have more than the minimum number of entries.

 Update the corresponding search-key value in the parent of the

node.

 The node deletions may cascade upwards till a node which has n/2

or more pointers is found.

 If the root node has only one pointer after deletion, it is deleted and

the sole child becomes the root.

©Silberschatz, Korth and Sudarshan11.36Database System Concepts - 6th Edition

Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

©Silberschatz, Korth and Sudarshan11.37Database System Concepts - 6th Edition

Examples of B+-Tree Deletion (Cont.)

Deletion of “Singh” and “Wu” from result of previous example

 Leaf containing Singh and Wu became underfull, and borrowed a value

Kim from its left sibling

 Search-key value in the parent changes as a result

©Silberschatz, Korth and Sudarshan11.38Database System Concepts - 6th Edition

Example of B+-tree Deletion (Cont.)

Before and after deletion of “Gold” from earlier example

 Node with Gold and Katz became underfull, and was merged with its sibling

 Parent node becomes underfull, and is merged with its sibling

 Value separating two nodes (at the parent) is pulled down when merging

 Root node then has only one child, and is deleted

©Silberschatz, Korth and Sudarshan11.39Database System Concepts - 6th Edition

Non-Unique Search Keys

 Alternatives to scheme described earlier

 Buckets on separate block (bad idea)

 List of tuple pointers with each key

Extra code to handle long lists

Deletion of a tuple can be expensive if there are many

duplicates on search key (why?)

Low space overhead, no extra cost for queries

 Make search key unique by adding a record-identifier

Extra storage overhead for keys

Simpler code for insertion/deletion

Widely used

©Silberschatz, Korth and Sudarshan11.40Database System Concepts - 6th Edition

B+-Tree File Organization

 Index file degradation problem is solved by using B+-Tree indices.

 Data file degradation problem is solved by using B+-Tree File

Organization.

 The leaf nodes in a B+-tree file organization store records, instead of

pointers.

 Leaf nodes are still required to be half full

 Since records are larger than pointers, the maximum number of

records that can be stored in a leaf node is less than the number of

pointers in a nonleaf node.

 Insertion and deletion are handled in the same way as insertion and

deletion of entries in a B+-tree index.

©Silberschatz, Korth and Sudarshan11.41Database System Concepts - 6th Edition

B+-Tree File Organization (Cont.)

 Good space utilization important since records use more space than

pointers.

 To improve space utilization, involve more sibling nodes in redistribution

during splits and merges

 Involving 2 siblings in redistribution (to avoid split / merge where

possible) results in each node having at least entries

Example of B+-tree File Organization

 3/2n

©Silberschatz, Korth and Sudarshan11.42Database System Concepts - 6th Edition

Other Issues in Indexing

 Record relocation and secondary indices

 If a record moves, all secondary indices that store record pointers

have to be updated

 Node splits in B+-tree file organizations become very expensive

 Solution: use primary-index search key instead of record pointer in

secondary index

 Extra traversal of primary index to locate record

– Higher cost for queries, but node splits are cheap

 Add record-id if primary-index search key is non-unique

©Silberschatz, Korth and Sudarshan11.43Database System Concepts - 6th Edition

Indexing Strings

 Variable length strings as keys

 Variable fanout

 Use space utilization as criterion for splitting, not number of

pointers

 Prefix compression

 Key values at internal nodes can be prefixes of full key

Keep enough characters to distinguish entries in the

subtrees separated by the key value

– E.g. “Silas” and “Silberschatz” can be separated by

“Silb”

 Keys in leaf node can be compressed by sharing common

prefixes

©Silberschatz, Korth and Sudarshan11.44Database System Concepts - 6th Edition

Bulk Loading and Bottom-Up Build

 Inserting entries one-at-a-time into a B+-tree requires 1 IO per entry

 assuming leaf level does not fit in memory

 can be very inefficient for loading a large number of entries at a time

(bulk loading)

 Efficient alternative 1:

 sort entries first (using efficient external-memory sort algorithms

discussed later in Section 12.4)

 insert in sorted order

 insertion will go to existing page (or cause a split)

 much improved IO performance, but most leaf nodes half full

 Efficient alternative 2: Bottom-up B+-tree construction

 As before sort entries

 And then create tree layer-by-layer, starting with leaf level

 details as an exercise

 Implemented as part of bulk-load utility by most database systems

©Silberschatz, Korth and Sudarshan11.45Database System Concepts - 6th Edition

B-Tree Index Files

 Similar to B+-tree, but B-tree allows search-key values to

appear only once; eliminates redundant storage of search

keys.

 Search keys in nonleaf nodes appear nowhere else in the B-

tree; an additional pointer field for each search key in a

nonleaf node must be included.

 Generalized B-tree leaf node

 Nonleaf node – pointers Bi are the bucket or file record
pointers.

©Silberschatz, Korth and Sudarshan11.46Database System Concepts - 6th Edition

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data

©Silberschatz, Korth and Sudarshan11.47Database System Concepts - 6th Edition

B-Tree Index Files (Cont.)

 Advantages of B-Tree indices:

 May use less tree nodes than a corresponding B+-Tree.

 Sometimes possible to find search-key value before reaching leaf

node.

 Disadvantages of B-Tree indices:

 Only small fraction of all search-key values are found early

 Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees

typically have greater depth than corresponding B+-Tree

 Insertion and deletion more complicated than in B+-Trees

 Implementation is harder than B+-Trees.

 Typically, advantages of B-Trees do not out weigh disadvantages.

©Silberschatz, Korth and Sudarshan11.49Database System Concepts - 6th Edition

Indices on Multiple Keys

 Composite search keys are search keys containing more

than one attribute

 E.g. (dept_name, salary)

 Lexicographic ordering: (a1, a2) < (b1, b2) if either

 a1 < b1, or

 a1=b1 and a2 < b2

©Silberschatz, Korth and Sudarshan11.50Database System Concepts - 6th Edition

Indices on Multiple Attributes

 With the where clause

where dept_name = “Finance” and salary = 80000

the index on (dept_name, salary) can be used to fetch only records

that satisfy both conditions.

 Using separate indices in less efficient — we may fetch many

records (or pointers) that satisfy only one of the conditions.

 Can also efficiently handle

where dept_name = “Finance” and salary < 80000

 But cannot efficiently handle

where dept_name < “Finance” and balance = 80000

 May fetch many records that satisfy the first but not the second

condition

Suppose we have an index on combined search-key

(dept_name, salary).

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Hashing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan11.53Database System Concepts - 6th Edition

Static Hashing

 A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record directly

from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key

values K to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion as

well as deletion.

 Records with different search-key values may be mapped to the

same bucket

 thus entire bucket has to be searched sequentially to locate a

record.

©Silberschatz, Korth and Sudarshan11.54Database System Concepts - 6th Edition

Example of Hash File Organization

 There are 10 buckets,

 The binary representation of the ith character is assumed to be the

integer i.

 The hash function returns the sum of the binary representations of

the characters modulo 10

 E.g. h(Music) = 1 h(History) = 2

h(Physics) = 3 h(Elec. Eng.) = 3

Hash file organization of instructor file, using dept_name as key

(See figure in next slide.)

©Silberschatz, Korth and Sudarshan11.55Database System Concepts - 6th Edition

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key

(see previous slide for details).

©Silberschatz, Korth and Sudarshan11.56Database System Concepts - 6th Edition

Hash Functions

 Worst hash function maps all search-key values to the same bucket;

this makes access time proportional to the number of search-key

values in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned the

same number of search-key values from the set of all possible values.

 Ideal hash function is random, so each bucket will have the same

number of records assigned to it irrespective of the actual distribution of

search-key values in the file.

 Typical hash functions perform computation on the internal binary

representation of the search-key.

 For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo

the number of buckets could be returned.

©Silberschatz, Korth and Sudarshan11.57Database System Concepts - 6th Edition

Handling of Bucket Overflows

 Bucket overflow can occur because of

 Insufficient buckets

 Skew in distribution of records. This can occur due to two

reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key

values

 Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets.

©Silberschatz, Korth and Sudarshan11.58Database System Concepts - 6th Edition

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are

chained together in a linked list.

 Above scheme is called closed hashing.

 An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications.

©Silberschatz, Korth and Sudarshan11.59Database System Concepts - 6th Edition

Hash Indices

 Hashing can be used not only for file organization, but also for index-

structure creation.

 A hash index organizes the search keys, with their associated record

pointers, into a hash file structure.

 Strictly speaking, hash indices are always secondary indices

 if the file itself is organized using hashing, a separate primary

hash index on it using the same search-key is unnecessary.

 However, we use the term hash index to refer to both secondary

index structures and hash organized files.

©Silberschatz, Korth and Sudarshan11.60Database System Concepts - 6th Edition

Example of Hash Index

hash index on instructor, on attribute ID

©Silberschatz, Korth and Sudarshan11.61Database System Concepts - 6th Edition

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed set of B

bucket addresses. Databases grow or shrink with time.

 If initial number of buckets is too small, and file grows, performance

will degrade due to too much overflows.

 If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfilled).

 If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new hash

function

 Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified dynamically.

©Silberschatz, Korth and Sudarshan11.62Database System Concepts - 6th Edition

Dynamic Hashing

 Good for database that grows and shrinks in size

 Allows the hash function to be modified dynamically

 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a
table of bucket addresses.

 Let the length of the prefix be i bits, 0 i 32.

 Bucket address table size = 2i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows
and shrinks.

 Multiple entries in the bucket address table may point to a bucket
(why?)

 Thus, actual number of buckets is < 2i

 The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

©Silberschatz, Korth and Sudarshan11.63Database System Concepts - 6th Edition

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next

slide for details)

h() =

©Silberschatz, Korth and Sudarshan11.64Database System Concepts - 6th Edition

Use of Extendable Hash Structure

 Each bucket j stores a value ij

 All the entries that point to the same bucket have the same values on

the first ij bits.

 To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket

 To insert a record with search-key value Kj

 follow same procedure as look-up and locate the bucket, say j.

 If there is room in the bucket j insert record in the bucket.

 Else the bucket must be split and insertion re-attempted (next slide.)

 Overflow buckets used instead in some cases (will see shortly)

©Silberschatz, Korth and Sudarshan11.65Database System Concepts - 6th Edition

Insertion in Extendable Hash Structure (Cont)

 If i > ij (more than one pointer to bucket j)

 Allocate a new bucket z, and set ij = iz = (ij + 1)

 Update the second half of the bucket address table entries originally
pointing to j, to point to z

 Remove each record in bucket j and reinsert (in j or z)

 Recompute new bucket for Kj and insert record in the bucket (further
splitting is required if the bucket is still full)

 If i = ij (only one pointer to bucket j)

 If i reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket

 Else

 Increment i and double the size of the bucket address table.

 Replace each entry in the table by two entries that point to the
same bucket.

 Recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

©Silberschatz, Korth and Sudarshan11.66Database System Concepts - 6th Edition

Deletion in Extendable Hash Structure

 To delete a key value,

 locate it in its bucket and remove it.

 The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).

 Coalescing of buckets can be done (can coalesce only with a

“buddy” bucket having same value of ij and same ij –1 prefix, if it is

present)

 Decreasing bucket address table size is also possible

 Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets becomes

much smaller than the size of the table

©Silberschatz, Korth and Sudarshan11.67Database System Concepts - 6th Edition

Use of Extendable Hash Structure: Example

©Silberschatz, Korth and Sudarshan11.68Database System Concepts - 6th Edition

Example (Cont.)

 Initial Hash structure; bucket size = 2

©Silberschatz, Korth and Sudarshan11.69Database System Concepts - 6th Edition

Example (Cont.)

 Hash structure after insertion of “Mozart”, “Srinivasan”,

and “Wu” records

©Silberschatz, Korth and Sudarshan11.70Database System Concepts - 6th Edition

Example (Cont.)

 Hash structure after insertion of (22222, Einstein, Physics, 95000) record

©Silberschatz, Korth and Sudarshan11.71Database System Concepts - 6th Edition

Example (Cont.)

 Hash structure after insertion of Gold and El Said records

©Silberschatz, Korth and Sudarshan11.72Database System Concepts - 6th Edition

Example (Cont.)

 Hash structure after insertion of Katz record

©Silberschatz, Korth and Sudarshan11.73Database System Concepts - 6th Edition

Example (Cont.)

And after insertion of

eleven records

©Silberschatz, Korth and Sudarshan11.74Database System Concepts - 6th Edition

Example (Cont.)

And after insertion of

Kim record in previous

hash structure

©Silberschatz, Korth and Sudarshan11.75Database System Concepts - 6th Edition

Extendable Hashing vs. Other Schemes

 Benefits of extendable hashing:

 Hash performance does not degrade with growth of file

 Minimal space overhead

 Disadvantages of extendable hashing

 Extra level of indirection to find desired record

 Bucket address table may itself become very big (larger than
memory)

Cannot allocate very large contiguous areas on disk either

Solution: B+-tree structure to locate desired record in bucket
address table

 Changing size of bucket address table is an expensive operation

 Linear hashing is an alternative mechanism

 Allows incremental growth of its directory (equivalent to bucket
address table)

 At the cost of more bucket overflows

©Silberschatz, Korth and Sudarshan11.76Database System Concepts - 6th Edition

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization

 Relative frequency of insertions and deletions

 Is it desirable to optimize average access time at the expense of

worst-case access time?

 Expected type of queries:

 Hashing is generally better at retrieving records having a

specified value of the key.

 If range (interval) queries are common, ordered indices are to

be preferred

 In practice:

 PostgreSQL supports hash indices, but discourages use due to

poor performance

 Oracle supports static hash organization, but not hash indices

 SQLServer supports only B+-trees

©Silberschatz, Korth and Sudarshan11.77Database System Concepts - 6th Edition

Index Definition in SQL

 Create an index

create index <index-name> on <relation-name>

(<attribute-list>)

E.g.: create index dept_index on instructor (dept_name)

 Use create unique index to indirectly specify and enforce the

condition that the search key is a candidate key is a candidate key.

 Not really required if SQL unique integrity constraint is supported

 To drop an index

drop index <index-name>

 Most database systems allow specification of type of index, and

clustering.

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/

