PLIN009 - Machine translation

Automatic MT quality evaluation Other MT topics

Vít Baisa

Motivation

- fluency is the translation fluent, in a natural word order?
- adequacy does the translation preserve meaning or changes/skews it?
- intelligibility do we understand the translation?

Evaluation scale

adequacy		
5	all meaning	
4	most meaning	
3	much meaning	
2	little meaning	
1	no meaning	

fluency			
5	flawless English		
4	good		
3	non-native		
2	disfluent		
1	incomprehensible		

Annotation tool

Judge Sentence

You have already judged 14 of 3064 sentences, taking 86.4 seconds per sentence.

Source: les deux pays constituent plutôt un laboratoire nécessaire au fonctionnement interne de 1' ue .

 $\textbf{Reference:} \ \text{rather} \ , \ \text{the two countries form a laboratory needed for the internal working of the eu} \ .$

Translation	Adequacy	Fluency
	00006	cccce
both countries are rather a necessary laboratory the internal operation of the eu .	1 2 3 4 5	1 2 3 4 5
both countries are a necessary laboratory at internal functioning of the eu.	00000	00000
bour countries are a necessary laboratory at internal functioning of the etc.	1 2 3 4 5	1 2 3 4 5
	00000	00000
the two countries are rather a laboratory necessary for the internal workings of the eu .	1 2 3 4 5	1 2 3 4 5
	00000	00000
the two countries are rather a laboratory for the internal workings of the eu .	1 2 3 4 5	1 2 3 4 5
the two countries are rather a necessary laboratory internal workings of the eu.	00000	00000
the two countries are rather a necessary laboratory internal workings of the etc.	1 2 3 4 5	1 2 3 4 5
Annotator: Philipp Koehn Task: WMT06 French-English		Annotate
	5= All Meaning	5= Flawless English
	4= Most Meaning	_
Instructions	_	3= Non-native English
		2= Disfluent English
	1= None	1= Incomprehensible

Disadvantages of manual evaluation

- slow, expensive, subjective
- inter-annotator agreement (IAA) shows people agree more on fluency than on adequacy
- another option how to measure quality: is X better translation than Y?
- ▶ → bigger IAA
- time spent on post-editing
- how much cost of translation is reduced

Automatic translation evaluation

- advantages: speed, cost
- disadvantages: do we really measure quality of translation?
- gold standard: manually prepared reference translations
- candidate c is compared with n reference translations r_i
- the paradox of automatic evaluation: the task corresponds to situation where students are to assess their own exam: how they know where they made a mistake?
- ▶ various approaches: n-gram shared between c and r_i, edit distance, . . .

Recall and precision on words

The simplest method of automatic evaluation.

SYSTEM A: <u>Israeli</u> <u>officials</u> <u>responsibility</u> of <u>airport</u> <u>safety</u>

REFERENCE: Israeli officials are responsible for airport security

precision

$$\frac{correct}{output\text{-length}} = \frac{3}{6} = 50\%$$

recall

$$\frac{correct}{reference-length} = \frac{3}{7} = 43\%$$

f-score

$$\frac{\textit{precision} \times \textit{recall}}{(\textit{precision} + \textit{recall})/2} = \frac{.5 \times .43}{(.5 + .43)/2} = 46\%$$

Recall and precision – shortcomings

SYSTEM A: <u>Israeli</u> <u>officials</u> responsibility of <u>airport</u> safety

REFERENCE: Israeli officials are responsible for airport security

SYSTEM B: <u>airport security Israeli officials are responsible</u>

metrics	system A	system B
precision	50%	100%
recall	43%	100%
f-score	46%	100%

It does not capture wrong word order.

BLEU

- the most famous (standard), the most used, the oldest (2001)
- IBM, author Papineni
- n-gram match between reference and candidate translations
- precision is calculated for 1-, 2-,3- and 4-grams
- + brevity penalty

$$\mathsf{BLEU} = \mathsf{min}\left(1, \frac{\mathit{output-length}}{\mathit{reference-length}}\right) \ \big(\prod_{i=1}^{4} \mathit{precision}_i\big)^{\frac{1}{4}}$$

BLEU – an example

SYSTEM A: Israeli officials responsibility of airport safety
2-GRAM MATCH

1-GRAM MATCH

REFERENCE: Israeli officials are responsible for airport security

SYSTEM B: airport security Israeli officials are responsible
2-GRAM MATCH 4-GRAM MATCH

metrics	system A	system B
precision (1gram)	3/6	6/6
precision (2gram)	1/5	4/5
precision (3gram)	0/4	2/4
precision (4gram)	0/3	1/3
brevity penalty	6/7	6/7
BLEU	0%	52%

Other metrics

NIST

- NIST: National Institute of Standards and Technology
- weighted matches of n-grams (information value)
- very similar results as for BLEU (a variant)

NEVA

- Ngram EVAluation
- BLEU score adapted for short sentences
- it takes into account synonyms (stylistic richness)

WAFT

- Word Accuracy for Translation
- edit distance between c and r
- ▶ WAFT = $1 \frac{d+s+i}{max(l_r, l_c)}$

Other metrics II

- TER
 - Translation Edit Rate
 - the least edit steps (deletion, insertion, swap, replacement)
 - $\blacktriangleright TER = \frac{\text{number of edits}}{\text{avg. number of ref. words}}$
 - r = dnes jsem si při fotbalu zlomil kotník
 - c = při fotbalu jsem si dnes zlomil kotník
 - ► TER = 4/7
- HTER
 - Human TER
 - r manually prepared and then TER is applied
- METEOR
 - takes into account synonyms (WordNet) and
 - morphological variants of words

Evaluation of evaluation metrics

Correlation of automatic evaluation with manual evaluation.

Translation evaluation example— EuroMatrix

Translation quality by language pairs

Factored translation models

- common SMT models do not use linguistic knowledge
- usage of lemmas, PoS, stems helps to overcome data sparsity
- translation of vectors instead of words (tokens)

	Input	Output	
word	\circ	\circ	word
lemma	\circ	\circ	lemma
part-of-speech	\circ	- (part-of-speech
morphology	\circ	\circ	morphology
word class	\circ	\circ	word class

Factored translation models II

- ▶ in standard SMT: dům and domy are independent tokens
- ▶ in FTM they share lemma, PoS and part of morph. information
- lemma and morphologic information are translated separately
- ▶ in target language, appropriate wordform is then generated

Implemented in Moses.

Tree-based translation models

- SMT translates word sequences
- many situations can be better explained with syntax: moving verb around a sentence, grammar agreement at long distance, ...
- ightharpoonup ightarrow translation models based on syntactic trees
- current topic, for some language pairs it gives the best results

TBTM II – synchronous phrase grammar

- ► EN rule NP → DET JJ NN
- ▶ DE rule NP → DET NN JJ
- ▶ synchronous rule NP \rightarrow DET₁ NN₂ JJ₃ | DET₁ JJ₃ NN₂
- final rule N → dům | house
- ▶ mixed rule N \rightarrow la maison JJ₁ | the JJ₁ house

Parallel tree-bank

Syntactic rules extraction

Hybrid systems of machine translation

- combination of rule-based and statistical systems
- rule-based translation with post-editing by SMT (e.g. smoothing with a LM)
- data preparaion for SMT based on rules, changing output of SMT based on rules

Computer-aided Translation

- CAT computer-assisted (aided) translation
- out of score of pure MT
- tools belonging to CAT realm:
 - spell checkers (typos): hunspell
 - grammar checkers: Lingea Grammaticon
 - terminology management: Trados TermBase
 - electronic translation dictionaries: Metatrans
 - corpus managers: Manatee/Bonito
 - translation memories: MemoQ, Trados

Translation memory

- database of segments: titles, phrases, sentences, terms, paragraphs
- ightharpoonup which have already been translated (manually) ightarrow translation units
- advantages:
 - everything is translated only once
 - cost reducing (repeated translation of manuals)
- disadvantages:
 - majority of the best (biggest) systems are commercial
 - translation units are hard to get
 - inappropriate translation is repeated again and again
- CAT systems suggest translations based on exact match
- or on exact context match, fuzzy match
- CAT systems can automatically translated the repeated texts

Questions I

- Enumerate at least 3 rule-based MT systems.
- What does abbreviation FAHQMT mean?
- What does IBM-2 model adds to IBM-1?
- Explain *noisy channel* principle with its formula.
- State at least 3 metrics for MT quality evaluation.
- State types of translation according to R. Jakobson.
- What does Sapir-Whorf hypothesis claim?
- Describe Georgetown experiment (facts).
- State at least 3 examples of morphologically rich languages (different language families).
- What is the advantage of systems with interlingua against transfer systems? Draw a scheme of translations between 5 languages for these two types of systems.
- Give an example of a problematic string for tokenization (English, Czech).

Questions II

- What is tagset, treebank, PoS tagging, WSD, FrameNet, gisting, sense granularity?
- What advantages does space-based meaning representation have?
- Which classes of WSD methods do we distinguish?
- Draw Vauquois' triangle with SMT IBM-1 in it.
- Explain garden path phenomenon and come up with an example for Czech (or English) not used in slides.
- Draw dependency structure for sentence Máma vidí malou Emu.
- Draw the scheme of SMT.
- Give at least 3 sources of parallel data.
- Explain Zipf's law.
- Explain (using an example) Bayes' rule (state its formula).
- What is the purpose of decoding algorithms?

Questions III

- Write down the formula or describe with words Markov's assumption.
- ≥ 3 examples of frequent word trigrams and quadrigrams for Czech (English).
- We aim at low of high perplexity for language models?
- Describe IBM models (1–5) briefly.
- Draw word alignment matrix for sentences I am very hungry. and Jsem velmi hladový.