
PLIN019 – Machine translation
Statistical machine translation

Vı́t Baisa

Introduction

Introduction to SMT

I rule-based systems motivated by linguistics
I SMT inspired by information theory and statistics
I currently many companies focused on SMT: Google, IBM,

Microsoft
I 50 million webpages translated by SMT daily
I gisting: we don’t need exact translation, sometimes a gist

of a text is enough – the most frequent use of SMT on
Internet

SMT scheme

Tools for SMT

I GIZA++: training of IBM models, word alignment (HMM)
I SRILM: language model training
I IRST: large language model training
I Moses: phrase decoder, model training
I Pharaoh: predecessor of Moses
I Thot: phrase model training
I SAMT: tree-based models

Data for SMT – (parallel) corpora

I Linguistics Data Consorcium (LDC): parallel corpora for
Arabic-English, Chinese-English etc.
Gigaword corpus (English, 7 billion words)

I Europarl: collection of parliamentary texts of EP (11
languages, 40 M words)

I OPUS: parallel texts of various origin: subtitles, software
localizations of user interfaces

I Acquis Communautaire: law documents of EU (20 lang)
I Hansards: 1.3 M pairs of text chunks from the official

records of the Canadian Parliament

Regular events in SMT

Annual evaluation of SMT quality. Test set preparing, manual
evaluation events, etc.

I NIST: National Institute of Standards and Technology; the
oldest, prestigious; evaluation of Arabic, Chinese

I IWSLT: international workshop of spoken language
translation; speech translation, Asian languages

I WMT: Workshop on SMT; mainly between European
languages

Words

I for SMT (in vast majority) the basic unit = a word
I works usually with lowercased input, the original case can

be restored in post-processing
I the makes up 7% of English texts
I top 10 words (by frequency) makes up 30% of all texts
I troublemakers: typos, numbers, proper names, loanwords

Sentences

I syntactic structure differs in various languages
I inserting of functional words typical for a given language

(the, punctuation)
I rearranging: er wird mit uns gehen→ he will go with us
I some phenomena can not be translated on the sentence

level: anaphora
I level of document: theme (topic) can help with WSD
I we are not supposed to translate bat as pálka (Czech) in a

text about cave animals

Parallel corpora

I basic data source for SMT
I freely available sources are about 10 to 100 M word large
I size depends heavily on a language pair
I multilingual webpages (online newspapers)
I a problem with paragraph, document alignment, . . .
I comparable corpora: texts from the same domain, not

translations:
New York Times – Le Monde

I Kapradı́ – corpus of Shakespeare’s plays by various
translators (FI+FF)

I InterCorp – manually aligned fiction books (ČNK, FF UK)

Sentence alignment

I sometimes sentences are not in 1:1 ratio in corpora
I some languages do not explicitly delimit sentence

boundaries (Thai)
I It is small, but cozy. – Es is klein. Aber es ist gemütlich.

P alignment
0.98 1:1
0.0099 1:0, 0:1
0.089 2:1, 1:2
0.011 2:2

Probability and statistics basics for SMT

Zipf’s law

r rank, f = word freq., c = constant; r × f = c

Probability distribution

I a graph of probability values for elementary phenomena
of a random variable

I uniform: roll of dice, coin (discrete variable)
I binomial: multiple roll (quincunx)

b(n, k ; p) =

(
n
k

)
pk (1− p)n−k

I normal, Gauss’s: continuous variable

Binomial distribution

Statistics

I random variable, probability function, etc.
I we have data, we want to get distribution describing the

data best
I law of large numbers: the more data we have the better

are we able to guess its probability distribution
I e.g.: roll of a loaded dice; π calculation
I independent variables: ∀x , y : p(x , y) = p(x).p(y)

I joint probability: roll of dice and coin: p(6,heads)

I conditional probability: p(y |x) = p(x ,y)
p(x)

for independent variables: p(y |x) = p(y)

Conditional probability

Shannon’s game

Probabilty distribution for a next letter in a text depends on
previous letters.

Some letters bear more information than the others

Bayes’s rule

p(x |y) =
p(y |x).p(x)

p(y)

I example with the dice
I p(x) – prior
I p(y |x) – posterior

SMT – noisy channel principle

Designed by Claude Shannon (1948) for self-correcting codes,
for coded signals corrections transfered through noisy channels
based on information about the original data (probabilities) and
about types of errors made in the channels.

Example with OCR. Optical Character Recognition is erroneous
but we can estimate what was damaged in a text (with a
language model); errors l↔1↔I, rn↔m etc.

e∗ = arg max
e

p(e|f)

= arg max
e

p(e)p(f |e)

p(f)

= arg max
e

p(e)p(f |e).

SMT components

I language models:
I how we get p(e) for any string e
I the more e looks like proper language the higher is p(e)
I issue: what is p(e) for an unseen e?

I translation model:
I for e and f compute p(f |e)
I the more e looks like a proper translation f , the higher

p(f |e)

I decoding algorithm
I based on TM and LM, find a sentence f as the best

translation of e
I as fast as possible and with as few memory as possible

Language models

Language models

Noam Chomsky, 1969
But it must be recognized that the notion “probability of a
sentence” is an entirely useless one, under any known
interpretation of this term.

Fred Jelinek, 1988, IBM
Anytime a linguist leaves the group
the recognition rate goes up.

What is the probability of utterance of s?

Ke snı́dani jsem měl celozrnný ...

chléb > pečivo > zákusek > mléko > babičku

Language models

Noam Chomsky, 1969
But it must be recognized that the notion “probability of a
sentence” is an entirely useless one, under any known
interpretation of this term.

Fred Jelinek, 1988, IBM
Anytime a linguist leaves the group
the recognition rate goes up.

What is the probability of utterance of s?

Ke snı́dani jsem měl celozrnný ...

chléb > pečivo > zákusek > mléko > babičku

Language models – probability of a sentence

I we look for a probability of a following word
I a LM is probability distribution over all possible word

sequences

Probability of word sequences
pLM(včera jsem jel do Brna)
pLM(včera jel do Brna jsem)
pLM(jel jsem včera do Brna)

Language models for fluency and WSD

I LMs help ensure fluent output (proper word order)
I LMs help with WSD in general cases
I if a word is polysemous, we can choose the most frequent

translation (pen→ pero)
I in special cases can not be used but
I LMs help with WSD using a context
I pLM(i go home) ≥ pLM(i go house)

N-gram models

I n-gram is very useful concept in NLP
I it uses statistical observation of input data
I two applications in machine translation:

I what follows after I go? home is more frequent than house
I I go to home × I go home

I language (random) generation:

To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have Every enter now severally so, let. [1-grams]

Sweet prince, Falstaff shall die. Harry of Monmouth’s grave. This shall forbid
it should be branded, if renown made it empty. [3-grams]

Can you guess the author of the original text?

N-gram models – naive approach

W = w1,w2, · · · ,wn

How we compute p(W)? Occurrences of all W in data
normalized by data size. For majority of W we won’t have any
occurrence in our data. The goal is to generalize observed
properties of (training) data which is usually sparse (sparse
data).

P(chléb|ke snı́dani jsem měl celozrnný) =
|ke snı́dani jsem měl celozrnný chléb|

|ke snı́dani jsem měl celozrnný|

Markov’s chain, Markov’s assumption

p(W), where W is sequence of words; we model the probability
word by word using rule of chain:

p(w1,w2, . . .wn) =
p(w1)p(w2|w1)p(w3|w1,w2) . . . p(wn|w1 . . .wn−1)

Since p is not available for longish word sequences, we limit the
history to m words using Markov’s assumption

p(wn|w1,w2, . . .wn−1) ' p(wn|wn−m, . . .wn−2,wn−1)

It means that for estimation of a following word it is sufficient to
have m (m − 1) preceding words. m is order of a model.
Usually, trigrams are used.

Computing, LM probabilities estimation

Trigram model uses 2 preceding words for probability learning.
Using maximum-likelihood estimation:

p(w3|w1,w2) =
count(w1,w2,w3)∑
w count(w1,w2,w)

trigram: (the, green, w) (1748)
w count p(w)

paper 801 0.458
group 640 0.367
light 110 0.063
party 27 0.015
ecu 21 0.012

Quality and comparison of LMs

We need to compare quality of various LM (various orders,
various data, smoothing techniques etc.)

2 approaches: extrinsic and intrinsic evaluation.

A good LM should assign a higher probability to a good
(looking) text than to an incorrect text. For a fixed testing text
we can compare various LMs.

Cross-entropy

H(pLM) = −1
n

log pLM(w1,w2, . . .wn)

= −1
n

n∑
i=1

log pLM(wi |w1, . . .wi−1)

Cross-entropy is average value of negative logarithms of words
probabilities in testing text. It corresponds to measure of uncertainty
of a probability distribution. The lower the better.

A good LM should reach entropy close to real entropy of language.
That can not be measured but quite reliable estimates do exist, e.g.
Shannon’s game. For English, entropy is estimated to approx. 1.3 bit
per letter.

Perplexity

PP = 2H(pLM)

PP(W) = pLM(w1w2w3 . . .wN)
− 1

N

Perplexity is simple transformation of cross-entropy.

A good LM should not waste p for improbable phenomena.

The lower entropy, the better→ the lower perplexity, the better.

Language models smoothing

Issue: if an n-gram is missing in the data but is in w →
p(w) = 0.

We need to distinguish p also for unseen data. It must hold:

∀w .p(w) > 0

The issue is more serious for high-order models.

Smoothing: attempt to amend real counts of n-grams to
expected counts in any data (different corpora).

Add-one smoothing (Laplace)

Maximum likelihood estimation assigns p based on

p =
c
n

Add-one smoothing uses

p =
c + 1
n + v

where v is amount of all possible n-grams. That is quite inaccurate
since all permutations might outnumber real (possible) n-grams by
several magnitudes.

Europarl has (unique) 139,000 words, so 19 bilion possible bigrams.
In fact it has only 53 mil. tokens, so maximally 53 mil. bigrams. Why?

This smoothing overvalues unseen n-grams.

Add-α smoothing

We won’t add 1, but α. This can be estimated for the smoothing
to be the most just and balanced.

p =
c + α

n + αv
α can be obtained experimentally: we can try several different
values and find the best one using perplexity.

Usually it is very small (0.000X).

Deleted estimation

We can find unseen n-grams in another corpus. N-grams
contained in one of them and not in the other help us to
estimate general amount of unseen n-grams.

E.g. bigrams not occurring in a training corpus but present in
the other corpus million times (given the amount of all possible
bigrams equals 7.5 billions) will occur approx.

106

7.5× 109 = 0.00013×

Good–Turing smoothing

We need to amend occurrence counts (frequencies) of n-grams
in a corpus in such a way they correspond to general
occurrence in texts. We use frequency of frequencies: number
of various n-grams which occurr n×.

We use frequency of hapax legomena (singletons in data) to
estimate unseen data.

r∗ = (r + 1)
Nr+1

Nr

Especially for n-grams not in our corpus we have

r∗0 = (0 + 1)
N1

N0
= 0.00015

where N1 = 1.1× 106 a N0 = 7.5× 109 (Europarl).

Example of Good–Turing smoothing (Europarl)

r FF r∗

0 7,514,941,065 0.00015
1 1,132,844 0.46539
2 263,611 1.40679
3 123,615 2.38767
4 73,788 3.33753
5 49,254 4.36967
6 35,869 5.32929
8 21,693 7.43798
10 14,880 9.31304
20 4,546 19.54487

Comparing smoothing methods (Europarl)

method perplexity
add-one 382.2
add-α 113.2
deleted est. 113.4
Good–Turing 112.9

Interpolation and back-off

Previous methods treated all unseen n-grams the same.
Consider trigrams

nádherná červená řepa
nádherná červená mrkev

Despite we don’t have any of these in our training data, the
former trigram should be probably more probable.

We will use probability of lower order models, for which we have
necessary data:

červená řepa
červená mrkev
nádherná červená

Interpolation

pI(w3|w1w2) = λ1p(w3)× λ2p(w3|w2)× λ3p(w3|w1w2)

If we have enough data we can trust higher order models more
and assign a higher significance to corresponding n-grams.

pI is probability distribution, thus this must hold:

∀λn : 0 ≤ λn ≤ 1∑
n

λn = 1

Large LM – n-gram counts

How many unique n-grams are in a corpus?

order unique singletons
unigram 86 700 33 447 (38,6 %)
bigram 1 948 935 1 132 844 (58,1 %)
trigram 8 092 798 6 022 286 (74,4 %)
4-gram 15 303 847 13 081 621 (85,5 %)
5-gram 19 882 175 18 324 577 (92,2 %)

Taken from Europarl with 30 mil. tokens.

Lexical translation

Standard lexicon does not contain information about frequency
of translations of individual meanings of words.

key→ klı́č, tónina, klávesa

How often are the individual translations used in translations?

key→ klı́č (0.7), tónina (0.18), klávesa (0.12)

We need lexical probability distribution pf with property:∑
e

pf (e) = 1

∀e : 0 ≤ pf (e) ≤ 1

pklı́č(key) ? pmrkev(carrot)

Word alignment, alignment function

Translations differ in number of words and in word order. SMT
uses alignment function

a : j → i

where j is position of particular word in target sentence
(Czech), i is position in a source sentence (English).

i: 1 2 3 4 5
the castle is very old
ten hrad je velmi starý

j: 1 2 3 4 5

a is function, therefore for each word we from the target
sentence there is exactly one word wf from the source
sentence.

Word alignment – more examples

I different word order:
it was written here
bylo to zde napsané
a : 1→ 2,2→ 1,3→ 4,4→ 3

I different word number:
jsem maličký
i am very small
a : 1→ 1,2→ 1,3→ 2,4→ 2

I no translational equivalents:
have you got it ?
máš to ?
a : 1→ 1,2→ 4,3→ 5

I the opposite case, we add token NULL, pozice 0:
NULL laugh
smát se
a : 1→ 1,2→ 0

IBM model 1

pf for individual sentences is not available. We split translation
into several steps, using pf for words. This approach is called
generative modeling.

Translation model IBM-1 is defined as follows:

p(e,a|f) =
ε

(lf + 1)le

le∏
j=1

t(ej |fa(j))

where e = (e1, . . .ele) is target sentence, f = (f1, . . . flf) source
sentence, le is target sentence length, lf source sentence length, ε is
normalizing constant, for resulting product to be proper probability
distribution. (lf + 1)le is number of all possible alignments between e a
f, whereas lf is increased by 1 due to NULL, t is probability translation
function.

Translation probability computation

For computing p(e,a|f) we need to know value of t for all
words.

The basic resource for SMT will be used: parallel corpus with
aligned sentences.

Unfortunately we don’t have word-level alignment (CEMAT). It
is task for word-alignment and it is time for
expectation-maximization (EM) algorithm.

EM algoritmus

1. initialize the model (usually uniform distribution)
2. apply model to the data (expectation step)

we are looking for p(a|e, f) = p(e,a|f)
p(e|f)

where p(e|f) =
∑

a p(e,a|f)

3. adjust model according to the data (maximization step)
we amend word alignments count we to wf (function c)
according previous
c(we|wf ; e, f) =

∑
a p(a|e, f)

∑le
j=1 δ(e,ej)δ(f , fa(j))

where δ(x , y) = 1 ⇐⇒ x == y , else 0
4. repeat E-M steps until the model can be improved

Translation probability from EM algorithm

The resulting translation probability is computed using c:

t(we|wf) =

∑
(e,f) c(we|wf ; e, f)∑

we

∑
(e,f) c(we|wf ; e, f)

EM algorithm – initialization

EM algorithm – final phase

IBM models

IBM model 1 is very simple. It does not take context into
account, can not add and skip words. All alignments are of the
same probability. Each of following models adds something
more to the previous.

I IBM-1: lexical translation
I IBM-2: + absolute alignment model
I IBM-3: + fertility model
I IBM-4: + relative alignment model
I IBM-5: + treats shortcomings of the previous models

IBM-2

In IBM-1, all translations in different word order are of the same
probability. IBM-2 adds explicit model of alignment: alignment
probability distribution:

a(i |j , lw , lf)

where i is source word position, j target word position.

IBM-2 – 2 kroky překladu

Translation is split to two steps. In the first, lexical units are
translated and in the second, words are rearranged according
to the model.

IBM-2

The first step is the same as in IBM-1, t(e|f) is used. Function a
with probability distribution a is in the opposite direction to the
translation direction. Both distributions are combined to formula
for IBM-2:

p(e,a|f) = ε

le∏
j=1

t(ej |fa(j))a(a(j)|j , le, lf)

p(e|f) =
∑

a

p(e,a|f)

= ε

le∏
j=1

lf∑
i=0

t(ej |fi)a(i |j , le, lf)

IBM model 3

Models 1 and 2 don’t consider situations where one word is
translated to two and more words, or is not translated at all.
IBM-3 solves this with fertility, which is modelled with a
probability distribution

n(φ|f)

For each source word f , the distribution n expresses, to how
many words f is usually translated.

n(0|a) = 0.999
n(1|king) = 0.997

n(2|steep) = 0.25
. . .

NULL token insertion

If we want to translate properly to a target language which uses
words without translational equivalents we have to tackle with
inserting NULL token.

n(x |NULL) is not used since NULL insertion depends on a
sentence length.

We add another step NULL insertion to the translation
process. We use p1 and p0 = 1− p1, where p1 stands for
probability of NULL token insertion after any word in a
sentence.

IBM-3

IBM-3 – distortion

The last step is almost the same as the 2. step in IBM-2 and is
modelled with distortion probability distribution:

d(j |i , le, lf)

which models positions in an opposite direction: for each
source word at position i it models position j of a target word.

The process of translation from the previous figure might differ
a bit (see the next figure).

IBM-3

IBM-4, IBM-5

IBM-4
The problem of distortion lies in sparse data for long sentences.
IBM-4 introduces relative distortion, where rearrangements of
word positions depend on particular previous words. It comes
from an assumption that we translate in phrases, which are
moved together, or some rearrangement are more frequent
(English: ADJ SUB→ French SUB ADJ etc.).

IBM-5
This model solves other shortcomings of the previous models.
E.g. it takes care of situations where two different source words
could get to one target position.

Word alignment matrix

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,

Word alignment issues

bucket

the

kicked

john

jo
hn

in
s

gr
as

s

bi
ss

here

live

not

does

john

jo
hn

hi
er

ni
ch

t

w
oh

nt

??

Phrase-base Translation Model

State-of-the-art of SMT. Not only single words but whole
phrases (n-grams, word sequences) can be translated in one
step.

Phrases are not linguistically motivated, only statistically.
German am is seldom translated with single English to.
Statistically significant context spass am helps better
translation. Linguistic phrase would be different: (fun (with (the
game))).

Advantages of PBTM

I we often translate n : m words, a word is not a perfect
element for translation

I translation of word sequences helps solve some
ambiguities

I models can learn to translate longer and longer phrases
I a simplified model: no fertility, no NULL token etc.

Phrase-based model – formula

Translation probability p(f |e) is split to phrases

p(f̄ I
1|ēI

1) =
I∏

i=1

φ(f̄i |ēi)d(starti − endi−1 − 1)

Sentence f is split to I phrases f̄i , all segmentations are of the
same probability. Function φ is translation probability for
phrases. Function d is distance-based reordering model. We
model according a previous phrase. starti is position of the first
word of phrase from sentence f , which is translated to i-th
phrase of sentence e.

Distance-based reordering model

Minimal reordering is preferred. The bigger reordering
(measured on source side) the less preferred this operation is.

1 2 3 4 5 6 7

d=0
d=-3

d=2
d=1

foreign

English

Building phrase matrix

We use word alignments from EM algorithm and then we look
for consistent phrases.

Phrase f̄ and ē are consistent with alignment A if all words
f1, . . . fn in phrase f̄ , which have alignment in A, are aligned with
words e1, . . .en in phrase ē and vice versa.

Phrase extraction

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,

Extracted phrases

michael michael
assumes geht davon aus / geht davon aus ,
that dass / , dass
he er
will stay bleibt
in the im
house haus
michael assumes michael geht davon aus / michael geht davon aus ,
assumes that geht davon aus , dass
assumes that he geht davon aus , dass er
that he dass er / , dass er
in the house im haus
michael assumes that michael geht davon aus , dass
.

Phrase translation probability estimation

Phrase translation probability estimation

φ(f̄ |ē) =
count(ē, f̄)∑
f̄i count(ē, f̄i)

Phrase-based model of SMT

e∗ = argmaxe

I∏
i=1

φ(f̄i |ēi) d(starti − endi−1 − 1)

|e|∏
i=1

pLM(ei |e1...ei−1)

Decoding

Given a model pLM and translation model p(f |e) we need to find
a translation with the highest probability but from exponential
number of all possible translations.

Heuristic search methods are used. It is not guaranteed we will
find the best translation.

Errors in translations are caused by an error in 1) decoding
process, where the best translation is not found owing to the
heuristics or 2) models, where the best translation according to
the probability functions is not the best.

Phrase-wise sentence translation

er geht ja nicht nach hause
er geht ja nicht nach hause

he does not go home

In each step of translation we count preliminary values of
probabilities from the translation, reordering and language
models.

Search space of translation hypotheses

he

er geht ja nicht nach hause

it
, it

, he

is
are

goes
go

yes
is

, of course

not
do not

does not
is not

after
to

according to
in

house
home

chamber
at home

not
is not

does not
do not

home
under house
return home

do not

it is
he will be

it goes
he goes

is
are

is after all
does

to
following
not after

not to

,

not
is not

are not
is not a

We are dealing with exponential space of all possible translations. We
need to limit this space using various methods.

Hypothesis construction, beam search

er geht ja nicht nach hause

are

it

he
goes

does not

yes

go

to

home

home

Beam search

Beam search uses so called breadth-first search. On each level
of the search tree it generates all children of nodes on that
level, sorts them according to various heuristics. It stores only a
limited number of the best states on each level (beam width).
Only these states are investigated further. The wider beam
width the smaller number of children (descendants) are thrown
away (branches are pruned). With an unlimited width it
becomes breadth-first search algorithm. The width determines
memory consumption. The best final state might not be found
since it can be pruned somewhere in the middle of the process.

