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OUTLINE
• Motivation 

– comparing images and models

• Biomechanical modeling

• Building a Model: Geometry

– segmentation and meshing

• Building a Model: Physics

– elastic formulation, parameters
– discretization, finite elements

• Example: Linear elasticity over P1 elements

• Numerical Solution

– direct and iterative solvers
– towards dynamics
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FROM IMAGES TO MODELS  
(AND BACK)
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DIFFERENT MODALITIES

5

Figure 2: Computational flow of the method

3 3D MOTION ESTIMATION

Many methods have attempted to recover 3D information on the
organ from intra-abdominal images [21, 27, 17, 35, 29]. In this
study, a stereo endoscope is used in order to recover 3D informa-
tion on the liver. Since our method only requires a set of sparse 3D
points, we use feature-based tracking algorithm. Salient landmarks
are detected in each image pair using the Speeded-Up Robust Fea-
tures (SURF) descriptor [4] and are tracked over time thanks to the
Lucas-Kanade optical flow [18]. This combination has proven to
be robust to track heart motion in laparoscopic images [6]. Feature
correspondences between stereo images are obtained with a nearest
neighbour criterion on feature descriptors coupled with the epipo-
lar constraint to filter out outliers. After triangulation, we obtain
a sparse set of m 3D points, denoted by 3⇥m coordinate vector
y. Examples of point correspondences and reconstructed 3D points
from laparoscopic images are shown in Fig. 3.

Figure 3: 3D Estimation on a laparoscopic image of the abdominal
cavity showing a part of the liver. Top: SURF features detection on
image pairs acquired from the Da Vinci Robot. Bottom: the resulting
sparse 3D point set y plotted.

The SURF detector provides a measure of reliability for each ex-
tracted feature as the determinant of the Hessian matrix. We take
advantage of this measure to associate each reconstructed 3D point
with a quality q defined as the average reliability of its two corre-
sponding features in the left and right images. Quality values are
normalized so that q = 1 for the most reliable 3D point and q = 0
for the least reliable 3D point in y point set. We denote q the 3⇥m
vector formed by all q values, assuming the quality is isotropic at
each point. Note that other measures of reliability could be consid-
ered, such as euclidean distances of the matched descriptors or the
eigenvalues of the covariance matrix on the reconstructed points.

We used two sorts of stereo endoscope, the first one consists of
two mounted endoscope from Karl Storz Endoscopy and the sec-
ond one is the stereo endoscope from the Da Vinci robot illustrated
in 4. Both camera lens generate radial distortion and have rela-
tive small baselines (respectively 16mm and 6mm). The cameras
are calibrated following Zhang [40] approach and lens distortions
are rectified before performing the tracking. We take the assump-
tion that the stereo endoscope is fixed, which is the case when the
surgeon manipulate the surgical instruments.

Figure 4: Stereo endoscope used: on (left) a stereo endoscope of
the Da Vinci robot and (right) different views of the two mounted en-
doscope from Karl Storz Endoscopy.

4 BIOMECHANICAL MODEL

In this section we provide a description of the biomechanical model
used to compute the deformations of the liver. Before giving details
of tetrahedral model employed for parenchyma, we focus on model
of vascularization and mechanical coupling between this two. Since
the final composite model is heterogeneous and anisotropic due
to the vascular structures, we finally describe the solution process
based on a direct solver, still allowing for real-time performance.

4.1 Parenchyma Model
Most biomechanical studies concerning the constitutive models of
the liver parenchyma (see [16] or [10] for instance) report the non-
linear and viscoelastic behavior of the organ tissue. Since we do not
focus on the transient part of the deformation but rather the static
equilibrium under some specific loading conditions, we do not take
into account the viscous properties of the tissue. On the other hand,
we aim at modeling large deformations correctly, since during the
surgical interventions, important displacements of tissue (e.g. the
liver lobes) occur due to the action of surgical tools.

For this reason we have opted for a finite element method based
on a co-rotational formulation (introduced by Felippa in [8]) which
allows for large displacements while relying on a linear expression
of the stress-strain relationship. The co-rotational approach is based
on decomposition of the actual element configuration into rotational
and deformational components, both being quantified w. r. t. the ini-
tial position. More precisely, the actual position of the element
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IMAGES...

!usual representation of medical data

!pros:

‣direct output of scanners

‣ familiar representation

‣source of information (geometry and physics)

‣allows for statistical evaluation (metrics)

!cons:

‣noise, noise, noise

‣ limited perception

‣no explicit physical meaning (set of voxels)
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MEDICAL IMAGING: PROS
• direct output of a scanning machine

• although already post-processed...

• doctors are used to look at images

• familiar representation 

• huge source of information

• about geometry AND physics (elastography...)

• statistical evaluation

• (dis)-similarity

• visually-based

• stat/math-based
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MEDICAL IMAGING: CONS
• noise

• loosing information due to modality 

• noise

• loosing information due to motion

• noise

• loosing information due to post-processing

• a set of pixels/voxels

• no explicit physical meaning (although might 
carry enough information about physical 
parameters)
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IMAGE PROCESSING
• filtering

• smoothing, denoising, edge-detection 

• see Slicer3D (an open-source software)

• comparing: similarity metrics

• mean absolute differences

• summed squared differences

• normalized cross-correlation 

• mutual information (different modalities) 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MEDICAL IMAGE REGISTRATION
• minimizing dissimilarity

• many criteria

• inter/intra-patient

• single/multi-modal

• slice-slice, volume-volume, 
slice-volume

• rigid, affine, deformable

• intensity/feature based

• model-based

• others...

• real-time in per-operational 
scenario
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3.3 Volumetric FE Deformation

The deformation field obtained with the active surface algorithm is then used as input
for our biomechanical FE model. The algorithm yields a deformation vector for every
node of the mesh. These displacements can then be interpolated back onto the image
grid using the shape functions within every element of the FE mesh (see eq. 4). Figure
3 shows a slice of the deformed image as well as the image of the difference with the
target. One can observe that the algorithm captured the surface shift and the ventricular
thinning very accurately. The gray-level mean square difference between the target scan
and the deformed original scan on the image regions covered by the mesh went down
from 15 to 3. However, one can also notice that the left ventricle (lower one on the
Figure) was not able to fully capture the thinning. This is due to the approximate model
of the lateral ventricles we used in this experiment.

a) b) c) c)

Fig. 3. Slice 29 of a) initial scan b) target scan c)initial scan deformed using our algorithm
d)difference between target scan and deformed initial scan.

Figure 6 shows orthogonal cuts through the target intraoperative scan with transpar-
ently overlayed color-coding of the intensity of the deformation field. The arrows show
the actual displacement of the nodes of the mesh. The extremely dense vector field in
the neighborhood of the lateral ventricles is due to the adaptive refinement of the mesh
at these locations.

Figure 5a shows the obtained deformation field overlayed on a slice of the initial
scan, and Figure 5b shows the same slice of the initial scan deformed with the ob-
tained deformation field. Several landmarks have also been placed on the initial scan
(green crosses) and deformed onto the target scan (red crosses), and these last landmarks
have also been overlayed on the target scan for comparison with the actual deformed
anatomy.

Similar landmarks as those shown on Figure 5 have been placed on 4 different slices
where the shift was most visible, and the distance between deformed landmarks and tar-
get landmarks (not represented here for better visibility) have been measured. The sur-
face based landmarks on the deformed scan were within 1mm of the landmarks on the
target intraoperative scan. The errors between the landmarks placed in between the mid-
sagittal plane and the cortical surface were within 2-3mm from the actual landmarks.
The largest errors were observed at the level of the mid-sagittal plane and ventricles,
which can be explained by the fact that the surface matching of the ventricles was not
perfect. Nevertheless, the algorithm reduced the distance between landmarks in the ini-
tial and the target scans from up to almost 1cm to less than 1mm for the surface-based
landmarks, and from up to 6mm to 3mm or less for the sub-surface landmarks.

Ferrant et al (2001): Registration of 3-D intraoperative MR images of the brain using a finite-element 
biomechanical model.

(a) Source image (supine) (b) Warped image (c) Target image
(flank)

Fig. 5. Illustration of the accuracy of the registration for a cut in the source, warped
and target volume.

The supine and flank configurations are displayed on Fig. 6ab showing an
important deformation of the liver and surrounding tissues due to the impor-
tant deformation of the rib cage. The overall image of the predicted surface
loads is given in Fig. 6b. First, it should be recalled that unlike the case in the
previous section, neither supine nor flank data provide the configuration which
corresponds to the rest position of the liver. In fact, this position is not known,
since in both supine and flank configuration, the liver is subjected to gravity and
to the surface loads induced by the surrounding objects. Therefore, rather than
identifying the absolute surface loads in the target configurations, a relative dif-
ference in loads applied in supine and flank configurations is obtained indicating
the change in boundary conditions. We believe that the estimation of absolute
surface loads could be obtained by comparing several different configurations,
where the influence of the applied loads and forces could be filtered.

Two details of predicted surface loads are shown in Fig. 6c and 6d. In the
first case, the loads that appeared due to the contact with stomach (visceral
surface) and diaphragm (diaphragmatic surface), in the other case, interaction
between the liver and stiff bodies of ribs are clearly indicated. Apparently, all
these loads can be logically justified due to the rotational movement of the liver
which occurred during the change of the pig’s position from supine to flank
configuration: while in the supine position, the lateral surfaces of the liver lobes
are not subjected to important contact loads, since the mass is pressing mainly
the posterior part of the organ against the spine, in the flank position, important
contacts occurs between the left part of the liver and the ribs.

5 Discussion and Conclusion

The precise estimation of boundary conditions in soft tissues plays a crucial role
in computer simulation-based planning and guidance. For example, in the case
of surgical navigation based on augmented reality, a biomechanical model can be
used to predict the actual position of the tumor inside the tissue. In this paper, we
propose a model-based method allowing for joint registration and prediction of



MODELS 
• A model is an abstract structure that uses mathematical language to describe 

the behaviour of a system.

• typical examples of models of living systems:

• electrophysiological model: describes electrical properties of tissues

• e.g. electrophysiological model of heart 

• model of fluid dynamics: describes behaviour of liquids

• e.g. cardiovascular fluid mechanics (blood circulation)

• biomechanical model of an organ: describes elastic (plastic) behaviour of tissues

• e.g. hyperelastic model of liver

• the mathematical language is usually based on differential equation

• since the behaviour usually means “a change of state”
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BIOMECHANICAL MODEL: EXAMPLE
• medical image registration of volumes with important deformations

• two volumes taken at different configurations (pre-/intra- operational data)

• the goal is to align (register) the two images, i.e. match the voxels
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• model based solution: an “energy-minimization” problem:

• an “error energy” given by difference between the two data (similarity 
metric, difference in feature positions)

• an “elastic energy” given by a regularization term provided by an elastic model
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BIOMECHANICAL MODEL: EXAMPLE

Vessel Tree in Body Mesh
• the Bezier tree can be immersed into the 3D tetrahedral mesh
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IMAGE-MODEL COUPLING
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ADVANCED MODELLING
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ADVANCED MODELLING
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Image-guided Simulation of Heterogeneous Tissue Deformation For 
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BUILDING A BIOMECHANICAL MODEL 
FROM THE IMAGE DATA

• two aspects: geometry (domain) and physics (formulation and parameters)

• the two aspects are closely interconnected

• geometry: 

• type of the geometry structure is given by the nature of the problem and the 
physical formulation (e.g. the basic “unit” is a tetrahedral element with 4 nodes)

• particular realisation is extracted from the image (e.g. the domain covered by the 
elements is given by the shape of the organ)

• physics:

• formulation is given by a set of differential equations solved over the geometric 
domain (e.g. finite element formulation of hyper-elasticity over linear tetrahedra) 

• particular behaviour is determined by the physical parameters, usually obtained 
by a measurement [invasive, non-invasive] (e.g. stiffness of the liver parenchyma)
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BUILDING A BIOMECHANICAL MODEL: 
GEOMETRY
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GEOMETRY DISCRETIZATION: MESH
• usual geometric representation is given by a mesh (discretization of domain)

• a set of (connected) elements of given dimensionality and type

• 1D: line mesh, beam mesh, spline mesh

• 2D: triangular- and quad-mesh, shell mesh

• 3D: tetrahedral mesh, hexahedral mesh

• mixed meshes

• used in computer-aided design (CAD) for decades

• many mesh generators from CADs

• commercial solutions (Ansys)

• open-source: GMsh, TetGen
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MESHING OF MEDICAL IMAGES
• classical mesh generation from images consists of two steps

• segmentation: delimitation of the domain of interest in the image

• meshing: discretization of the segmented domain
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IMAGE SEGMENTATION I
• manual segmentation (time consuming in 3D)

• semi-automatic methods:
– basic: histogram-based, edge detection, region-growing 
– PDE-based: active contours (snakes, subject of TP), level-sets methods
– graph-based segmentation: using graphs flows and cuts
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IMAGE SEGMENTATION II
• atlas-based methods

– probabilistic methods (mean shape and possible variations)

• methods based on training
– neural-networks

• many open-source programs: ITKSnap, 3DSlicer, TurtleSeg
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MESHING OF SEGMENTED DOMAIN I
• two-step approach: 

– first step: generate surface representation (triangular mesh) of the segmented 
domain (e.g. marching cubes)

– second step: generate 3D volume mesh from the surface mesh (e.g. TetGen 
computing tetrahedral mesh from surface triangular mesh stored in STL)

– surface meshes can be very dense or with holes: reparation must be performed 
before the second step (e.g. MeshLab)

• direct approach: 

– direct generation of 3D volume mesh from the segmented domain: CGAL.org
– can be problematic for sharp features (usually not crucial in medical imaging) 

and correct separation of boundaries (can be a problem, solution exists but is 
not implemented…)
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http://CGAL.org
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MESHING OF SEGMENTED DOMAIN II



BONUS: VARIATIONAL IMAGE MESHING

24
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(a) (b) (c) (d) (e) (f)

Fig. 5. Mesh optimization on a 2D MR image slice (a) of brain ventricles. Initial (b) and optimized (c) discretizations with 59 nodes; initial (d) and
optimized (e) discretizations with 111 nodes. The finer optimized mesh is seen as overlaid on image (f).

(a) (b) (c) (d) (e)

Fig. 6. Mesh optimization on a 2D CT image slice (a) of the kidney. Initial (b) and optimized (c) discretizations with 61 nodes; and initial (d) and optimized (e)
discretizations with 338 nodes.

(a) (b) (c) (d)

Fig. 8. Mesh optimization for 3D MR image volume of the brain. (a) shows part of a mesh with some image slices from the voxel volume. A 858 node
mesh converged after 9 iterations is presented with (b)-(c) two cutaway views showing discretized element values on faces and (d) the thresholded elements
showing the ventricles.

are plotted in Fig. 9. These were normalized to their initial
mesh quantities in order to present their change in percentage.

In order to evaluate element quality and volume approx-
imation performance, the meshes generated by VIM were
compared with three popular meshing software: GHS3D [20],
TetGen [19], and CGAL [23]. GHS3D is a tetrahedral mesh-
ing engine used in several commercial engineering packages.
We used its implementation in AnsysTM . TetGen generates
constrained Delaunay tessellations, the input of which is a
piece-wise linear complex (e.g., a surface mesh) delineating
the boundaries of different regions to be meshed. In the
Computer Graphics Algorithms (CGAL) package, the labeled
voxel-volume meshing technique based on [22] is used.

A sphere of radius 1 embedded at the center of a 3�3�3
cube was used as the synthetic test domain. Each software

above requires the domain geometry to be input in a dif-
ferent format due to the different nature of their individual
algorithms. For Ansys, the geometry was defined implicitly in
analytical form and a tetrahedral mesh was generated. As the
input to TetGen, the sphere and cube surface meshes extracted
from the Ansys tetrahedral mesh results were used. For CGAL
and VIM, a 1003 voxel 3D image of the cube was generated
with the sphere having a different color (label).

Three different mesh sizes, 1, 0.5, and 0.2, were used for
comparison as seen in Fig. 10. However, each method has a
different interpretation of this desired mesh size. For instance,
in Ansys, this value defines the initial subdivision length of
lines (e.g., cube edges), whereas in TetGen it is the target
element edge length that is used to terminate the subdivision.
As a result, these methods resulted in somewhat different
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modulus distribution, E(x), within the domain M is known a
priori. There exist several methods in the literature for the
acquisition and derivation of tissue elasticity, see [39] for
a review. Consequently, the material stiffness matrix in the
element can be formulated as C(x) = E(x) C�

j . Substituting
this in (10) yields:

Ej
strain(u

j) =
1

2
ujTBjTC�

jB
juj

�

�j

E(x)dx . (14)

For the discretization within each element to be optimal, these
two energy formulations in (13) and (14) should be equal,
leading to:

Ẽjvj =

�

�j

E(x)dx (15)

which is satisfied when Ẽj is the mean of the distribution
within element ⇥ j .

To demonstrate mesh optimization from mechanical tissue
features, the method was applied to prostate elastography
images acquired using the vibro-elastography technique of
Salcudean et al. [24]. Elastography is the technique in which
tracked localized displacements in response to a mechanical
excitation allow for the identification of mechanical tissue
properties [39], [40]. For the purpose of this paper, a 2D
sagittal transfer function image of the prostate is meshed. The
prostate, which is typically stiffer that its surrounding, is seen
in Fig. 11. The optimized meshes and their corresponding
discretizations are also shown in this figure.

D. Connectivity and Node Updates
For the case where the objective function is purely geo-

metric, i.e. � = 0, EG has a simple algebraic (quadratic)
definition as in (3). This can also be observed for relatively
small values of � as in Fig. 3(b). For EG alone, a geometrical
closed-form expression of its critical-point within each 1-
ring exists to be used for node updates [33]. Furthermore,
a Delaunay tessellation is guaranteed to minimize this cost
component. However, our objective function E is also a
function of the image and thus is not algebraically defined
in a simple form preventing us from using such closed-form
node or connectivity updates. Instead, we resort to a numerical
optimization scheme for minimizing this objective function.

For the optimization of the objective function E, node
update directions toward the centroids of the 1-ring neighbours
are considered. Using multiple step-lengths in these directions
provide sufficient sampling within the feasible 1-ring region.
Alternatively, a random walk in 1-ring also proved to be
effective for finding alternative node locations minimizing E.
We have attempted other popular optimization methods using
numerical gradients as well. However, they have not performed
as well as the approaches above due to the image-dependent
non-convex nature of E. Furthermore, a fixed number of
sample points assures a predictable processing time for each
node update.

The cost component EG can be rapidly computed alge-
braically using (3), where the second term (volume integral)
has a closed-form definition for the rectangular/quadrilateral
shaped image domains in this paper. The component ED

(a) (b)

Fig. 11. Meshing of a transversal (a) and a para-sagittal (b) slice from
prostate vibro-elastography. The prostate is the darker oval structure in the
center.

is found using numerical integration over the voxels, during
which the enclosure of voxels by elements is determined using
the barycentric coordinates of voxels within the bounding box
of this element. This process of voxel mapping to their enclos-
ing elements is the computational bottle-neck in the current
VIM implementation. This operation can be accelerated using
fast grid-point location approaches such as [41], [42].

The execution time of connectivity updates scales linearly
with the number of voxels in the volume and the mesh
size (number of faces/edges, in particular). This is seen in
Fig. 12(a), where the connectivity update time per one iteration
is plotted for three different mesh sizes at 603, 803, and 1003

voxel images of the same spherical inclusion domain. Node
update time is also affected by the minimum step size consid-
ered toward the neighbour centroids and is given accordingly
in Fig. 12(b). In fact, increasing mesh size decreases the
average distance to neighbour centroids and hence reduces
the number of steps the given optimization implementation
considers. Consequently, for given constant minimum step
size, changing mesh size does not significantly affect the
execution time of node updates. The largest VIM-produced
mesh presented in this paper in Fig. 10(b)(right) has more
than 20 thousand elements and took 15 minutes to generate
on a 2.33 GHz processor using a C implementation having no
particular optimization.

• Orcun Goksel and Septimiu E. 
Salcudean, "Image-Based Variational 
Meshing", IEEE Trans Medical Imaging 
30(1):11-21, Jan 2011.

• direct generation of meshes from the image
– no segmentation needed
– initial regular mesh is adapted to the image
– works for limited range of intensities



DISCRETISATION METHODS
• wide range of algorithms

• Tesselations (tiling of a plane)

• Delaunay triangulations [DT] 
(no point of the triangulation 
lies inside any circumcircle of 
any triangle of the triangulation

• Voronoi diagrams (dual to DT)
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DISCRETIZATION QUALITY
• quality of elements is a crucial in physics-based applications (vertex Jacobian)

• degenerated elements result in numerical instability (singularity of the 
Jacobian)

• various measures of element quality:

• smallest angle/largest angle (2D)

• dihedral angle (3D)

• determinant of vertex Jacobian

• ratio of inscribed/circumscribed radii

• others (edge ratio, Frobenius aspect etc)
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10 C. GEUZAINE, J.F. REMACLE

To quickly evaluate the adequation between the mesh and the prescribed mesh size field, we
defined an e⇥ciency index ⇤ [13] as

⇤ = exp

 
1
ne

neX

e=1

⇤e

!
(2)

with ⇤e = le � 1 if le < 1 and ⇤e =
1
le
� 1 if le ⇥ 1. The e⇥ciency index ranges in ⇤ ⇤ [0, 1]

and should be as close as possible to ⇤ = 1.
For measuring the quality of elements, various element shape measures are available in the

literature [33, 27]. Here, we choose a measure based on the element radii ratio, i.e. the ratio
between the inscribed and the circumcircles.

If K is a triangle, we have the following formula

�K = 4
sin â sin b̂ sin ĉ

sin â + sin b̂ + sin ĉ
,

â, b̂ and ĉ being the three inner angles of the triangle. With this definition, the equilateral
triangle has a �K = 1 and degenerated (zero surface) triangles have a �K = 0.

For a tetrahedron, we have the following formula:

�K =
6
�

6 Vk 
4X

i=1

a(fi)

!
max

i=1,...,6
l(ei)

,

with VK the volume of K, a(fi) the area of the ith face of K and l(ei) the dimensional length of
the ith edge of K. This quality measurement lies in the interval [0, 1], an element with �K = 0
being a sliver (zero volume).

4.2. 1-D Mesh Generation

Let us consider a point ⇢p(t) on a curve C, t ⇤ [t1, t2]. The number of subdivisions N of the
curve is its adimensional length:

Z t2

t1

1
⇥(x, y, z)

⌥⌥t⇢p(t)⌥dt = N. (3)

The N + 1 mesh points on the curve are located at coordinates {T0, . . . , TN}, where Ti is
computed with the following rule:

Z Ti

t1

1
⇥(x, y, z)

⌥⌥t⇢p(t)⌥dt = i. (4)

With this choice, each subdivision of the curve is exactly of adimensional size 1, and the 1-D
mesh exactly satisfies the size field ⇥. In Gmsh, (4) is evaluated with a recursive numerical
integration rule.

Copyright c� 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–24
Prepared using nmeauth.cls
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