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OUTLINE

§Motivation for physics-based simulations

‣  training, planning, navigation 

§Examples of models and simulations

‣cataract surgery: training ophthalmologists  
‣cryoablation planning: pre-operative tool for interventional radiologists 
‣augmented reality framework for hepatic laparoscopy 

§Basic concepts of modeling

‣ Images vs. Models: reconstruction of models from images 
‣conceptual, mathematical, physics-based models
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COMPUTER-BASED MEDICAL SIMULATION

§Main areas of interest 

‣procedural training: practical and ethical considerations 
‣pre-operative planning and rehearsal 
‣per-operative guidance 

§Different requirements on each level

‣ Increasing levels of complexity as we get closer to the operation room 
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Procedural Training             Pre-operative planning            Intra-operative guidance



MAIN CHARACTERISTICS

§procedural training

‣ interventions in eye surgery, catheter 
‣ realistic, interactive (visual and haptic rendering), generic models  

§pre-operative planning

‣ liver, kidney resection, deep-brain surgery 
‣ realistic, not necessarily interactive, patient-specific models 

§ intra-operative navigation

‣catheter, needle insertion navigation, laparoscopic augmented reality 
‣ realistic, interactive, robust, patient-specific
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NOTE: HAPTIC DEVICE
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‣ “3D mouse” with force feedback 
‣allows for touching (haptein) 

virtual objects  
‣often necessary for training as 

visual perception is not sufficient 
(e.g. cutting of tissue)

‣main issue: high refresh rate needed to guarantee the fidelity of rendering 
‣usually 1000 Hz is reported (although the required minimal frequency 

rather depends on the mechanical properties of objects being rendered 
‣other issues: stability, passivity (might depend on the quality of device)



FROM TRAINING...

7

Input / 
Haptic deviceGeneric Model

Visual Feedback



8

Patient Specific Data
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...TO INTRA-OPERATIVE ASSISTANCE
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TRAINING: CATARACT SURGERY

§metabolic changes crystalline lens fibers (loss of sight)


§several types of surgery

‣phacoemulsification: standard in developed countries (ultrasonic) 
‣extra-/intra-capsular cataract extraction (ECCE, ICCE) 
‣manual small incision cataract surgery (MSICS) 
‣ lens is extracted through a tunnel which is watertight (if created properly) 
‣ lens capsule is intact 
‣outcomes comparable to phacoemulsification 
‣much lower cost ($50 vs. $2500) and time (5 to 15 minutes) 
‣ requires very high dexterity of the pharmacologist
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HELP ME SEE PROJECT

§ large impact of cataract in the third world

‣estimated 20 million children, 100 million adults blind 

§mission:

‣ train a large number of ophthalmologists (30,000 in 2030) 
‣use a virtual simulator for training  
‣shifting paradigm 

§ large call for project

‣first prototypes tested by skilled ophthalmologists 
‣consortium (InSimo, SenseGraphics, MOOG)
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MSICS SIMULATOR PROTOTYPE
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MSICS SIMULATOR PROTOTYPE
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PLANNING: NEEDLE INSERTION FOR CRYOABLATION

§ interventional radiology

‣destruction of a tumor using a (steerable) hollow needle  
‣argon is used to freeze the tumor by forming an ice-ball (ice-rod) 
‣ insertion/placement of the needle plays a crucial role 
‣avoid important objects during insertion (vessels) 
‣ insert the needle so that the ice-ball covers the tumor (+safety margin) 
‣multiple needles inserted (synergy effect) 

§actually, two stages are studied

‣needle insertion planning  
‣prediction of ice-ball formation
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INSERTION PLANNING
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INSERTION PLANNING

16



ITERATIVE PROCESS
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ICE-BALL FORMATION PREDICTION

18 H.Talbot et al. Interactive Planning of Cryotherapy Using Physically-Based 
Simulation  Proc. Medicine Meets Virtual Reality, 2014 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NAVIGATION: AUGMENTED REALITY IN 
LAPAROSCOPY
§ laparoscopy: minimally invasive approach (keyhole surgery)

‣operation through small incisions  
‣surgeon follows the intervention through camera (mono/stereo) 

§pre-operative data available 

‣e.g. pre-operative abdominal CT 
‣however, the actual position during surgery is often different (e.g. 

supine vs. flank vs. prone position) 
‣huge deformation occurs in abdominal cavity (mainly in patient with 

higher body mass index) 
‣surgeon has to create a mental image 



LAPAROSCOPIC HEPATECTOMY
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AUGMENTED REALITY I

Best  
paper 

§ track the image acquired by the camera (Computer Vision)


§drive the model (from CT data) during the interaction

N. Haouchine, J. Dequidt, I.P., E. Kerrien, M.-O. Berger, S. Cotin. 
Image-guided Simulation of Heterogeneous Tissue Deformation For 
Augmented Reality during Hepatic Surgery. In ISMAR proc. 2013  

Figure 2: Computational flow of the method

3 3D MOTION ESTIMATION

Many methods have attempted to recover 3D information on the
organ from intra-abdominal images [21, 27, 17, 35, 29]. In this
study, a stereo endoscope is used in order to recover 3D informa-
tion on the liver. Since our method only requires a set of sparse 3D
points, we use feature-based tracking algorithm. Salient landmarks
are detected in each image pair using the Speeded-Up Robust Fea-
tures (SURF) descriptor [4] and are tracked over time thanks to the
Lucas-Kanade optical flow [18]. This combination has proven to
be robust to track heart motion in laparoscopic images [6]. Feature
correspondences between stereo images are obtained with a nearest
neighbour criterion on feature descriptors coupled with the epipo-
lar constraint to filter out outliers. After triangulation, we obtain
a sparse set of m 3D points, denoted by 3�m coordinate vector
y. Examples of point correspondences and reconstructed 3D points
from laparoscopic images are shown in Fig. 3.

Figure 3: 3D Estimation on a laparoscopic image of the abdominal
cavity showing a part of the liver. Top: SURF features detection on
image pairs acquired from the Da Vinci Robot. Bottom: the resulting
sparse 3D point set y plotted.

The SURF detector provides a measure of reliability for each ex-
tracted feature as the determinant of the Hessian matrix. We take
advantage of this measure to associate each reconstructed 3D point
with a quality q defined as the average reliability of its two corre-
sponding features in the left and right images. Quality values are
normalized so that q = 1 for the most reliable 3D point and q = 0
for the least reliable 3D point in y point set. We denote q the 3�m
vector formed by all q values, assuming the quality is isotropic at
each point. Note that other measures of reliability could be consid-
ered, such as euclidean distances of the matched descriptors or the
eigenvalues of the covariance matrix on the reconstructed points.

We used two sorts of stereo endoscope, the first one consists of
two mounted endoscope from Karl Storz Endoscopy and the sec-
ond one is the stereo endoscope from the Da Vinci robot illustrated
in 4. Both camera lens generate radial distortion and have rela-
tive small baselines (respectively 16mm and 6mm). The cameras
are calibrated following Zhang [40] approach and lens distortions
are rectified before performing the tracking. We take the assump-
tion that the stereo endoscope is fixed, which is the case when the
surgeon manipulate the surgical instruments.

Figure 4: Stereo endoscope used: on (left) a stereo endoscope of
the Da Vinci robot and (right) different views of the two mounted en-
doscope from Karl Storz Endoscopy.

4 BIOMECHANICAL MODEL

In this section we provide a description of the biomechanical model
used to compute the deformations of the liver. Before giving details
of tetrahedral model employed for parenchyma, we focus on model
of vascularization and mechanical coupling between this two. Since
the final composite model is heterogeneous and anisotropic due
to the vascular structures, we finally describe the solution process
based on a direct solver, still allowing for real-time performance.

4.1 Parenchyma Model
Most biomechanical studies concerning the constitutive models of
the liver parenchyma (see [16] or [10] for instance) report the non-
linear and viscoelastic behavior of the organ tissue. Since we do not
focus on the transient part of the deformation but rather the static
equilibrium under some specific loading conditions, we do not take
into account the viscous properties of the tissue. On the other hand,
we aim at modeling large deformations correctly, since during the
surgical interventions, important displacements of tissue (e.g. the
liver lobes) occur due to the action of surgical tools.

For this reason we have opted for a finite element method based
on a co-rotational formulation (introduced by Felippa in [8]) which
allows for large displacements while relying on a linear expression
of the stress-strain relationship. The co-rotational approach is based
on decomposition of the actual element configuration into rotational
and deformational components, both being quantified w. r. t. the ini-
tial position. More precisely, the actual position of the element
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of the stress-strain relationship. The co-rotational approach is based
on decomposition of the actual element configuration into rotational
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as fP = JT fvi where J is a 3NP⇤6NV Jacobian matrix of the map-
ping between the nodes of parenchyma and vessels [7]. The global
stiffness K matrix is then computed as K = KP+J⌅KVJ.

Concerning the tumor, since this work focus only on small
tumors, we assume that its influence on the overall mechani-
cal behaviour is negligeable and therefore the coupling with the
parenchyma is only geometric. However the tumor can easily be
modelled as a real mechanical model with different properties from
those of the parenchyma, which will not affect the performance of
our method.

4.4 Numerical Solution
In this paper, a quasi-static scenario is considered, i. e. the actual
shape of deformable object under applied forces is computed using
the finite element formulation without dealing with the dynamic
properties of the tissue. Therefore, in each step of the simulation,
a linear system given by Eq. 1 is resolved. A wide range of direct
and iterative solvers has been proposed in the past to solve such
a system of equations emerging in the physics-based modeling of
deformable bodies. In case of homogeneous systems in which the
finite element formulation results in well-conditioned matrices, iter-
ative solvers such as conjugate gradients have proven to be efficient
techniques converging rapidly to the optimal solution. However,
in our case, the final matrix K gathers mechanical contributions of
both the parenchyma and vessel walls. As the experiments reports
a significant difference in stiffness of these two components (e. g.
see [38]), the composite system results in poorly conditioned ma-
trix. In this case the convergence of iterative solvers becomes an
important issue.

For this reason, we rely on direct LDL solver which requires
an explicit factorization of the system matrix. Although the solver
imposes more strict limitations on the size of the system being re-
solved, it still provides a stable real-time solution applicable to the
problems considered in the scope of this paper.

5 NON-RIGID REGISTRATION

5.1 Initial registration
A correct initial registration is an important step in the framework
since it can significantly impact the estimated position of the tumor.
For that purpose, special care must be taken during the initialization
phase. Similar to related works [36], our initialisation is done man-
ually through a Graphical User Interface following these steps:

• the real camera parameters acquired from camera calibration
are loaded on the virtual camera.

• the 3D model of the liver is manually aligned on the first
pair of laparoscopic images based on salient geometrical land-
marks such as liver contours or surrounded ligaments (the first
pair is chosen so that a large part of the liver is visible).

• the biomechanical model (including the vessels and the tu-
mour) is deformed to better fit the laparoscopic stereo images
and the 3D reconstructed point cloud.

• the boundary conditions are set by fixing the correct degrees
of freedom of the biomechanical model.

• the set of three-dimensional points reconstructed using this
initial stereoscopic pair of images are projected onto the liver
model surface. This is done using a ray casting method, fol-
lowed by a computation of barycentric coordinates describing
the position of these points with respect to adjacent degrees of
freedom of the biomechanical model.

In addition to providing a visual consistency, the initialization
helps to define the external forces linking the degrees of freedom of

the model and the 3D features extracted from the stereoscopic im-
ages. Only features that intersect the liver surface after ray-casting
are kept, the features that do not belong to the liver are filtered out
from laparoscopic images.

5.2 Non-rigid Registration
The non-rigid registration can be seen as an optimization prob-
lem between the three dimensional features recovered from laparo-
scopic images representing the liver and the biomechanical model
derived from preoperative CT data. In this paper we propose to
perform this registration as an error-minimization problem that ac-
counts for the internal energy of the biomechanical Ei and the track-
ing energy Et . Deriving this energy shows that an extremum (mini-
mum) is reached when the internal forces equal the tracking forces.
Thus, the internal forces are expressed as:

fi(x) = ReK · (Re
⌅x�x0) (2)

where K represents the stiffness matrix, Re the co-rotational matrix
and x,x0 are vectors of size 3n representing the position of the n
degrees of freedom of the mechanical model, respectively at any
time t and time t = 0.

Figure 6: Non-rigid registration: one frame of the non-rigid registra-
tion where red spheres represent the projected features y0 from the
initialisation step, green spheres represent the tracked features y and
green lines represent the forces linking both point sets.

We propose to handle the non-rigid registration by adding ex-
ternal stretching forces induced by the tracking step. The tracked
3D features y represent how visible parts of the liver are moving.
Due to noise or other reconstruction inaccuracies, point locations
in y are often regularized by generating a smooth and dense sur-
face model that is later used as boundary conditions for the biome-
chanical model [34]. Instead, we propose here to incorporate such
inaccuracies directly in the mechanical solver using quality values
measured at each 3D point.

External forces are defined by pairing the m 3D points y to the
n degrees of freedom x of the bio-mechanical model. As explained
in 5.1, the tracked points y0 at initialization (t = 0) are expressed in
barycentric coordinates of the adjacent degrees of freedom leading
to the linear relation:

y0 = L ·x0 (3)

where L is a rectangular (3m,3n) matrix. We assume this linear
relation remains valid during the deformation. At any later time t,
the stretching forces induced by the tracking are defined as

ft(y) = k ·q · (y�y0) (4)

where k can be seen as a stiffness. Finally, the stretching forces can
be expressed with respect of the degrees of freedom as

ft(x) = L⌅ · ft(y) = ft(x) = L⌅ · k ·q ·L · (x�x0) (5)
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Parameter k is set to be one or two order of magnitude higher than
the Youngs modulus in order to impose the boundary conditions di-
rectly and to insure that the simulation remains stable even at large
integration steps.

6 VALIDATION AND RESULTS

In laparoscopic surgery, validation remains very challenging. In our
case, this problem is more complex since neither qualitative results
nor visual assessment can validate the deformation of internal struc-
tures that are not visible in laparoscopic images. In order to asses
the performance of our approach, we compared our simulation re-
sults against three experimental scenarios. First, we demonstrate
with computer-generated data whether and where an heterogeneous
model differs from an homogeneous one for the prediction of tumor
location. Second, we rely on a realistic phantom liver to quantita-
tively measure the error between the simulation and a ground truth.
Third, our approach is tested on an actual laparoscopic procedure
performed on a human liver, allowing us to qualitatively estimate
how our approach could perform in a real surgical environment.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Computer-generated data with (left) the liver at rest and
(right) the liver after deformation: in (a) and (b) the volumetric mesh
composed of tetrahedra, in (c) and (d) the beams generated along
the vessels described in Section 4 an in (e) and (f) the heterogenous
liver including the vascular network in wireframe.

6.1 Experimentation with computer-generated data
We evaluate the impact, on the registration, of using a heteroge-
neous model instead of a homogeneous model (which can be seen
as providing similar results as an advanced geometric approach).
This is done by calculating the euclidean distance between the es-
timated tumor location in the cases of homogeneous and hetero-
geneous deformations (see 7). We also measure this influence de-
pending on the location of the tumor in the liver, at three different
locations: 1) close to the the point of interaction in order to quantify
local deformation, 2) away from the point of interaction to quantify
global behaviour, and 3) in the middle of the vascular network to
assess its influence. The simulations are generated using the SOFA
framework [2].

Results illustrated in figure 8 show that taking into account the
vascular network impact the tumor location. We can notice a dif-
ference in distance of about 15 mm in the case where the tumor is
located close to the deformation. We also notice that even if the
tumor is located far from the point of interaction, it remains influ-
enced by the vascular network with a distance of more than 3 mm.
However, when the tumor is very close to the boundary conditions,
the impact of the vascular network is considerably reduced, which
is an expected result.

Figure 8: Impact of the vascular network on the tumor deformation
depending on its position in the liver: the distance between the tu-
mor using homogeneous and heterogeneous biomechanical model
is important locally (red) and globally (blue) and less important when
the tumor is constrained by the vessels. The meshes illustrate the
distance between the position of the tumor in a homogeneous and a
heterogeneous case for each location in the liver.

6.2 Experimentation with liver phantom data
We believe that performing a CT scan of the a phantom liver before
and after a deformation is an ideal way of defining a ground truth
for the location of an internal structure (e.g. a tumor). However,
surgical instruments as well as the laparoscopic camera produce
large image artifacts in an in vivo environment. Also, boundary
conditions on the liver are difficult to identify while they largely in-
fluence the organ motion and deformation. Therefore we designed
a validation protocol using a heterogeneous phantom liver with a
prior knowledge of its mechanical properties and geometry. The
geometry of the liver and vascular network is generated from an ac-
tual patient liver (but with a 1:2 scale). The laparoscopic camera
is placed outside the scanned area and the deformation is created
using a wire attached to the phantom to enable artifact-free CT ac-
quisitions.

The scenario involved the following steps (described in figure
9): 1) perform a CT scan of the phantom at rest (first scan); 2) place
laparoscopic camera; 3) pull on wire attached to the liver to induce
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AUGMENTED REALITY II

Best  
paper 

N. Haouchine, J. Dequidt, I.P., E. Kerrien, M.-O. Berger, S. Cotin. 
Image-guided Simulation of Heterogeneous Tissue Deformation For 
Augmented Reality during Hepatic Surgery. In ISMAR proc. 2013  



TRAINING, PLANNING, NAVIGATION: COMPARISON

§medical training

‣example: cataract surgery 
‣ realistic, interactive (visual and haptic rendering), generic models  

§pre-operative planning

‣example: needle insertion planning in cryoablation 
‣ realistic, not necessarily interactive, patient-specific models 

§ intra-operative navigation

‣example: augmented reality for laparoscopic surgery 
‣ realistic, interactive, robust, patient-specific
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Physics-based
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Specificity



24

§Starting point: simulation for training 


§Ongoing transition towards

‣pre-operative planning of procedures 
‣ intra-operative navigation/guidance

2010 2014 2018

Procedural Training             Pre-operative planning            Per-operative guidance

Planning of needle insertion Augmented reality for liver surgery

complexity

Physics-based
Performance

Specificity

TRAINING, PLANNING, NAVIGATION: SUMMARY



SYNERGY
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§Parameter identification of simulation models 

§Patient-specific modeling for real-time simulation

§Medical robotics


§Continue working on all objectives as they influence each other

§And transfer as many things as possible

planning
guidance

training

clinical
products

R&D

SOFASIM
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COURSE OUTLINE
‣ 23/10: Motivation, context, examples. Images vs. Models.  

‣ 30/10: Geometry: creating a mesh. Gmsh, CGAL, Paraview, SOFA. 

‣ 06/11+?: Kinematics, kinetics, linear elasticity. Finite element method. 

‣ 20/11: Modeling a simple quasi-static deformable object. First simulation in 
SOFA: linear solvers, mappings, rendering. 

‣ 27/11: Including non-linearities: co-rotational and hyper-elastic models. Non-
linear solvers, convergence.  

‣ 04/12: Dynamics: explicit vs. implicit time integration methods.  

‣ 11/12: Advanced topics: contacts, interaction, visual and haptic real-time.  

‣ 18/12: Discussion, perspectives, practicals…


