OUTLINE

- Models: General Overview
- Mechanics and Continuum Mechanics
- Mechanics of Solid Objects and Elasticity
- Kinematics: displacements, deformations, strains
- Kinetics: forces, pressures, stresses, tractions
- Linear Elasticity: continuous formulation, FEM, solution
- Hyperelasticity: towards non-linear models
- Co-rotational approach: geometry-based compromise

MODELS

- A model is an abstract structure that uses mathematical language to describe the behaviour of a system.
- typical examples of models:
- electrophysiological model: describes electrical properties of tissue (e.g. electrophysiological model of heart)
- model of fluid dynamics: describes behaviour of liquid (e.g. cardiovascular fluid mechanics (blood circulation)
- biomechanical model of an organ: describes elastic/ plastic behaviour of tissues (e.g. hyperelastic model of liver)
- the mathematical language is usually based on differential equations - the behaviour is "a change of state" (derivative)

MECHANICS

- area of science dealing with physical bodies subject to force and / or displacements
- classical (Newtonian) vs. quantum mechanics :-)
- kinematics (geometry of motion): moving points/bodies without considering the causes of motion
- (analytical) dynamics: relationship between motion of bodies and its causes

$$
\begin{aligned}
& \mathbf{F}=m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=m \mathbf{a} \\
& \sum \mathbf{F}=0 \Leftrightarrow \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=0
\end{aligned}
$$

CONTINUUM MECHANICS

- deals with the analysis of the kinematics and the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles
- continuum hypothesis: well defined properties in infinitely small points (reference element of volume)
- solid mechanics: study of continuous materials with defined rest shape
- fluid mechanics: study of fluid materials (liquids, gases, plasmas) - e.g. CFD (computational fluid dynamics)
- obeying common laws: conservation of mass, energy, [linear and angular] momentum

SOLID MECHANICS

- studies the behavior of solid materials, especially their motion and deformation under the action of forces, temperature changes, phase changes, and other external or internal agents.
- elasticity: describes materials that return to their rest shape after applied stresses are removed
- viscoelasticity: elastic material with damping (hysteresis loop)
- plasticity: describes materials that permanently deform after a sufficient applied stress
- thermoplasticity: coupling between mechanics and thermal properties.

ELASTICITY

- ability of a body to resist a distorting influence or stress and to return to its original size and shape when the stress is removed
- basically, it defines mathematic relation between displacements and applied forces
- kinematics: relates displacement to strain (geometry)
- kinetics: relates forces to stresses (e.g. equilibrium)
- constitutive law: relation between the stress and strain (the material)
- linear elasticity: keeping all relations linear (non-conservative!)
- hypoelasticity: extension of linear elasticity
- hyperelasticity: a family of models (materials), typically used for tissues

TOWARDS THE LINEAR ELASTICITY

VECTOR AND TENSOR FIELDS I

- continuum mechanics: body as a continuum set of particles (3D points)
- initial configuration $X(X, Y, Z)$ vs. deformed configuration $x(x, y, z)$
- displacement - vector function in 3D defined for in each particle (vector field)

$$
\begin{aligned}
& \mathbf{u}(x, y, z)=\left(u_{x}(x, y, z), u_{y}(x, y, z), u_{z}(x, y, z)\right) \\
& \mathbf{x}=\mathbf{X}+\mathbf{u}
\end{aligned}
$$

- elasticity theory formulated using tensors
- similarly as vector field, tensor field is a "tensorial" function defined in each particle (i.e., over the continuous domain)
- typical operators on fields: gradient, divergence, curl

VECTOR AND TENSOR FIELDS II

Vector-matrix notation:

-using bold symbols: A, $\boldsymbol{\sigma}$ (matrix), v (vector)
-derivatives written as operators: gradient: $\quad \nabla f=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)^{\top} f$

Tensor notation:
-summation over repeated indices

$$
\begin{aligned}
a_{i j} b_{j} & \equiv \sum_{j} a_{i j} b_{j} \\
f_{i, j} & \equiv \frac{\partial f_{i}}{\partial x_{j}}
\end{aligned}
$$

-derivative using ',' notation

Example:
-divergence of a vector field

$$
\mathbf{u}(x, y, z)=\left(u_{x}(x, y, z), u_{y}(x, y, z), u_{z}(x, y, z)\right)
$$

$\operatorname{div} \mathbf{u}=\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{z}}{\partial z}\right)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(u_{x}, u_{y}, u_{z}\right)^{\top}=\nabla \cdot \mathbf{u}=u_{i, i}$

STATIC LINEAR ELASTICITY

Kinematics

Constitutive
equation

KINEMATICS: DEFORMATION

- deformation field: vector field defined in each point

$$
x=X+u(x, y, z)
$$

- deformation gradient: 2nd order tensor defined in each point

$$
F=I+\nabla u
$$

- decomposition of deformation gradient to rotation and stretch tensors

$$
F=R U=V R: \quad R^{-1}=R^{\top}
$$

- right Cauchy-Green deformation tensor (square of local change)

$$
C=F^{\top} F=I+\nabla u+\nabla u^{\top}+\nabla u^{\top} \nabla u
$$

- alternative: left Cauchy-Green deformation tensor

$$
B=F F^{\top}=I+\nabla u+\nabla u^{\top}+\nabla u^{\top} \nabla u
$$

KINEMATICS: STRAIN

- strain: a description of deformation in terms of relative displacement of particles in the body that excludes rigid-body motions
- different measures of strain: Green, Biot, Almansi, logarithmic strain
- Green strain tensor: geometric non-

$$
E=\frac{1}{2}(C-I)=\frac{1}{2}\left(\nabla u+\nabla u^{\top}+\nabla u^{\top} \nabla u\right)^{\text {linearity }}
$$

- linearization:

$$
\varepsilon=e=\frac{1}{2}\left(\nabla u+\nabla u^{\top}\right)
$$

$$
\left[\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{y x} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{z x} & \varepsilon_{z y} & \varepsilon_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial u_{x}}{\partial x} & \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u_{x}}{\partial z}+\frac{\partial u_{z}}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right) & \frac{\partial u_{y}}{\partial y} & \frac{1}{2}\left(\frac{\partial u_{y}}{\partial z}+\frac{\partial u_{z}}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial u_{z}}{\partial x}+\frac{\partial u_{x}}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial u_{z}}{\partial y}+\frac{\partial u_{y}}{\partial z}\right) & \frac{\partial u_{z}}{\partial z}
\end{array}\right]
$$

KINEMATICS: STRAIN

- components of strain: diagonal + shear strains:

$$
\left[\begin{array}{ccc}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{y x} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{z x} & \varepsilon_{z y} & \varepsilon_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial u_{x}}{\partial x} & \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u_{x}}{\partial z}+\frac{\partial u_{z}}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right) & \frac{\partial u_{y}}{\partial y} & \frac{1}{2}\left(\frac{\partial u_{y}}{\partial z}+\frac{\partial u_{z}}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial u_{z}}{\partial x}+\frac{\partial u_{x}}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial u_{z}}{\partial y}+\frac{\partial u_{y}}{\partial z}\right) & \frac{\partial u_{z}}{\partial z}
\end{array}\right]
$$

ELASTICITY-BASED MODELING

Kinematics

Strain -

Displacement
$\varepsilon=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{\top}\right)$
Constitutive
equation

KINETICS: STRESS

- stress: internal forces that neighboring particles of a continuous material exert on each other
- Cauchy (true) stress tensor: 2nd order tensor that completely define stress at a point
- relates a unit length vector and stress vector: $\mathbf{t}=\boldsymbol{\sigma} \mathbf{n}$
- the components of stress vector (surface traction):

$$
t_{i}=\frac{d g_{i}}{d S}
$$

$$
\boldsymbol{\sigma}=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right] \equiv\left[\begin{array}{lll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right] \equiv\left[\begin{array}{lll}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right]
$$

STRESS TENSOR

- stress: internal forces that neighboring particles of a continuous material exert on each other
- Cauchy (true) stress tensor: 2nd order tensor that completely defines stress at a point
- conservation of linear momentum: in static equilibrium, it satisfies equilibrium equation in each point (\mathbf{b} being the body forces) $\operatorname{div} \boldsymbol{\sigma}+\mathbf{b}=0 \quad$ i.e., $\quad \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}+\mathbf{b}=0 \quad$ i.e., $\quad \sigma_{i j, j}+b_{i}=0$
- conservation of angular momentum: symmetry (6 components instead of 9)

$$
\sigma_{i j}=\sigma_{j i} \quad \begin{aligned}
\tau_{x y} & =\tau_{y x} \\
\tau_{x z} & =\tau_{z x} \\
\tau_{y z} & =\tau_{z y}
\end{aligned}
$$

ELASTICITY-BASED MODELING

Kinematics

Strain -

Displacement
$\varepsilon=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{\top}\right)$

Constitutive
equation

Kinetics
Stress in static equilibrium

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}+\mathbf{b} & =0 \\
\mathbf{t} & =\boldsymbol{\sigma} \mathbf{n}
\end{aligned}
$$

CONSTITUTIVE EQUATION

- Cauchy elastic material: stress is a function of strain
- linear elasticity: stress is a linear function of strain
- Hooke law: the relation between stress (2nd order tensor) and strain (2nd order tensor) is a 4 th order tensor

$$
\sigma_{i j}=C_{i j k l} \varepsilon_{k l} \quad \text { i.e., } \quad \boldsymbol{\sigma}=\mathbf{C}: \varepsilon
$$

- in general, C has 81 components: however, symmetry of strain and stress reduces the number of components to 21
- for isotropic and homogeneous material, number of parameters is reduced to two Lamé coefficients:

$$
\boldsymbol{\sigma}=\lambda \mathbf{I} \operatorname{tr}(\boldsymbol{\varepsilon})+2 \mu \boldsymbol{\varepsilon}
$$

MATERIAL PARAMETERS

$$
\boldsymbol{\sigma}=\lambda \mathbf{I} \operatorname{tr}(\varepsilon)+2 \mu \varepsilon
$$

- in tensorial notation (with Einstein summation convention):

$$
\sigma_{i j}=\lambda \delta_{i j} \varepsilon_{k k}+2 \mu \varepsilon_{i j}=\lambda \delta_{i j} u_{k, k}+\mu\left(u_{i, j}+u_{j, i}\right)
$$

- Lamé coefficients: the second is sometimes called shear modulus (G)

$$
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)} \quad \mu=\frac{E}{2+2 \nu}
$$

- where
- E is the Young's modulus [Pa]: stiffness of the material
- nu is the Poisson's ratio: incompressibility of the material $<0,0.5$

ELASTICITY-BASED MODELING

Kinematics

Strain -

Displacement
$\varepsilon=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{\top}\right)$

Stress, static equilibrium
$\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}+\mathbf{b}=0$
$\mathbf{t}=\sigma \mathbf{n}$

Stress-strain relation

$$
\boldsymbol{\sigma}=\lambda \mathbf{I} \operatorname{tr}(\varepsilon)+2 \mu \boldsymbol{\varepsilon}
$$

PUTTING IT ALL TOGETHER

$$
\varepsilon=\frac{1}{2}\left(\boldsymbol{\nabla} \mathbf{u}+\boldsymbol{\nabla} \mathbf{u}^{\top}\right) \quad \boldsymbol{\sigma}=\lambda \mathbf{I} t r(\boldsymbol{\varepsilon})+2 \mu \boldsymbol{\varepsilon}
$$

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}+\mathbf{b} & =0 \\
\mathbf{t} & =\boldsymbol{\sigma} \mathbf{n}
\end{aligned}
$$

- Navier-Cauchy equation (see the proof performed by components on LinearElasticity@Wikipedia):

$$
(\lambda+\mu) \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{u})+\mu \boldsymbol{\nabla}^{2} \mathbf{u}+\mathbf{b}=0
$$

- tensor notation:

$$
(\lambda+\mu) u_{j, i j}+\mu u_{i, j j}+b_{i}=0
$$

- per component: $K \in\{x, y, z\}$

$$
(\lambda+\mu) \frac{\partial}{\partial K}\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{z}}{\partial z}\right)+\mu\left(\frac{\partial^{2} u_{K}}{\partial x^{2}}+\frac{\partial^{2} u_{K}}{\partial^{2} y^{2}}+\frac{\partial^{2} u_{K}}{\partial z^{2}}\right)+b_{K}=0
$$

THE PROBLEM TO SOLVE

- the body given by a continuous domain $\tilde{\Omega}$ with boundary $\tilde{\Gamma}=\partial \tilde{\Omega}$
- Navier-Cauchy equation holds for every point of the domain (f_{i} being body forces per unit volume)

$$
(\lambda+\mu) u_{j, i j}+\mu u_{i, j j}+b_{i}=0
$$

- essential boundary conditions has to be defined on a part of the boundary (to choose the particular solution of N.-C. PDE

$$
u_{i}^{p}=\bar{u}_{i}^{p} \quad \text { for } \quad p \in \tilde{\Gamma}_{E} \quad \text { where } \quad \tilde{\Gamma}_{E} \subset \tilde{\Gamma} \quad \text { and } \quad \tilde{\Gamma}=\partial \tilde{\Omega}
$$

- natural boundary conditions can be defined on a part of the boundary (i.e., tractions T along normal n in point p)

$$
T_{i}^{p}=\sigma_{i j} n_{j}^{p} \quad \text { for } \quad p \in \tilde{\Gamma}_{N} \quad \text { where } \quad \tilde{\Gamma}_{N} \subset \tilde{\Gamma} \quad \text { and } \quad \tilde{\Gamma}=\partial \tilde{\Omega}
$$

CONTINUOUS VS. DISCRETE SOLUTION II

- the only feasible way - discretization: approximate the original continuous quantities by discrete (piecewise) functions:

$$
\mathbf{u}(\mathbf{x}) \approx \sum_{n} \mathbf{U}_{n} \varphi_{n}(\mathbf{x}) \quad \frac{\partial \mathbf{u}(\mathbf{x})}{\partial x} \approx \sum_{n} \mathbf{U}_{n} \frac{\partial \varphi_{n}(\mathbf{x})}{\partial x}
$$

- central role of the interpolation (basis, shape, blending) functions
- required properties:
- local support: the function is non-zero only inside the element
- bound to a node \mathbf{n} :

$$
\varphi_{n}\left(\mathbf{x}_{m}\right)=\delta_{n m}
$$

FINITE ELEMENT METHOD

First appeared in 40s and 50s (civil engineering, aeronautics).

1. Weak formulation of the continuous differential problem

- integration over domain and multiplication by test functions

2. Discretization

- discretization of the domain by the elements
- discretization of the variable and the operator
- integration over element volume (quadratures)

3. Global assembling of the algebraic system of equations - imposing the compatibility between the elements
4. Imposition of the essential boundary conditions
5. Numerical solution of the algebraic system

EXAMPLE: STATIC LINEAR ELASTICITY (SLE)

Given relations (in tensor notation)

Newton's law (kinetics)

$$
\sigma_{i j, j}+b_{i}=0
$$

linearized strain (kinetics)
$e_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)$
linear material (constitutional law)

$$
\sigma_{i j}=\lambda e_{k k} \delta_{i j}+2 \mu e_{i j}
$$

Weak form of the Newton's equation (Lax-Milgram lemma) -integration over the volume
-multiplication by a test functions w_{i}

$$
\int_{\Omega}\left(\sigma_{i j, j}+b_{i}\right) w_{i} d \Omega=0
$$

The integral over volume allows to distribute the derivatives -application of chain rule -divergence theorem

$$
\int_{\Omega} \sigma_{i j} w_{i, j} d \Omega=\int_{\Omega} b_{i} w_{i} d \Omega+\int_{\partial \Omega} t_{i} w_{i} d \Gamma
$$

- no derivative of the stress tensor
- the only derivative applied to the test function on the left side
$-t_{\mathrm{i}}$: tractions defined over the surface $\partial \Omega$ (natural boundary conditions)

SLE: DISCRETIZATION AND GALERKIN METHOD

The actual weak form: $\int_{\Omega} \sigma_{i j} w_{i, j} d \Omega=\int_{\Omega} b_{i} w_{i} d \Omega+\int_{\partial \Omega} t_{i} w_{i} d \Gamma$

$$
\text { where: } \quad \sigma_{i j}=\lambda e_{k k} \delta_{i j}+2 \mu e_{i j} \quad e_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)
$$

Domain discretization by elements $e: \quad \tilde{\Omega} \approx \Omega=\biguplus_{e} \Omega_{e}$

- element e given by N nodes
- each element "equipped" with interpolation functions $\varphi^{e n}(x, y, z)$
- index n : node of the element (therefore N interpolation functions per element)

Galerkin method: use the same interpolation functions to discretize the test functions w and the solution u over an element e :

$$
\begin{array}{cc}
w_{i}=\varphi^{e n} W_{i}^{e n} \quad u_{i}=\varphi^{e n} U_{i}^{e n} & \text { Example of derivative: } \\
\text { (note: no summation over } e!\text {) } & w_{i, j}=\varphi_{, j}^{e n} W_{i}^{e n}
\end{array}
$$

SLE: GALERKIN METHOD II

Discretized week form: $\quad \sum_{e} \int_{\Omega_{e}} \sigma_{i j} \varphi_{, j}^{e n} W_{i}^{e n} d \Omega=\sum_{e} \int_{\Omega_{e}} b_{i} \varphi^{e n} W_{i}^{e n} d \Omega+\int_{\partial \Omega_{e}} t_{i} \varphi^{e n} W_{i}^{e n} d \Gamma$

$$
\text { where: } \quad \sigma_{i j}=\lambda e_{k k} \delta_{i j}+2 \mu e_{i j} \quad e_{i j}=\frac{1}{2}\left(\varphi_{, j}^{e n} U_{i}^{e n}+\varphi_{, i}^{e n} U_{j}^{e n}\right)
$$

Galerkin method: the equations hold for any virtual displacement W_{i} :

$$
\sum_{e} \int_{\Omega_{e}}\left(\sigma_{i j} \varphi_{, j}^{e n} d \Omega\right) \dot{W}_{e}^{e n}=\sum_{e}\left(\int_{\Omega_{e}} b_{i} \varphi^{e n} d \Omega+\int_{\partial \Omega_{e}} t_{i} \varphi^{e n} d \Gamma\right) \boldsymbol{W}_{i}^{e n}
$$

For each element e, we have the local equation:

$$
\int_{\Omega_{e}} \sigma_{i j} \varphi_{, j}^{e n} d \Omega=\int_{\Omega_{e}} b_{i} \varphi^{e n} d \Omega+\int_{\partial \Omega_{e}} t_{i} \varphi^{e n} d \Gamma
$$

where:

$$
\sigma_{i j}=\lambda \varphi_{, k}^{n e} U_{k}^{n e} \delta_{i j}+\mu\left(\varphi_{, j}^{e n} U_{i}^{e n}+\varphi_{, i}^{e n} U_{j}^{e n}\right)
$$

SLE: THE ELEMENT EQUATION

$$
\int_{\Omega_{e}} \sigma_{i j} \varphi_{, j}^{e n} d \Omega=\int_{\Omega_{e}} b_{i} \varphi^{e n} d \Omega+\int_{\partial \Omega_{e}} t_{i} \varphi^{e n} d \Gamma
$$

where:

$$
\sigma_{i j}=\lambda \varphi_{, k}^{n e} U_{k}^{n e} \delta_{i j}+\mu\left(\varphi_{, j}^{e n} U_{i}^{e n}+\varphi_{, i}^{e n} U_{j}^{e n}\right)
$$

Right-hand side:

- we consider tractions to be zero and
- body forces to be constant w.r.t. space

$$
b_{i} \int_{\Omega_{e}} \varphi^{n e} d \Omega
$$

Left-hand side:

- clearly linear in \boldsymbol{U} being the unknown displacements in nodes $n=1 \ldots . \mathrm{N}$

$$
\int_{\Omega_{e}} \lambda \varphi_{, k}^{n e} U_{k}^{n e} \delta_{i j}+\mu\left(\varphi_{, j}^{e n} U_{i}^{e n}+\varphi_{, i}^{e n} U_{j}^{e n}\right) \varphi_{, j}^{e n} d \Omega
$$

- since linear, the left-hand side can be re-organized to $K_{i j}^{e n} U_{j}^{e n}$

VOIGT NOTATION

Left-hand side:

$$
\int_{\Omega_{e}} \sigma_{i j} \varphi_{, j}^{n} d \Omega \quad \text { with } \quad \begin{aligned}
\sigma_{i j} & =\lambda e_{k k} \delta_{i j}+2 \mu e_{i j} \\
e_{i j} & =\frac{1}{2}\left(\varphi_{, j}^{n} U_{i}^{n}+\varphi_{, i}^{n} U_{j}^{n}\right)
\end{aligned}
$$

- the tensor notation has been useful to derive the final form
- for implementation purposes, Voigt notation is usually employed where 3×3 symmetric 1 -order tensor is stored as 6×1 vector:

$$
\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{12} & T_{22} & T_{23} \\
T_{13} & T_{23} & T_{33}
\end{array}\right]=\left[\begin{array}{lll}
T_{1} & T_{6} & T_{5} \\
\cdot & T_{2} & T_{4} \\
\cdot & \cdot & T_{3}
\end{array}\right]=\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5} \\
T_{6}
\end{array}\right]
$$

SLE: STRESS-STRAIN MATRIX D

Applying the Voigt notation to the stress-strain relation $\sigma_{i j}=\lambda e_{k k} \delta_{i j}+2 \mu e_{i j}$ results in following matrix equation (derivation is straightforward:

$$
\left(\begin{array}{c}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{array}\right)=\left(\begin{array}{cccccc}
\lambda+2 \mu & \lambda & \lambda & 0 & 0 & 0 \\
\lambda & \lambda+2 \mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & \lambda+2 \mu & 0 & 0 & 0 \\
0 & 0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & \mu & 0 \\
0 & 0 & 0 & 0 & 0 & \mu
\end{array}\right)\left(\begin{array}{c}
e_{11} \\
e_{22} \\
e_{33} \\
2 e_{12} \\
2 e_{13} \\
2 e_{23}
\end{array}\right)
$$

The matrix in the middle is 6×6 stress-strain matrix (denoted further as \mathbf{D}).
Before encoding the rest into matrices we have to choose the interpolation functions!

$$
\int_{\Omega_{e}} \sigma_{i j} \varphi_{, j}^{n} d \Omega \quad e_{i j}=\frac{1}{2}\left(\varphi_{, j}^{e n} U_{i}^{e n}+\varphi_{, i}^{e n} U_{j}^{e n}\right)
$$

Note that only derivatives of interpolation functions appear in the formulation.

P1: TETRAHEDRAL LINEAR ELEMENT

- tetrahedral: simplex in 3D having four nodes
- linear since we choose linear interpolation functions:

$$
\varphi(x, y, z)=a+b(x)+c(y)+d(z)
$$

(a general linear function in 3D)

- how to find the coefficients a,b,c,d? Recall the basic property of an interpolation function:

$$
\varphi^{i}\left(x_{j}, y_{j}, z_{j}\right)=\delta_{i j} \quad i, j \in 1, \ldots N
$$

(the value of an interpolation function associated to a node i is 1 when evaluated in that node $\left[\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right]$ and zero in any other node $\left[\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}, \mathrm{z}_{\mathrm{j}}\right]$)

SLE\&P1: COMPUTING THE SHAPE FUNCTIONS

Linear P1 (Lagrangian) tetrahedral element

- putting the condition into a matrix form gives:

$$
\left(\begin{array}{llll}
1 & x_{1} & y_{1} & z_{1} \\
1 & x_{2} & y_{2} & z_{2} \\
1 & x_{3} & y_{3} & z_{3} \\
1 & x_{4} & y_{4} & z_{4}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l|l|l|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- denoting \mathbf{V} the matrix on the left (nodal matrix), 4 instances of coefficients corresponding to 4 interpolation functions (associated to each node) can be computed as columns of the \mathbf{V}^{-1} (recall the requirements for mesh quality!) - recall also that only derivatives of interpolation functions are present in the formulation (so only coefficients b, c, d) will be used

SLE\&P1: STRAINDISPLACEMENT MATRIX B

Using the Voigt notation and assuming the linear P1 tetrahedra used for discretization, the left-hand side

$$
\int_{\Omega_{e}} \sigma_{i j} \varphi_{, j}^{n} d \Omega \quad \sigma_{i j}=\lambda e_{k k} \delta_{i j}+2 \mu e_{i j} \quad e_{i j}=\frac{1}{2}\left(\varphi_{, j}^{e n} U_{i}^{e n}+\varphi_{, i}^{e n} U_{j}^{e n}\right)
$$

$$
\begin{aligned}
& \text { can be rewritten in matrix form as: } \\
& \int_{\Omega_{e}} \mathbf{B}_{e}^{\top} \xrightarrow{\mathbf{D}_{e} \mathbf{B}_{e} d \Omega} \mathbf{D}_{\mathbf{e}}=\left(\begin{array}{ccccccccc}
\lambda+2 \mu & \lambda & \lambda & 0 & 0 & 0 \\
\lambda & \lambda+2 \mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & \lambda+2 \mu & 0 & 0 & 0 \\
0 & 0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & \mu & 0 \\
0 & 0 & 0 & 0 & 0 & \mu
\end{array}\right) \\
& \mathbf{B}_{e}=\left(\begin{array}{cccccccccc}
b_{1} & 0 & 0 & b_{2} & 0 & 0 & b_{3} & 0 & 0 & b_{4} \\
0 & c_{1} & 0 & 0 & c_{2} & 0 & 0 & c_{3} & 0 & 0 \\
c_{4} & 0 \\
0 & 0 & d_{1} & 0 & 0 & d_{2} & 0 & 0 & d_{3} & 0 \\
0 & d_{4} \\
c_{1} & b_{1} & 0 & c_{2} & b_{2} & 0 & c_{3} & b_{3} & 0 & c_{4} \\
d_{1} & 0 & b_{1} & d_{2} & 0 & b_{2} & d_{3} & 0 & b_{3} & d_{4} \\
0 & d_{1} & c_{1} & 0 & d_{2} & c_{2} & 0 & d_{3} & c_{3} & 0 \\
b_{4} \\
0 & d_{4} & c_{4}
\end{array}\right)
\end{aligned}
$$

SLE\&P1: LOCAL STIFFNESS MATRIX

What about the integration?

- recall that only derivatives of shape functions appear in the formulation
- since interpolation functions are linear, only coefficients b,c,d appear in the matrices
- therefore, the integrand is constant (does not depend on x, y, z)
- integration of a constant over a tetrahedron is computed by multiplication of the constant by the volume of the tetrahedron
- the volume of a tetrahedron is given by determinant of nodal matrix: $\mathcal{V}_{e}=\frac{\left|\mathbf{V}_{e}\right|}{6}$
- the final form is therefore:

$$
\mathbf{K}_{e}=\int_{\Omega_{e}} \mathbf{B}_{e}^{\top} \mathbf{D}_{e} \mathbf{B}_{e} d \Omega=\frac{\left|\mathbf{V}_{e}\right|}{6} \mathbf{B}_{e}^{\top} \mathbf{D}_{e} \mathbf{B}_{e}
$$

- the local matrices $\mathbf{K}_{\mathbf{e}}$ are assembled into a global matrix \mathbf{K}
- the contribution from different elements to the same node are added (globalization matrix)

ASSEMBLING THE GLOBAL SYSTEM

- the procedure now gives 12×12 matrix (4×4 block matrix where each block (i, j) corresponds to stiffness relation between nodes n and m ($\mathrm{n}, \mathrm{m}=1 \ldots 4$)
- global assembly:
- mapping for each node from local to global indices: (e,n) -> \mathbb{N}
- the block (n, m) from matrix associated to element e is added to the global block at position (n, m) in the global matrix
- usually is done directly during the computation of local matrix
- the global matrix is a 3 Nx 3 N block matrix where N is the total number of DOFs (and 3 N is thus the number of degrees of freedom)

BOUNDARY CONDITIONS

- choosing a particular solution (otherwise \mathbf{K} singular)
- several options to impose a Dirichlet boundary condition $\mathbf{u}_{i}=\mathrm{V}$
- elimination (projection):
- left side: $K(i, k)=K(k, i)=0$ for all $k \neq i, K(i, i)=1$
— right side: $\mathrm{f}(\mathrm{i})=\mathrm{V}$ ("pseudo-loads")
— not very flexible and difficult to parallelize
- penalization: adding a penalization term to impose the boundary condition (reduces the "quality" of matrix in terms of the condition number)
- Lagrange multipliers: changes the properties of the matrix (larger, possibly indefinite)

THE GLOBAL STIFFNESS MATRIX

- linear relation between forces (f) and displacements (\mathbf{u}):
- encoding relations between nodes
$\mathbf{K u}=\mathbf{f}$
- highly sparse ($<3 \%$ of non-zero)
- non-zero blocks only for combinations of nodes connected by a mesh edge
- suitable representation [ij $\mathbf{K}_{\mathbf{i j}}$]
- efficient matrix-vector multiplication
- regular after the imposition of boundary c

- symmetric, positive-definite, sparsity pattern depends on node numbering (can be improved e.g. by Metis)

PRACTICAL MATRIX MANIPULATION

- sparse matrices generated from the FE formulation
- only a small fraction of entries non-zero ($<3 \%$)
- system of N nodes in 3 D results in size of $(3 \mathrm{~N})^{2}$
- practical example: 10000 nodes in double (4B): 3.4GB
- but 3.3GB are zeros...
- common format: $\mathrm{ij} \mathrm{A}_{\mathrm{ij}}$ ($137 \mathrm{MB}, 2 \mathrm{xint}+1 \times$ double)
- row vs. column compressed
- sometimes storing both representations can be practical

SYSTEMS OF LINEAR EQUATIONS

$=$ scalar case: $a x=b \rightarrow x=\frac{b}{a}$

- vectorial case: $\quad \mathbf{A x}=\mathbf{b} \quad \longrightarrow \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$
- properties of \mathbf{A} (considered being a square matrix)
- regular matrix: inverse \mathbf{A}^{-1} exists
- symmetric: equals to transpose, $\mathbf{A}^{\mathbf{T}}=\mathbf{A}$
- positive-definite: $\mathbf{z}^{\mathrm{T}} \mathbf{A z}$ is positive for a vector \mathbf{z} (eigenvalues)
- orthogonal matrix: $\mathbf{A}^{\mathbf{T}}=\mathbf{A}^{-1}$ (representation of rotations)

DIRECT SOLUTION OF LINEAR SYSTEM

- solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$
- direct solutions: the inverse \mathbf{A}^{-1} computed explicitly as factorization
- for cases when you need to recompute $\mathrm{Ax}=\mathrm{b}^{\prime}$ for another b^{\prime}
- 2 phases: decomposition (factorisation), solution (back-substitution)
- Cholesky decomposition: $\mathbf{A}=$ LL $^{\mathrm{T}}$ (L lower triangular matrix): symmetric positive-definite matrices, most optimal (num. of operation)
- LDL decomposition: $\mathbf{A}=$ LDL $^{\text {T }}$ (\mathbf{D} diagonal), works for some indefinite matrices where Cholesky fails
- LU decomposition: (U upper triangular matrix), general case, modified Gaussian elimination (Doolittle, Crout algorihms, pivoting)

ITERATIVE SOLUTION OF LINEAR SYSTEM

- solution $\quad \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$
- will depend on properties of A
- iterative solutions: the inverse \mathbf{A}^{-1} is not assembled explicitly
- start with an estimation $\mathbf{x}^{(0)}$ and iterate until $\left|\mathbf{A x} \mathbf{x}^{(\mathbf{i})}-\mathbf{b}\right|<\mathbf{e}$ (stopping criterium usually more complicated, absolute vs. relative residual)
- conjugate gradients (CG): for symmetric, positive-definite matrices (see Shewchuk: Conjugate gradients without agonizing pain)
- bi-conjugate gradient (BiCG): generalization for non-symmetric
- generalized minimal residual (GMRES): any regular matrix
- preconditioned versions: approximation of \mathbf{A}^{-1}

ISSUES WITH LINEAR ELASTICITY

- after imposition of the boundary conditions, $\mathbf{K u}=\mathbf{f}$ the system can be solved
- iterative: even the matrix \mathbf{K} does not have to be assembled
- direct: the both \mathbf{K} and \mathbf{K}^{-1} are assembled and stored explicitly, so \mathbf{u} can be updated for any new \mathbf{f}

- linearized Green strain does not work for large deformations

TOWARDS NONLINEAR: COROTATIONAL FORMULATION

- an extremely successful approach in soft-tissue modeling allowing for large displacements (but supposing small strains)
- C.Felippa: A systematic approach to the element-independent corotational dynamics of finite elements, 2000
- uses the linear-elasticity but co-rotational strain
- the simulation is performed in small steps and in each step:

- the actual deformation of every element e is decomposed into rigid and deformable components w.r.t. the initial configuration
- the rigid component is given by a rotation $\mathbf{R}_{\mathbf{e}}$ of the component
- the local stiffness matrix $\mathbf{K}_{\mathbf{e}}$ is updated as
$\mathbf{R}_{e}^{\top} \mathbf{K}_{e} \mathbf{R}_{e}$

CO-ROTATIONAL FORMULATION II

- the matrix \mathbf{K} is not constant anymore $(\mathbf{K}=>\mathbf{K}(\mathbf{u}))$
- the rotational matrices $\mathbf{R}_{\mathbf{e}}(\mathbf{u})$ depend on the actual \mathbf{u}
- in each step, Newton-Raphson method should be performed, actually, works quite stably even if only one iteration is performed
- the decomposition can be performed by various methods
- choosing the basis
- polar(1), QR(2), SVD

- although the large deformations are simulated realistically, only small strains are handled correctly
- more information about the implementation in SOFA:
- M.Nesme et al.: Efficient, physically plausible finite elements, 2005

