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Models: General Overview

Mechanics and Continuum Mechanics

Mechanics of Solid Objects and Elasticity

Kinematics: displacements, deformations, strains

Kinetics: forces, pressures, stresses, tractions

Linear Elasticity: continuous formulation, FEM, solution

Hyperelasticity: towards non-linear models

Co-rotational approach: geometry-based compromise 



MODELS

A model is an abstract structure that uses mathematical language to 
describe the behaviour of a system.

typical examples of models:

– electrophysiological model: describes electrical properties of tissue 
(e.g. electrophysiological model of heart)

– model of fluid dynamics: describes behaviour of liquid (e.g. 
cardiovascular fluid mechanics (blood circulation)

– biomechanical model of an organ: describes elastic/plastic 
behaviour of tissues (e.g. hyperelastic model of liver)

the mathematical language is usually based on differential equations

– the behaviour is “a change of state” (derivative)



MECHANICS

area of science dealing with physical bodies subject to force and/or 
displacements

classical (Newtonian) vs. quantum mechanics :-) 

– kinematics (geometry of motion): moving points/bodies without 
considering the causes of motion 

– (analytical) dynamics: relationship between motion of bodies and its causes 



CONTINUUM MECHANICS

deals with the analysis of the kinematics and the mechanical behavior 
of materials modeled as a continuous mass rather than as discrete 
particles

continuum hypothesis: well defined properties in infinitely small 
points (reference element of volume) 

solid mechanics: study of continuous materials with defined rest shape 

fluid mechanics: study of fluid materials (liquids, gases, plasmas)

e.g. CFD (computational fluid dynamics)

obeying common laws: conservation of mass, energy, [linear and 
angular] momentum



SOLID MECHANICS

studies the behavior of solid materials, especially their motion and 
deformation under the action of forces, temperature changes, phase 
changes, and other external or internal agents.

elasticity: describes materials that return to their rest shape after 
applied stresses are removed

viscoelasticity: elastic material with damping (hysteresis loop)

plasticity: describes materials that permanently deform after a 
sufficient applied stress

thermoplasticity: coupling between mechanics and thermal properties.



ELASTICITY

ability of a body to resist a distorting influence or stress and to return to 
its original size and shape when the stress is removed

basically, it defines mathematic relation between displacements and 
applied forces

kinematics: relates displacement to strain (geometry)

kinetics: relates forces to stresses (e.g. equilibrium)

constitutive law: relation between the stress and strain (the material)

linear elasticity: keeping all relations linear (non-conservative!)

hypoelasticity: extension of linear elasticity

hyperelasticity: a family of models (materials), typically used for tissues



TOWARDS THE LINEAR 
ELASTICITY



VECTOR AND TENSOR 
FIELDS I

continuum mechanics: body as a continuum set of particles (3D points)

initial configuration X (X,Y,Z) vs. deformed configuration x (x,y,z)

displacement – vector function in 3D defined for in each particle (vector 
field)  
 
 

elasticity theory formulated using tensors

similarly as vector field, tensor field is a “tensorial” function defined 
in each particle (i.e., over the continuous domain)

typical operators on fields: gradient, divergence, curl

u(x, y, z) = (u
x

(x, y, z), u
y

(x, y, z), u
z

(x, y, z))

x = X+ u



VECTOR AND TENSOR 
FIELDS II

Tensor notation:
–summation over repeated indices 

–derivative using ‘,’ notation

aijbj ⌘
X

j

aijbj

fi,j ⌘
�fi
�xj

Vector-matrix notation:
–using bold symbols: A, σ (matrix), v (vector)

–derivatives written as operators: gradient: rf = ( @

@x

, @

@y

, @

@z

)>f

Example:
–divergence of a vector field
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KINEMATICS: 
DEFORMATION

deformation field: vector field defined in each point  

deformation gradient: 2nd order tensor defined in each point  

decomposition of deformation gradient to rotation and stretch 
tensors

right Cauchy-Green deformation tensor (square of local change)  

alternative: left Cauchy-Green deformation tensor 

F = I +ru

C = F>F = I +ru+ru> +ru>ru

x = X + u(x, y, z)

F = RU = V R : R�1 = R>

B = FF> = I +ru+ru> +ru>ru



KINEMATICS: STRAIN

strain: a description of deformation in terms of relative displacement 
of particles in the body that excludes rigid-body motions

different measures of strain: Green, Biot, Almansi, logarithmic strain

Green strain tensor:  

linearization: 

 
 
 
 

E =
1

2
(C � I) =

1

2
(ru+ru> +ru>ru)

geometric non-
linearity

" = e = 1
2 (ru+ru>)



KINEMATICS: STRAIN

components of strain: diagonal + shear strains:  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" = 1
2 (ru+ru>)



KINETICS: STRESS

stress:  internal forces that neighboring particles of a continuous 
material exert on each other

Cauchy (true) stress tensor: 2nd order tensor that completely define 
stress at a point

relates a unit length vector and stress vector:

the components of stress vector (surface traction):

t = �n

ti =
dgi
dS



STRESS TENSOR

stress:  internal forces that neighboring particles of a continuous 
material exert on each other

Cauchy (true) stress tensor: 2nd order tensor that completely defines 
stress at a point

conservation of linear momentum: in static equilibrium, it satisfies 
equilibrium equation in each point (b being the body forces)  

conservation of angular momentum: symmetry (6 components 
instead of 9) �ij = �ji

⌧
xy

= ⌧
yx

⌧
xz

= ⌧
zx

⌧
yz

= ⌧
zy

div� + b = 0 i.e., r · � + b = 0 i.e., �ij,j + bi = 0



Constitutive
 equation

ELASTICITY-BASED  
MODELING

Kinematics

Strain –
Displacement 

Kinetics

Stress in static 
equilibrium

" = 1
2 (ru+ru>) r · � + b = 0

t = �n



CONSTITUTIVE 
EQUATION

Cauchy elastic material: stress is a function of strain 

linear elasticity: stress is a linear function of strain

Hooke law: the relation between stress (2nd order tensor) and strain 
(2nd order tensor) is a 4th order tensor  

in general, C has 81 components: however, symmetry of strain and 
stress reduces the number of components to 21

for isotropic and homogeneous material, number of parameters is 
reduced to two Lamé coefficients:

� = �Itr(") + 2µ"

�ij = Cijkl"kl i.e., � = C : "



MATERIAL PARAMETERS

in tensorial notation (with Einstein summation convention):  

Lamé coefficients: the second is sometimes called shear modulus (G)  
 

where 

E is the Young’s modulus [Pa]: stiffness of the material

nu is the Poisson’s ratio: incompressibility of the material <0,0.5

� = �Itr(") + 2µ"

�ij = ��ij"kk + 2µ"ij = ��ijuk,k + µ(ui,j + uj,i)
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The function W is coupled with the second Piola stress tensor:

�ij =
↵W

↵�ij
. (2.20)

For the isotropic and homogeneous materials, the stored energy function is completely
characterized by the principal invariants ⇤1, ⇤2, ⇤3 of the Green strain tensor defined by
Eq. 2.9 and Eq. 2.10. Using this invariants, the stored energy function W can formulated as
infinite series:

W =
��

i=0

��

j=0

��

k=0

(⇤1 � 3)i(⇤2 � 3)j(⇤3 � 1)k (2.21)

where C000 = 0. For the case of incompressible materials where the deformations are
isochoric, the third invariant must be equal to one as introduced before. Usually, this con-
dition is enforced by Lagrange multipliers ⌥ which then works as an internal pressure. The
stored energy is then reformulated for the incompressible materials as follows:

W =
��

i=0

��

j=0

(⇤1 � 3)i(⇤2 � 3)j + ⌥(⇤3 � 1) (2.22)

where C00 = 0.
There are two popular material models which are often used for the modelling of soft

tissues. First, in the case of StVenant-Kirchhoff material, the stored energy function W is
linear and Cijk = 0 except for

C100 = µ C200 =
⌅ + 2µ

8
C010 = �µ

3
(2.23)

where µ and ⌅ are Lamé material constants. The energy function W is then given as follows:

W =
⌅

2
�ii�jj + µ�ij�ji. (2.24)

Using the relation 2.20, the stress/strain relation is linear:

�ij = ⌅�mm⇥ij + 2µ�ij (2.25)

Therefore, the only non-linearity in the StVenant material is given by the displacement/strain
relationship shown by the Eq. 2.7. The two Lamé coefficients from the Eq. 2.23 are defined
as

⌅ =
E⌃

(1 + ⌃)(1� 2⌃)
µ =

E

2 + 2⌃
(2.26)

where E is Young modulus and nu ⇥ (0, 1
2) is the Poisson ratio which determines the

incompressibility of the material. The values of both E and ⌃ has been determined experi-
mentally for various types of materials and they can be found in literature.

Second, in the case of Mooney-Rivlin material, Cijk = 0 except for C100 and C010. The
stored energy function W is determined as

W = C100(⇤1 � 3) + C010(⇤2 � 3) + �(
⇥

|⇤3|) (2.27)



Constitutive
 equation

ELASTICITY-BASED  
MODELING

Kinematics

Strain –
Displacement 

Kinetics

Stress, static 
equilibrium

� = �Itr(") + 2µ"

Stress-strain relation

" = 1
2 (ru+ru>) r · � + b = 0

t = �n



Navier-Cauchy equation (see the proof performed by components 
on LinearElasticity@Wikipedia):

PUTTING IT ALL 
TOGETHER

" = 1
2 (ru+ru>) � = �Itr(") + 2µ"

tensor notation:

per component: K 2 {x, y, z}

r · � + b = 0

t = �n

(�+ µ) @

@K

⇣
@u

x

@x

+ @u

y

@y

+ @u

z

@z

⌘
+ µ

⇣
@

2
u

K

@x

2 + @

2
u

K

@

2
y

2 + @

2
u

K

@z

2

⌘
+ b

K

= 0

(�+ µ)r(r · u) + µr2u+ b = 0

(�+ µ)uj,ij + µui,jj + bi = 0



the body given by a continuous domain       with boundary

Navier-Cauchy equation holds for every point of the domain  
(fi being body forces per unit volume)  
 

essential boundary conditions has to be defined on a part of the 
boundary (to choose the particular solution of N.-C. PDE  

natural boundary conditions can be defined on a part of the 
boundary (i.e., tractions T along normal n in point p)  

THE PROBLEM TO SOLVE

⌦̃

T p
i = �ijn

p
j for p 2 ˜

�N where

˜

�N ⇢ ˜

� and

˜

� = @ ˜⌦

up
i = ūp

i for p 2 ˜

�E where

˜

�E ⇢ ˜

� and

˜

� = @ ˜⌦

�̃ = @⌦̃

(�+ µ)uj,ij + µui,jj + bi = 0



the only feasible way – discretization: approximate the original 
continuous quantities by discrete (piecewise) functions:

central role of the interpolation (basis, shape, blending) functions

required properties: 

local support:  
the function is non-zero  
only inside the element

bound to a node n: 
 

CONTINUOUS VS. 
DISCRETE SOLUTION II
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Figure 2.2: Illustration of shape functions over finite elements. Both linear and quadratic functions
over one-dimensional domain are shown by (a). Linear shape function over 2D rectangular element
is depicted by (b) and the same 2D element is used with quadratic shape function at (c).

2.2.2 Weak Formulation

The weak formulation of a boundary-value problem is a weighted-integral statement of a
differential equation in which the differentiation is distributed among the dependent vari-
able and the weight function and it includes the natural boundary conditions of the prob-
lem. In the following, the derivation of the weighted-integral statement is briefly sketched.

Let us substitute the continuous solution u in the operator equation 2.33 with the dis-
cretized solution uN defined by 2.36, where the unknown coefficients are the values of the
solution in the nodes of the elements from the discretization T�. Since the solution uN is
approximative, there is a residual error r which is computed as

r = L (uN )� b. (2.37)

Usually, it is impossible to force the error r to be zero in each node, nevertheless, it can
be distributed over the domain � with some weighting functions ⇥j , resulting in weighted-
residual formulation

M�

j=1

⇥

�

r⇥jdV = 0 (2.38)

The weights {⇥j} can be chosen as identical to the basis function {⇤j}. Then, the differ-
entiation can be distributed between the dependent variable uN and the weight functions
⇤j using integral theorems and the natural boundary conditions. Several examples of the
week formulations for various problems can be found in [20].

2.2.3 Shape Functions and Element Equations

For each element, a complete set {�k} of shape functions can be constructed, for which
the small support property is fulfilled, i. e. the function is non-zero over the domain of the
element. The functions {�k} work as interpolation functions over the element using the ele-
ment nodes as control (interpolation) points. There are “libraries” of shape functions being
associated to each element that can be chosen according to the mathematical properties
of the boundary-value problemand its solution. Usually, polynomial piecewise functions

u(x) ⇡
X

n

Un'n(x)
@u(x)

@x

⇡
X

n

Un
@'n(x)

@x

'n(xm) = �nm



FINITE ELEMENT 
METHOD

First appeared in 40s and 50s (civil engineering, aeronautics).

1. Weak formulation of the continuous differential problem
– integration over domain and multiplication by test functions

2. Discretization  
– discretization of the domain by the elements
– discretization of the variable and the operator
– integration over element volume (quadratures)

3. Global assembling of the algebraic system of equations 
– imposing the compatibility between the elements

4. Imposition of the essential boundary conditions

5. Numerical solution of the algebraic system



EXAMPLE: STATIC LINEAR 
ELASTICITY (SLE)

�ij,j + bi = 0 eij =
1

2
(ui,j + uj,i) ⇤ij = ⇥ekk�ij + 2µeij

Given relations (in tensor notation) 
Newton’s  law (kinetics)                    linearized strain (kinetics)                 linear material (constitutional law)

�ij,j + bi = 0 eij =
1

2
(ui,j + uj,i) ⇤ij = ⇥ekk�ij + 2µeij

Given relations (in tensor notation) 
Newton’s  law (kinetics)                    linearized strain (kinetics)                 linear material (constitutional law)

Weak form of the Newton’s equation (Lax-Milgram lemma)
–integration over the volume  
–multiplication by a test functions wi

The integral over volume allows to distribute the derivatives
–application of chain rule  
–divergence theorem

– no derivative of the stress tensor  
– the only derivative applied to the test function on the left side
– ti: tractions defined over the surface         (natural boundary conditions)       @⌦

Z

⌦
(�ij,j + bi)wid� = 0

Z

⌦
�ijwi,jd⇥ =

Z

⌦
biwid⇥+

Z

�⌦
tiwid�



SLE: DISCRETIZATION 
AND GALERKIN METHOD

Galerkin method: use the same interpolation functions to discretize the test 
functions w  and the solution u over an element e:

Z

⌦
�ijwi,jd⇥ =

Z

⌦
biwid⇥+

Z

�⌦
tiwid�The actual weak form:

Domain discretization by elements e: 
– element e given by N nodes 
– each element “equipped” with interpolation functions   
– index n: node of the element (therefore N interpolation functions per element)

where: ⇤ij = ⇥ekk�ij + 2µeij eij =
1

2
(ui,j + uj,i)

�en(x, y, z)

wi = �enW en
i ui = �enUen

i
Example of derivative:

(note: no summation over e!)

⌦̃ ⇡ ⌦ =
U

e ⌦e

wi,j = 'en
,j W

en
i



SLE: GALERKIN METHOD 
II

Discretized week form:

where: ⇤ij = ⇥ekk�ij + 2µeij eij =
1

2
(�en

,j U
en
i + �en

,i U
en
j )

Galerkin method: the equations hold for any virtual displacement Wi:
X

e

Z

⌦e

�
�ij⇥

en
,j d⇥

�
W en

i =
X

e

✓Z

⌦e

bi⇥
end⇥+

Z

�⌦e

ti⇥
end�

◆
W en

i

X

e

Z

⌦e

�ij⇥
en
,j W

en
i d⇥ =

X

e

Z

⌦e

bi⇥
enW en

i d⇥+

Z

�⌦e

ti⇥
enW en

i d�

For each element e, we have the local equation:Z

⌦e

�ij⇥
en
,j d⇥ =

Z

⌦e

bi⇥
end⇥+

Z

�⌦e

ti⇥
end�

where: ⇤ij = ⇥⌅ne
,k U

ne
k �ij + µ(⌅en

,j U
en
i + ⌅en

,i U
en
j )



SLE: THE ELEMENT 
EQUATION

Z

⌦e

�ij⇥
en
,j d⇥ =

Z

⌦e

bi⇥
end⇥+

Z

�⌦e

ti⇥
end�

where: ⇤ij = ⇥⌅ne
,k U

ne
k �ij + µ(⌅en

,j U
en
i + ⌅en

,i U
en
j )

Right-hand side: 
– we consider tractions to be zero and
– body forces to be constant w.r.t. space
 
Left-hand side: 
– clearly linear in U being the unknown displacements in nodes n=1...NZ

⌦e

⇥⇤ne
,k U

ne
k �ij + µ(⇤en

,j U
en
i + ⇤en

,i U
en
j )⇤en

,j d�

– since linear, the left-hand side can be re-organized to Ken
ij U

en
j

bi

Z

⌦e

'ned⌦



VOIGT NOTATION

Left-hand side: 

– the tensor notation has been useful to derive the final form
– for implementation purposes, Voigt notation is usually employed where 3x3 
symmetric 1-order tensor is stored as 6x1 vector:

Z

⌦e

�ij⇥
n
,jd⌦

⇤ij = ⇥ekk�ij + 2µeij

eij =
1

2
(�n

,jU
n
i + �n

,iU
n
j )

with



SLE: STRESS-STRAIN 
MATRIX D

Applying the Voigt notation to the stress–strain relation  
results in following matrix equation (derivation is straightforward:  

The matrix in the middle is 6x6 stress-strain matrix (denoted further as D).  

Before encoding the rest into matrices we have to choose the interpolation functions!Z

⌦e

�ij⇥
n
,jd⌦

Note that only derivatives of interpolation functions appear in the formulation.

0

BBBBBB@

⇥11

⇥22

⇥33

⇥12

⇥13

⇥23

1

CCCCCCA
=

0

BBBBBB@

�+ 2µ � � 0 0 0
� �+ 2µ � 0 0 0
� � �+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

1

CCCCCCA

0

BBBBBB@

e11
e22
e33
2e12
2e13
2e23

1

CCCCCCA

⇤ij = ⇥ekk�ij + 2µeij

eij =
1

2
(�en

,j U
en
i + �en

,i U
en
j )



P1: TETRAHEDRAL 
LINEAR ELEMENT

– tetrahedral: simplex in 3D having 
four nodes
– linear since we choose linear 
interpolation functions:

(a general linear function in 3D) 

– how to find the coefficients a,b,c,d? Recall the basic property of an 
interpolation function:   

(the value of an interpolation function associated to a node i is 1 when 
evaluated in that node [xi, yi, zi] and zero in any other node [xj,yj,zj]) 

⇥i(xj , yj , zj) = �ij i, j 2 1, . . . N

�(x, y, z) = a+ b(x) + c(y) + d(z)



SLE&P1: COMPUTING THE 
SHAPE FUNCTIONS

Linear P1 (Lagrangian) tetrahedral element

– putting the condition into a matrix form gives:

– denoting V the matrix on the left (nodal matrix), 4 instances of coefficients 
corresponding to 4 interpolation functions (associated to each node) can be 
computed as columns of the V–1  (recall the requirements for mesh quality!)
– recall also that only derivatives of interpolation functions are present in the 
formulation (so only coefficients b,c,d) will be used

0

BB@

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

1

CCA

0

BB@

a

b

c

d

1

CCA =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA



SLE&P1: STRAIN-
DISPLACEMENT MATRIX B 

Using the Voigt notation and assuming the linear P1 tetrahedra used for 
discretization, the  left-hand side

can be rewritten in matrix form as:

Z

⌦e

�ij⇥
n
,jd⌦

De =

0

BBBBBB@

�+ 2µ � � 0 0 0
� �+ 2µ � 0 0 0
� � �+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

1

CCCCCCA

Z

⌦e

B>
e DeBed⌦

Be =

0

BBBBBB@

b1 0 0 b2 0 0 b3 0 0 b4 0 0
0 c1 0 0 c2 0 0 c3 0 0 c4 0
0 0 d1 0 0 d2 0 0 d3 0 0 d4
c1 b1 0 c2 b2 0 c3 b3 0 c4 b4 0
d1 0 b1 d2 0 b2 d3 0 b3 d4 0 b4
0 d1 c1 0 d2 c2 0 d3 c3 0 d4 c4

1

CCCCCCA

⇤ij = ⇥ekk�ij + 2µeij eij =
1

2
(�en

,j U
en
i + �en

,i U
en
j )



SLE&P1: LOCAL STIFFNESS 
MATRIX

What about the integration?
– recall that only derivatives of shape functions appear in the formulation
– since interpolation functions are linear, only coefficients b,c,d appear in the 
matrices 
– therefore, the integrand is constant (does not depend on x,y,z)
– integration of a constant over a tetrahedron is computed by multiplication of 
the constant by the volume of the tetrahedron
– the volume of a tetrahedron is given by determinant of nodal matrix: 
– the final form is therefore: 

– the local matrices Ke are assembled into a global matrix K 
– the contribution from different elements to the same node are added 
(globalization matrix)

Ke =

Z

⌦e

B>
e DeBed� =

|Ve|
6

B>
e DeBe

Ve =
|Ve|
6



ASSEMBLING THE 
GLOBAL SYSTEM

the procedure now gives 12x12 matrix (4x4 block matrix where each 
block (i,j) corresponds to stiffness relation between nodes n and m 
(n,m=1…4)

global assembly: 

mapping for each node from local to global indices: (e,n) -> n

the block (n,m) from matrix associated to element e is added to 
the global block at position (n,m) in the global matrix

usually is done directly during the computation of local matrix 

the global matrix is a 3Nx3N block matrix where N is the total 
number of DOFs (and 3N is thus the number of degrees of 
freedom)



BOUNDARY CONDITIONS

choosing a particular solution (otherwise K singular)

several options to impose a Dirichlet boundary condition ui=V

elimination (projection):  
— left side: K(i,k) = K(k,i) = 0 for all k ≠ i, K(i,i) = 1 
— right side:  f(i) = V (“pseudo-loads”)  
— not very flexible and difficult to parallelize

penalization: adding a penalization term to impose the boundary 
condition (reduces the “quality” of matrix in terms of the 
condition number)

Lagrange multipliers: changes the properties of the matrix 
(larger, possibly indefinite) 



THE GLOBAL STIFFNESS 
MATRIX

linear relation between forces (f) and displacements (u):

encoding relations between nodes

highly sparse (<3% of non-zero)

non-zero blocks only for combinations  
of nodes connected by a mesh edge

suitable representation  [i j Kij]

efficient matrix–vector multiplication

regular after the imposition of boundary conditions

symmetric, positive-definite, sparsity pattern depends on node 
numbering (can be improved e.g. by Metis)
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(a) (b) (c)

Figure 2.3: Illustration of the sparsity pattern for the tangent stiffness matrix K0 with (a) no con-
straints applied (b) boundary conditions imposed via Lagrange multipliers (c) both incompressibility
and boundary conditions applied via Lagrange multipliers. Each non-zero element of the matrix is
represented by a blue dot.

The prescribed displacements u are now regarded as pseudo-loads augmenting the right-
hand side load vector and the solution corresponding to the vector � determines the force
components acting in the nodes with prescribed displacements. If the non-linear system
K(u) = f is the case, both the imposition of boundary conditions via the Lagrange multi-
pliers results in augmenting of the linearized system K��u = f �K. In each iteration of
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is interpreted as hydrostatic pressure in the corresponding node. As the incompressibility
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apparently sparse. Further, they are also symmetric as can be seen from the formulation of
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PRACTICAL MATRIX 
MANIPULATION 

sparse matrices generated from the FE formulation

only a small fraction of entries non-zero (<3%)

system of N nodes in 3D results in size of (3N)2

practical example: 10000 nodes in double (4B): 3.4GB

but 3.3GB are zeros...

common format: i j Aij   (137MB, 2 x int + 1 x double)

row vs. column compressed

sometimes storing both representations can be practical



SYSTEMS OF LINEAR 
EQUATIONS

scalar case:
ax = b

x =
b

a

vectorial case:  
Ax = b

x = A

�1
b

properties of A  (considered being a square matrix)

regular matrix: inverse A-1 exists

symmetric: equals to transpose, AT = A

positive-definite: zTAz  is positive for a vector z (eigenvalues) 

orthogonal matrix:  AT = A-1 (representation of rotations)



DIRECT SOLUTION OF  
LINEAR SYSTEM

solution x = A

�1
b

direct solutions: the inverse A–1 computed explicitly as factorization

for cases when you need to recompute Ax=b’ for another b’

2 phases: decomposition (factorisation), solution (back-substitution)

Cholesky decomposition: A = LLT (L lower triangular matrix): symmetric 
positive-definite matrices, most optimal (num. of operation)

LDL decomposition: A = LDLT (D diagonal), works for some indefinite 
matrices where Cholesky fails

LU decomposition: (U upper triangular matrix), general case, modified 
Gaussian elimination (Doolittle, Crout algorihms, pivoting)



ITERATIVE SOLUTION OF 
LINEAR SYSTEM

solution

will depend on properties of A

x = A

�1
b

iterative solutions: the inverse A–1 is not assembled explicitly

start with an estimation x(0) and iterate until |Ax(i)–b| < e (stopping 
criterium usually more complicated, absolute vs. relative residual )

conjugate gradients (CG): for symmetric, positive-definite matrices 
(see Shewchuk: Conjugate gradients without agonizing pain)

bi-conjugate gradient (BiCG): generalization for non-symmetric

generalized minimal residual (GMRES): any regular matrix 

preconditioned versions: approximation of A–1



ISSUES WITH LINEAR 
ELASTICITY

after imposition of the boundary conditions,  
the system can be solved 

iterative: even the matrix K does not have to be assembled
direct: the both K and K–1 are assembled and stored explicitly, 
so u can be updated for any new f CHAPTER 2. THEORETICAL BACKGROUND 8

(a) non-linear (b) non-linear (c) linear (d) linear

Figure 2.1: Illustration of the difference between the models employing non-linear strain tensor �
(figures (a) and (b)) and linear strain tensor �L (figures (c) and (d)). The figure (d) is scaled by factor
of 0.6. In the case of the linear tensor, the large deformations are clearly not realistic due to the
volume growth.

Now, a strain measure �ij can be introduced using the Green deformation tensor as

�ij =
1
2
(⇧ij � ⇥ij) (2.6)

where the summation convention was utilized. The tensor �ij is called Green-StVenant
strain tensor or Green strain tensor for short. It can be expressed directly in terms of the
displacement as follows:

�ij =
1
2
(ui,j + uj,i + um,ium,j). (2.7)

This tensor is symmetric and non-linear in displacement. It can be shown that the tensor
is invariant w. r. t. the rigid motions such as rotation of entire body. The linearized version
�L of the tensor � is obtained by omitting the last term um,ium,j :

�L
ij =

1
2
(ui,j + uj,i) (2.8)

The non-linearity induced by the term um,ium,j is usually denoted as geometrical non-linearity
and it plays an important role when realistic behaviour is of interest [18]. If the term is
omitted, then only small deformations (up to 10%) are modelled properly and if large de-
formation occurs, the volume of the objects starts growing unnaturally as shown by the
Fig. 2.1. The models employing the full � tensor are called large strain models.

Finally, for each second-order tensor, three functions can be formed which are the same
in all coordinate systems. In the case of the Green strain tensor �, these are called principal
strain invariants. They can be defined using the deformation tensor ⇧ or the strain tensor �:

⌅1 = ⇧ii = 3 + 2�ii (2.9)

⌅2 =
1
2
((⇧ii⇧jj � ⇧ij⇧ji) = 3 + 4�ii + 2(�ii�jj � �ij�ji) (2.10)

⌅3 = det ⇧ij = 1 + 2�ii + 2(�ii�jj � �ij�ji) +
4
3
⇤ijk⇤rst�ir�js�kt (2.11)

where ⇤ijk and ⇤rst denote permutation symbols and both ⇧ii and �ii represent trace of
the Green deformation tensor and Green strain tensor, respectively. The third invariant ⌅3
is related to the incompressibility conditions, because if ⌅3 = 1, then the deformations are
isochoric, i. e. the volume of the element remains constant.
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Now, a strain measure �ij can be introduced using the Green deformation tensor as

�ij =
1
2
(⇧ij � ⇥ij) (2.6)

where the summation convention was utilized. The tensor �ij is called Green-StVenant
strain tensor or Green strain tensor for short. It can be expressed directly in terms of the
displacement as follows:

�ij =
1
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(ui,j + uj,i + um,ium,j). (2.7)

This tensor is symmetric and non-linear in displacement. It can be shown that the tensor
is invariant w. r. t. the rigid motions such as rotation of entire body. The linearized version
�L of the tensor � is obtained by omitting the last term um,ium,j :

�L
ij =

1
2
(ui,j + uj,i) (2.8)

The non-linearity induced by the term um,ium,j is usually denoted as geometrical non-linearity
and it plays an important role when realistic behaviour is of interest [18]. If the term is
omitted, then only small deformations (up to 10%) are modelled properly and if large de-
formation occurs, the volume of the objects starts growing unnaturally as shown by the
Fig. 2.1. The models employing the full � tensor are called large strain models.

Finally, for each second-order tensor, three functions can be formed which are the same
in all coordinate systems. In the case of the Green strain tensor �, these are called principal
strain invariants. They can be defined using the deformation tensor ⇧ or the strain tensor �:

⌅1 = ⇧ii = 3 + 2�ii (2.9)

⌅2 =
1
2
((⇧ii⇧jj � ⇧ij⇧ji) = 3 + 4�ii + 2(�ii�jj � �ij�ji) (2.10)

⌅3 = det ⇧ij = 1 + 2�ii + 2(�ii�jj � �ij�ji) +
4
3
⇤ijk⇤rst�ir�js�kt (2.11)

where ⇤ijk and ⇤rst denote permutation symbols and both ⇧ii and �ii represent trace of
the Green deformation tensor and Green strain tensor, respectively. The third invariant ⌅3
is related to the incompressibility conditions, because if ⌅3 = 1, then the deformations are
isochoric, i. e. the volume of the element remains constant.

linearized Green strain does not work for large deformations

Ku = f



TOWARDS NONLINEAR: CO-
ROTATIONAL FORMULATION

an extremely successful approach in soft-tissue modeling allowing 
for large displacements (but supposing small strains)

C.Felippa: A systematic approach to the element-independent corotational dynamics of 
finite elements, 2000

uses the linear-elasticity  
but co-rotational strain

the simulation is performed  
in small steps and in each step:

the actual deformation of every element e is decomposed into rigid and 
deformable components w.r.t. the initial configuration
the rigid component is given by a rotation Re of the component 
the local stiffness matrix Ke is updated as R>

e KeRe
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matrix: J =
[

e0
1 e0

2 e0
3

]−1
[e1 e2 e3], with respect to the ini-

tial state, where the e0
i are the initial edge vectors and the ei

are the current ones. Matrix J is then decomposed in order
to extract separately a rigid rotation R applied to the element
and a deformation E as shown fig. 1. This decomposition is
not unique and several approaches can be considered.

in the initial local frame

at rest form

deformed and replaced

R

E

J=RE

deformed
and displaced

Figure 1: An initial tetrahedron is deformed by the transfor-
mation J composed both a rigid motion R and the deforma-
tions are contained in E.

Polar decomposition Etzmuß et al [EKS03], followed by
other authors [HS04, MG04], presented a method based
on the polar decomposition using eigenvalues and eigen-
vectors. The polar decomposition of a square matrix com-
putes the nearest orthogonal frame to the given column
axes [EKS03, MG04, HS04]. As such it provides the ideal
decomposition of the displacement matrix J, giving the
smallest deformations. The strain values can be derived as
shown in the following formula.

J = Rp.Es

Es = R−1
p J =

⎡

⎣

1+ εxx εxy εxz
εxy 1+ εyy εyz
εxz εyz 1+ εzz

⎤

⎦

A related SVD-based approach has been used to handle ele-
ment inversions [ITF04].

QR decomposition † The QR decomposition is an alterna-
tive to the polar approach. The first axis of the local frame is
constrained to be aligned with the first column of J. Then the
second axis is constrained to the plane spanned by the two
first columns, an so on. We can compute it by performing a
Gram-Schmidt orthogonalization, to guarantee that we ob-
tain a right-handed frame. The strain can then be computed
by projecting the columns of J to the axes of the local frame,
or equivalently by the following decomposition:

J = Rqr.Et

Et = R−1
qr J =

⎡

⎣

1+ εxx 2εxy 2εxz
0 1+ εyy 2εyz
0 0 1+ εzz

⎤

⎦

This decomposition is significantly faster than polar or SVD,
however it depends on vertex ordering because all edges do
not have the same influence, as illustrated in fig. 2. Conse-
quently some ordering-dependent anisotropy is introduced,
contrary to polar or SVD. Moreover, the evaluated strain is a
bit higher. However, its computational efficiency can allow
one to use more refined meshes.

† With our notations, Q corresponds to the rotation Rqr and R to Et
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Figure 2: the local frames. (1) Polar decomposition: single
frame reflecting best the matter, nearest to the edges. (2) QR
decomposition: the first axis is the first edge ab, the second
axis is orthogonal to the first on plane (ab,ac), and the last
axis is obtained by construction of an orthonormal frame.

2.2. Newton’s law
Newton’s law on linear acceleration relates the acceleration
of a system to the external forces applied to it: Σ jm j ü j =
Σ j f ext

j where f ext
j is the net external force, m j the masse, ü j

the acceleration applied to sampling point x j . This law is true
for a single particle, for an element as well as for the whole
object. The violation of this law would allow an isolated (not
submited to external forces) object to linearly accelerate.
We now show that Newton’s law is necessarily satisfied by
the construction of the strain-displacement matrix B, thanks
to its property Σ jBi j = 0, for a row i. Indeed, for any uni-
form translation ∆u = [k...k]T , k ∈ R this property implies
a null variation of the deformation ∆ε: ∆εi = Σ jBi j∆u j = 0.
Moreover, the net force generated by an arbitrary constraint
vector σ is Σ j f j = Σ jΣiBT

i jσi = ΣiσiΣ jBT
i j = 0. Note that the

property is true even if B is obsolete due to a change of the
shape of the element, even if it modifies the material, it does
not create ghost forces. On the other hand, this property is
not guaranted by [MDM∗02], because it evaluates different
local frame rotations for each node of a same element in pro-
cessing one node after the other. Hence, methods processing
one element after the other (presented in the previous sec-
tion) are now prefered among the community.

2.3. Euler’s law
Euler’s law relates the angular acceleration of a system to the
net torque applied to it: Σ ju j ×m j ü j = Σ ju j × f ext

j . The vio-
lation of this law would allow an isolated object to angularly
accelerate. We now show that if matrix B is not up-to-date
then Euler’s law is not necessarily satisfied.
To respect Euler’s law, let us show that the following prop-
erty, true by construction of B, must be verified: Σ jx j×BT

i j =
0. Indeed, a pure rotation ω generates a variation of the dis-
placements ∆u j = ω× x j but must not generate a variation
of the deformation. This implies that ∆εi = Σ jBi jω× x j = 0
for any ω, thus Σ jx j × BT

i j = 0. In the same way, let us
check that the net torque due to an arbitrary constraint σ
is null: Σ jx j × f j = Σ jx j × ΣiBT

i jσi = ΣiσiΣ jx j × BT
i j = 0.

The property is no more guaranted when B is obsolete
due to a change of shape because the original x j are re-
placed by new values. Computing forces with initial strain-
displacement matrices amounts at computing frest→de f ormed
whereas fde f ormed→rest is sought. Consequently, it is neces-
sary to recompute each matrix B element’s at each time step
to avoid artificial torques. An example of artificial torque is
given in fig. 3. Note, however, that multiplying matrix B with
a scalar uniformly scales the net torque, and thus modifies
the material, but does not induce artificial torques.

c⃝ The Eurographics Association 2005.



CO-ROTATIONAL 
FORMULATION II

the matrix K is not constant anymore ( K => K(u) )
the rotational matrices Re(u) depend on the actual u
in each step, Newton-Raphson method should be performed, actually, 
works quite stably even if only one iteration is performed

the decomposition can be performed by various methods

choosing the basis 

polar(1), QR(2), SVD

although the large deformations are simulated realistically, only 
small strains are handled correctly

more information about the implementation in SOFA:

M.Nesme et al.: Efficient, physically plausible finite elements, 2005 
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2.2. Newton’s law
Newton’s law on linear acceleration relates the acceleration
of a system to the external forces applied to it: Σ jm j ü j =
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j is the net external force, m j the masse, ü j

the acceleration applied to sampling point x j . This law is true
for a single particle, for an element as well as for the whole
object. The violation of this law would allow an isolated (not
submited to external forces) object to linearly accelerate.
We now show that Newton’s law is necessarily satisfied by
the construction of the strain-displacement matrix B, thanks
to its property Σ jBi j = 0, for a row i. Indeed, for any uni-
form translation ∆u = [k...k]T , k ∈ R this property implies
a null variation of the deformation ∆ε: ∆εi = Σ jBi j∆u j = 0.
Moreover, the net force generated by an arbitrary constraint
vector σ is Σ j f j = Σ jΣiBT
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property is true even if B is obsolete due to a change of the
shape of the element, even if it modifies the material, it does
not create ghost forces. On the other hand, this property is
not guaranted by [MDM∗02], because it evaluates different
local frame rotations for each node of a same element in pro-
cessing one node after the other. Hence, methods processing
one element after the other (presented in the previous sec-
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i j =
0. Indeed, a pure rotation ω generates a variation of the dis-
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displacement matrices amounts at computing frest→de f ormed
whereas fde f ormed→rest is sought. Consequently, it is neces-
sary to recompute each matrix B element’s at each time step
to avoid artificial torques. An example of artificial torque is
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Figure 1: An initial tetrahedron is deformed by the transfor-
mation J composed both a rigid motion R and the deforma-
tions are contained in E.

Polar decomposition Etzmuß et al [EKS03], followed by
other authors [HS04, MG04], presented a method based
on the polar decomposition using eigenvalues and eigen-
vectors. The polar decomposition of a square matrix com-
putes the nearest orthogonal frame to the given column
axes [EKS03, MG04, HS04]. As such it provides the ideal
decomposition of the displacement matrix J, giving the
smallest deformations. The strain values can be derived as
shown in the following formula.

J = Rp.Es

Es = R−1
p J =

⎡

⎣

1+ εxx εxy εxz
εxy 1+ εyy εyz
εxz εyz 1+ εzz

⎤

⎦

A related SVD-based approach has been used to handle ele-
ment inversions [ITF04].

QR decomposition † The QR decomposition is an alterna-
tive to the polar approach. The first axis of the local frame is
constrained to be aligned with the first column of J. Then the
second axis is constrained to the plane spanned by the two
first columns, an so on. We can compute it by performing a
Gram-Schmidt orthogonalization, to guarantee that we ob-
tain a right-handed frame. The strain can then be computed
by projecting the columns of J to the axes of the local frame,
or equivalently by the following decomposition:

J = Rqr.Et

Et = R−1
qr J =

⎡

⎣

1+ εxx 2εxy 2εxz
0 1+ εyy 2εyz
0 0 1+ εzz

⎤

⎦

This decomposition is significantly faster than polar or SVD,
however it depends on vertex ordering because all edges do
not have the same influence, as illustrated in fig. 2. Conse-
quently some ordering-dependent anisotropy is introduced,
contrary to polar or SVD. Moreover, the evaluated strain is a
bit higher. However, its computational efficiency can allow
one to use more refined meshes.

† With our notations, Q corresponds to the rotation Rqr and R to Et
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Figure 2: the local frames. (1) Polar decomposition: single
frame reflecting best the matter, nearest to the edges. (2) QR
decomposition: the first axis is the first edge ab, the second
axis is orthogonal to the first on plane (ab,ac), and the last
axis is obtained by construction of an orthonormal frame.

2.2. Newton’s law
Newton’s law on linear acceleration relates the acceleration
of a system to the external forces applied to it: Σ jm j ü j =
Σ j f ext

j where f ext
j is the net external force, m j the masse, ü j

the acceleration applied to sampling point x j . This law is true
for a single particle, for an element as well as for the whole
object. The violation of this law would allow an isolated (not
submited to external forces) object to linearly accelerate.
We now show that Newton’s law is necessarily satisfied by
the construction of the strain-displacement matrix B, thanks
to its property Σ jBi j = 0, for a row i. Indeed, for any uni-
form translation ∆u = [k...k]T , k ∈ R this property implies
a null variation of the deformation ∆ε: ∆εi = Σ jBi j∆u j = 0.
Moreover, the net force generated by an arbitrary constraint
vector σ is Σ j f j = Σ jΣiBT

i jσi = ΣiσiΣ jBT
i j = 0. Note that the

property is true even if B is obsolete due to a change of the
shape of the element, even if it modifies the material, it does
not create ghost forces. On the other hand, this property is
not guaranted by [MDM∗02], because it evaluates different
local frame rotations for each node of a same element in pro-
cessing one node after the other. Hence, methods processing
one element after the other (presented in the previous sec-
tion) are now prefered among the community.

2.3. Euler’s law
Euler’s law relates the angular acceleration of a system to the
net torque applied to it: Σ ju j ×m j ü j = Σ ju j × f ext

j . The vio-
lation of this law would allow an isolated object to angularly
accelerate. We now show that if matrix B is not up-to-date
then Euler’s law is not necessarily satisfied.
To respect Euler’s law, let us show that the following prop-
erty, true by construction of B, must be verified: Σ jx j×BT

i j =
0. Indeed, a pure rotation ω generates a variation of the dis-
placements ∆u j = ω× x j but must not generate a variation
of the deformation. This implies that ∆εi = Σ jBi jω× x j = 0
for any ω, thus Σ jx j × BT

i j = 0. In the same way, let us
check that the net torque due to an arbitrary constraint σ
is null: Σ jx j × f j = Σ jx j × ΣiBT

i jσi = ΣiσiΣ jx j × BT
i j = 0.

The property is no more guaranted when B is obsolete
due to a change of shape because the original x j are re-
placed by new values. Computing forces with initial strain-
displacement matrices amounts at computing frest→de f ormed
whereas fde f ormed→rest is sought. Consequently, it is neces-
sary to recompute each matrix B element’s at each time step
to avoid artificial torques. An example of artificial torque is
given in fig. 3. Note, however, that multiplying matrix B with
a scalar uniformly scales the net torque, and thus modifies
the material, but does not induce artificial torques.

c⃝ The Eurographics Association 2005.


