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Models: General Overview

Mechanics and Continuum Mechanics

Mechanics of Solid Objects and Elasticity

Kinematics: displacements, deformations, strains
Kinetics: forces, pressures, stresses, tractions

Linear Elasticity: continuous formulation, FEM, solution
Hyperelasticity: towards non-linear models

Co-rotational approach: geometry-based compromise




MODELS

A model is an abstract structure that uses mathematical language to
describe the behaviour of a system.

typical examples of models:

— electrophysiological model: describes electrical properties of tissue
(e.g. electrophysiological model of heart)

— model of fluid dynamics: describes behaviour of liquid (e.g.
cardiovascular fluid mechanics (blood circulation)

— biomechanical model of an organ: describes elastic/ plastic
behaviour of tissues (e.g. hyperelastic model of liver)

the mathematical language is usually based on differential equations

— the behaviour is “a change of state” (derivative)




a dt

MECHANICS

area of science dealing with physical bodies subject to force and /or
displacements

classical (Newtonian) vs. quantum mechanics :-)

— kinematics (geometry of motion): moving points/bodies without
considering the causes of motion

— (analytical) dynamics: relationship between motion of bodies and its causes
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CONTINUUM MECHANICS

deals with the analysis of the kinematics and the mechanical behavior
of materials modeled as a continuous mass rather than as discrete
particles

continuum hypothesis: well defined properties in infinitely small
points (reference element of volume)

solid mechanics: study of continuous materials with defined rest shape
fluid mechanics: study of fluid materials (liquids, gases, plasmas)
e.g. CFD (computational fluid dynamics)

obeying common laws: conservation of mass, energy, [linear and
angular] momentum




SOLID MECHANICS

studies the behavior of solid materials, especially their motion and
deformation under the action of forces, temperature changes, phase
changes, and other external or internal agents.

elasticity: describes materials that return to their rest shape after
applied stresses are removed

viscoelasticity: elastic material with damping (hysteresis loop)

plasticity: describes materials that permanently deform after a
sutficient applied stress

thermoplasticity: coupling between mechanics and thermal properties.




ELASTICITY

ability of a body to resist a distorting influence or stress and to return to
its original size and shape when the stress is removed

basically, it defines mathematic relation between displacements and
applied forces

kinematics: relates displacement to strain (geometry)

kinetics: relates forces to stresses (e.g. equilibrium)

constitutive law: relation between the stress and strain (the material)
linear elasticity: keeping all relations linear (non-conservative!)
hypoelasticity: extension of linear elasticity

hyperelasticity: a family of models (materials), typically used for tissues




TOWARDS THE LINEAR
ELASTICITY

Deformed
X = x(X,t) Configuration, t =t

Undeformed
Configuration, t=0

Ko( B) patr\, [ p\e x il




VECTOR AND TENSOR
FIELDS 1

continuum mechanics: body as a continuum set of particles (3D points)
initial configuration X (X,Y,Z) vs. deformed configuration x (x,y,z)

displacement — vector function in 3D defined for in each particle (vector
field)
U($7 y? Z) : (ua?('K’E? y? Z)? uy(x7 y? Z)? uZ('CE7 y? Z))

X =X-+u

elasticity theory formulated using tensors

similarly as vector field, tensor field is a “tensorial” function defined
in each particle (i.e., over the continuous domain)

typical operators on fields: gradient, divergence, curl




VECTOR AND TENSOR
FIELDS 11

Vector-matrix notation:
—using bold symbols: A, ¢ (matrix), v (vector)

—derivatives written as operators: gradient: V= ( B (% ; > )Tf

Tensor notation: b "
. . . a s = a At .
—summation over repeated indices R Z R

—derivative using ‘,” notation £ =
ij =

8a:j

Example:
—divergence of a vector field  u(z,y, 2) = (ux(z,y, 2), uy(x,y, 2), u(z,y, 2))

. 0
dzvu: (aum —I_ uy + 8uz) — (38337 88y7 aaz) : (uwauyauz)—r e V .u:uiﬂ;




STATIC LINEAR
ELASTICITY

Constitutive
equation




KINEMATICS:
DEFORMATION

deformation field: vector field defined in each point
r=X+u(z,vy,2)
deformation gradient: 2nd order tensor defined in each point
I'=1+4+Vu
decomposition of deformation gradient to rotation and stretch
tensors F=RU=VR: R—l _ RT
right Cauchy-Green deformation tensor (square of local change)

C=F'F=I+Vu+Vu' +Vu'Vu

alternative: left Cauchy-Green deformation tensor

B=FF' =T +Vu+Vu' +Vu'Vu




KINEMATICS: STRAIN

strain: a description of deformation in terms of relative displacement
of particles in the body that excludes rigid-body motions

different measures of strain: Green, Biot, Almansi, logarithmic strain

. eometric non-
Green strain tensor: 50T .
linearity

1 1
E = 5(0— I = §(Vu+VuT + Vu' Vu)

linearization:

e=2(Vu+Vu')
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KINEMATICS: STRAIN

components of strain: diagonal + shear strains:
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ELASTICITY-BASED
MODELING

Kinematics

Strain —
Displacement

Constitutive
equation

e=32(Vu+Vu')




KINETICS: STRESS

stress: internal forces that neighboring particles of a continuous
material exert on each other

Cauchy (true) stress tensor: 2nd order tensor that completely define
stress at a point

relates a unit length vector and stress vector: t =on

the components of stress vector (surface traction):

dg;
=4




STRESS TENSOR

stress: internal forces that neighboring particles of a continuous
material exert on each other

Cauchy (true) stress tensor: 2nd order tensor that completely defines
stress at a point

conservation of linear momentum: in static equilibrium, it satisfies
equilibrium equation in each point (b being the body forces)

divo +b=0 1e, V.-o+b=0 1e, o04,;+0 =0

conservation of angular momentum: symmetry (6 components

instead of 9) . T
05 = O 4 Y




ELASTICITY-BASED
MODELING

Kinematics Kinetics

Strain — Stress in static
Displacement equilibrium

c — %(Vu +vuT) Constitutive V- -c+tb=0

equation
9 t =on




CONSTITUTIVE
EQUATION

Cauchy elastic material: stress is a function of strain
linear elasticity: stress is a linear function of strain

Hooke law: the relation between stress (2nd order tensor) and strain
(2nd order tensor) is a 4th order tensor

Oi;5 — UijkI€kl i.e., o=0C:e¢

in general, C has 81 components: however, symmetry of strain and
stress reduces the number of components to 21

for isotropic and homogeneous material, number of parameters is
reduced to two Lamé coefficients:

o = Mtr(e) + 2ue




MATERIAL PARAMETERS

o = Mitr(e) + 2ue

in tensorial notation (with Einstein summation convention):

O'ij — )\57;]'8[@[@ -+ 2,&67;3' — )\57;]”&]@7[@ -+ ,u(uz‘,j -+ Uj,i)

Lamé coefficients: the second is sometimes called shear modulus (G)

Ev E

)\: p—
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where
E is the Young’s modulus [Pa]: stiffness of the material

nu is the Poisson’s ratio: incompressibility of the material <0,0.5




ELASTICITY-BASED
MODELING

Kinematics Kinetics

Strain — Stress, static
Displacement equilibrium

c — %(Vu +vuT) Constitutive V- -c+tb=0

equation
9 t =on

Stress-strain relation

o = Mir(e) + 2ue




PUTTING IT ALL
TOGETHER

V-o+b=0

e=2(Vu+Vu') o = Mir(e) + 2ue )
=on

Navier-Cauchy equation (see the proof performed by components
on LinearElasticity@Wikipedia):

A+ V(V-u)+pVu+b=0

tensor notation:
(A + w)ujij + puijj + b =0

per component: K € {z,y, z}

A+ g (52




THE PROBLEM TO SOLVE

the body given by a continuous domain € with boundary I' = 9Q

Navier-Cauchy equation holds for every point of the domain
(fibeing body forces per unit volume)

(A + w)ujij + puijj + b =0

essential boundary conditions has to be defined on a part of the
boundary (to choose the particular solution of N.-C. PDE

~

u? =u?f  for pEf‘E where f’ECf‘ and T = 99

7 7

natural boundary conditions can be defined on a part of the
boundary (i.e., tractions T along normal n in point p)

~ ~

T,L-p:aijng for pEf‘N where I'vy cT' and I = 99




CONTINUOUS V5.
DISCRETE SOLUTION 11

the only feasible way — discretization: approximate the original
continuous quantities by discrete (piecewise) functions:

w) =~ YUl 5~ YU, P

central role of the interpolation (basis, shape, blending) functions
required properties:

local support:
the function is non-zero
only inside the element

bound to a node n:

Pn (Xm) — 5nm




FINITE ELEMENT
METHOD

First appeared in 40s and 50s (civil engineering, aeronautics).

J&

Weak formulation of the continuous differential problem

— integration over domain and multiplication by test functions

. Discretization

— discretization of the domain by the elements
— discretization of the variable and the operator
— integration over element volume (quadratures)

. Global assembling of the algebraic system of equations

— imposing the compatibility between the elements

. Imposition of the essential boundary conditions

. Numerical solution of the algebraic system



EXAMPLE: STATIC LINEAR
ELASTICITY (SLE)

Given relations (in tensor notation)
Newton’s law (kinetics) linearized strain (kinetics) linear material (constitutional law)

1
0ij,j +bi =0 eij = 5(Uig +u50)  Oij = Aexr0ij + 2pe;;

Weak form of the Newton’s equation (Lax-Milgram lemma)
—integration over the volume

—multiplication by a test functions w; / ( 0ij,j + b,,,)wz d€) =0
Q

The integral over volume allows to distribute the derivatives
—application of chain rule

—divergence theorem / 045 Wi, j d§) = / biw;dS) + / tyw;dl’
Q2 Q2 o€

— no derivative of the stress tensor
— the only derivative applied to the test function on the left side
— t;: tractions defined over the surface 0€) (natural boundary conditions)




SLE: DISCRETIZATION
AND GALERKIN METHOD

The actual weak form: / 0;j Wi d() = / b, w;dS) + / tiw;dl’
Q) Q) o5

1
5 (Wi g+ uji)

where: 045 — Aekkéz’j —+ 2,&67;]' Cij = 5

Domain discretization by elements e: Q ~ () = L.U Q

— element e given by N nodes
— each element “equipped” with interpolation functions 90 ($ Y5 Z)
— index n: node of the element (therefore N interpolation functions per element)

Galerkin method: use the same interpolation functions to discretize the test
functions w and the solution # over an element e:

__ enyyren e ivative:
W; = © Wz Uy = @ Uz Example of derivative

. aen en
. Wij = 5 W;
(note: no summation over e!)




SLE: GALERKIN METHOD
L1

Discretized week form: Z / 01 o TN = Z / b oS WEm QL + / L™ e T
; 09,

1
where: Oii = Nexr0ij + 2ue;; e = 5(90?3?7’(]@-6” + G US™)

Galerkin method: the equations hold for any virtual displacement W;:
3 [ a3 ([ wpmans [ prar) e
— \Ja. 9

For each element e, we have the local equation:

/ amgpendﬂ / bigpendﬂ—l—/ t; o dl’
Qe Qe

02
where: — )\90 Ulge&m + (e e”U@” 3”(];”)

le




SLE: THE ELEMENT
EQUATION

bigpendQ R / tigae'”’dl“
0€2¢

Right-hand side:

— we consider tractions to be zero and . ne gy
— body forces to be constant w.r.t. space v o

e

Left-hand side:
— clearly linear in U being the unknown displacements in nodes n=1...N

| AGRUR s+ U + U
2¢

— since linear, the left-hand side can be re-organized to K f}n U ;n




VOIGT NOTATION

Left-hand side:
Oi5 = Aeprli; + 2ue;;

n .
/Qe IV €ij §(Sp,jUz' + o3 U;)
— the tensor notation has been useful to derive the final form

— for implementation purposes, Voigt notation is usually employed where 3x3
symmetric 1-order tensor is stored as 6x1 vector:




SLE: STRESS5-5TRAIN
MATRIX D

Applying the Voigt notation to the stress—strain relation ¢, 5= AL 0; i+ ) He;
results in following matrix equation (derivation is straightforward:

(

\

o11 \

022
033
012
013

023 )

A2
( A
A
0
0

\ 0

A
A+ 2u
A
0
0
0

A
A
A 2u
0
0
0

)

/

The matrix in the middle is 6x6 stress-strain matrix (denoted further as D).

Before encoding the rest into matrices we have to choose the interpolation functions!

Gij

1

2

(N

Spi'n U]E'Bn )

Note that only derivatives of interpolation functions appear in the formulation.




Pl: TETRAHEDRAL
LINEAR ELEMENT

— tetrahedral: simplex in 3D having
four nodes

— linear since we choose linear
interpolation functions:

p(2,y,2) = a+b(z) +c(y) +d(2)
(a general linear function in 3D)

(141 Ya. 2.1)

— how to find the coefficients a,b,c,d? Recall the basic property of an
interpolation function: i i .

P QO(CEj,yj,Zj)—éij ,7€l,...N
(the value of an interpolation function associated to a node 7 is 1 when
evaluated in that node [x;, y;, zi] and zero in any other node [x;,y; z])




SLE&P1: COMPUTING THE
SHAPE FUNCTIONS

Linear P1 (Lagrangian) tetrahedral element

— putting the condition into a matrix form gives:

Y1 a
Y2

b
Y3 C
Y4 d

— denoting V the matrix on the left (nodal matrix), 4 instances of coefficients
corresponding to 4 interpolation functions (associated to each node) can be
computed as columns of the V-1 (recall the requirements for mesh quality!)

— recall also that only derivatives of interpolation functions are present in the
formulation (so only coefficients b,c,d) will be used




SLE&P1: STRAIN-
DISPLACEMENT MATRIX B

Using the Voigt notation and assuming the linear P1 tetrahedra used for
discretization, the left-hand side

n 1 enyren enyren
/Qe Uz’j%p,de O-ij — )\ekkaw —+ 2,&670 €ij = §(¢7j Uz 4+ 0 Uj )

can be rewritten in matrix form as:
( A4 20

/ B, D.B.d A
(e

\

[b1 0 0 b 0O 0 b3 0 O
0 C1 0 0 Co 0 0 C3 0
0 0 d 0 0 do 0 0 ds
C1 bl 0 C2 bg 0 C3 bg 0
di 0 by do 0 by d3 0 b3
\ 0 dl Cq 0 d2 C2 0 d3 C3




oLE&P]: LOCAL STIEFNESS
MATRIX

What about the integration?

— recall that only derivatives of shape functions appear in the formulation

— since interpolation functions are linear, only coefficients b,c,d appear in the
matrices

— therefore, the integrand is constant (does not depend on x,y,z)

— integration of a constant over a tetrahedron is computed by multiplication of
the constant by the volume of the tetrahedron

— the volume of a tetrahedron is given by determinant of nodal matrix:

(&

— the final form is therefore:

V| B D.B.

K, = / B, D.B.d) =
e

— the local matrices K. are assembled into a global matrix K
— the contribution from different elements to the same node are added
(globalization matrix)




ASSEMBLING THE

the proc

GLOBAL S5YSTEM

edure now gives 12x12 matrix (4x4 block matrix where each

block (i,j) corresponds to stiffness relation between nodes n and m
(n,m=1...4)

global assembly:

mapping for each node from local to global indices: (e,n) ->n

the block (n,m) from matrix associated to element e is added to
the global block at position (n,m) in the global matrix

usual

ly is done directly during the computation of local matrix

the g

lobal matrix is a 3Nx3N block matrix where N is the total

number of DOFs (and 3N is thus the number of degrees of

freed

om)




BOUNDARY CONDITIONS

choosing a particular solution (otherwise K singular)
several options to impose a Dirichlet boundary condition ui=V

elimination (projection):

— leftside: K(1,k) = K(k,i) =0 for all k =1, K(i,i) = 1
— right side: (i) = V (“pseudo-loads”)

— not very flexible and difficult to parallelize

penalization: adding a penalization term to impose the boundary
condition (reduces the “quality” of matrix in terms of the
condition number)

Lagrange multipliers: changes the properties of the matrix
(larger, possibly indefinite)




THE GLOBAL STIFFNESS
MATRIX

linear relation between forces (f) and displacements (u):

encoding relations between nodes Ku=f1

highly sparse (<3% of non-zero)

non-zero blocks only for combinations
of nodes connected by a mesh edge

suitable representation [ij Kjj]

etficient matrix—vector multiplication

regular after the imposition of boundary c

symmetric, positive-definite, sparsity pattern depends on node
numbering (can be improved e.g. by Metis)




PRACTICAL MATRIX
MANIPULATION

sparse matrices generated from the FE formulation
only a small fraction of entries non-zero (<3%)
system of N nodes in 3D results in size of (3N)?
practical example: 10000 nodes in double (4B): 3.4GB
but 3.3GB are zeros...
common format: ij Aj (137MB, 2 x int + 1 x double)
row vs. column compressed

sometimes storing both representations can be practical




SYSTEMS OF LINEAR
EQUATIONS

. b
scalar case: 5. — P ’ o=
a

vectorialcase: Ax = Db —} X = A_lb

properties of A (considered being a square matrix)
regular matrix: inverse A-! exists
symmetric: equals to transpose, AT = A
positive-definite: zZTAz is positive for a vector z (eigenvalues)

orthogonal matrix: AT= A-!(representation of rotations)




DIRECT SOLUTION OF
LINEAR SYSTEM

solution X = A_lb

direct solutions: the inverse A-! computed explicitly as factorization
for cases when you need to recompute Ax=b’ for another b’
2 phases: decomposition (factorisation), solution (back-substitution)

Cholesky decomposition: A = LLT (L lower triangular matrix): symmetric
positive-definite matrices, most optimal (num. of operation)

LDL decomposition: A = LDLT (D diagonal), works for some indefinite
matrices where Cholesky fails

LU decomposition: (U upper triangular matrix), general case, modified
Gaussian elimination (Doolittle, Crout algorihms, pivoting)




ITERATIVE SOLUTION OF
LINEAR SYSTEM

solution x — A~ 1p

will depend on properties of A

iterative solutions: the inverse A-1is not assembled explicitly

start with an estimation x(@ and iterate until | Ax®-b| < e (stopping
criterium usually more complicated, absolute vs. relative residual )

conjugate gradients (CG): for symmetric, positive-definite matrices
(see Shewchuk: Conjugate gradients without agonizing pain)

bi-conjugate gradient (BiCG): generalization for non-symmetric

generalized minimal residual (GMRES): any regular matrix

preconditioned versions: approximation of A1




TN N\

ISSUES WITH LINEAR
ELASTICITY

after imposition of the boundary conditions, Ku=f
the system can be solved

iterative: even the matrix K does not have to be assembled

direct: the both K and K- are assembled and stored explicitly,
so u can be updated for any new £
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linearized Green strain does not work for large deformations



TOWARDS NONLINEAR: CO-
ROTATIONAL FORMULATION

an extremely successful approach in soft-tissue modeling allowing
for large displacements (but supposing small strains)

C.Felippa: A systematic approach to the element-independent corotational dynamics of
finite elements, 2000

deformed
: e and displaced
uses the linear-elasticity e R
but co-rotational strain .g .k :
deformed and replaced
in the initial local frame
the simulation is performed X o

at rest form ~--

in small steps and in each step: E

the actual deformation of every element e is decomposed into rigid and
deformable components w.r.t. the initial configuration

the rigid component is given by a rotation Re of the component

the local stiffness matrix Ke is updated as R;r KeRe




CO-ROTATIONAL
FORMULATION 11

the matrix K is not constant anymore ( K =>K(u) )
the rotational matrices Re(u) depend on the actual u

in each step, Newton-Raphson method should be performed, actually,
works quite stably even if only one iteration is performed

the decomposition can be performed by various methods

choosing the basis

polar(1), QR(2), SVD

zZ

although the large deformations are simulated realistically, only
small strains are handled correctly

more information about the implementation in SOFA:

M.Nesme et al.: Efficient, physically plausible finite elements, 2005




