OUTLINE

- Models: General Overview
- Mechanics and Continuum Mechanics
- Mechanics of Solid Objects and Elasticity
- Kinematics: displacements, deformations, strains
- Kinetics: forces, pressures, stresses, tractions
- Linear Elasticity: continuous formulation, FEM, solution
- Hyperelasticity: towards non-linear models
- Co-rotational approach: geometry-based compromise

MODELS

- A model is an **abstract structure** that uses **mathematical language** to describe the behaviour of a system.
- typical examples of models:
 - electrophysiological model: describes electrical properties of tissue (e.g. electrophysiological model of heart)
 - model of fluid dynamics: describes behaviour of liquid (e.g. cardiovascular fluid mechanics (blood circulation)
 - biomechanical model of an organ: describes elastic/plastic
 behaviour of tissues (e.g. hyperelastic model of liver)
- the mathematical language is usually based on differential equations
 - the behaviour is "a change of state" (derivative)

MECHANICS

- area of science dealing with physical bodies subject to force and/or displacements
- classical (Newtonian) vs. quantum mechanics :-)
 - kinematics (geometry of motion): moving points/bodies without considering the causes of motion
 - (analytical) dynamics: relationship between motion of bodies and its causes

$$\mathbf{F} = m \, \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} = m \mathbf{a}$$

$$\sum \mathbf{F} = 0 \iff \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} = 0$$

CONTINUUM MECHANICS

- deals with the analysis of the kinematics and the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles
- continuum hypothesis: well defined properties in infinitely small points (*reference element of volume*)
- **solid mechanics:** study of continuous materials with defined rest shape
- fluid mechanics: study of fluid materials (liquids, gases, plasmas)
 - e.g. CFD (computational fluid dynamics)
- obeying common laws: conservation of mass, energy, [linear and angular] momentum

SOLID MECHANICS

- studies the behavior of solid materials, especially their motion and deformation under the action of forces, temperature changes, phase changes, and other external or internal agents.
- elasticity: describes materials that return to their rest shape after applied stresses are removed
- **viscoelasticity**: elastic material with damping (hysteresis loop)
- plasticity: describes materials that permanently deform after a sufficient applied stress
- **thermoplasticity**: coupling between mechanics and thermal properties.

ELASTICITY

- ability of a body to resist a distorting influence or stress and to return to its original size and shape when the stress is removed
- basically, it defines mathematic relation between displacements and applied forces
 - kinematics: relates displacement to strain (geometry)
 - kinetics: relates forces to stresses (e.g. equilibrium)
 - constitutive law: relation between the stress and strain (the material)
- linear elasticity: keeping all relations linear (non-conservative!)
- hypoelasticity: extension of linear elasticity
- hyperelasticity: a family of models (materials), typically used for tissues

TOWARDS THE LINEAR ELASTICITY

VECTOR AND TENSOR FIELDS I

- continuum mechanics: body as a continuum set of particles (3D points)
- initial configuration X (X,Y,Z) vs. deformed configuration x (x,y,z)
- displacement vector function in 3D defined for in each particle (vector field)

 $\mathbf{u}(x,y,z) = (u_x(x,y,z), u_y(x,y,z), u_z(x,y,z))$

$$\mathbf{x} = \mathbf{X} + \mathbf{u}$$

- elasticity theory formulated using tensors
 - similarly as vector field, tensor field is a "tensorial" function defined in each particle (i.e., over the continuous domain)
 - typical operators on fields: gradient, divergence, curl

VECTOR AND TENSOR FIELDS II

Vector-matrix notation:

–using bold symbols: **A**, σ (matrix), **v** (vector)

-derivatives written as operators: gradient: $\nabla f = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})^{\top} f$

Tensor notation: –summation over repeated indices

-derivative using ',' notation

$$a_{ij}b_j \equiv \sum_j a_{ij}b_j$$
$$f_{i,j} \equiv \frac{\partial f_i}{\partial x_j}$$

Example:

-divergence of a vector field $\mathbf{u}(x, y, z) = (u_x(x, y, z), u_y(x, y, z), u_z(x, y, z))$

$$div\mathbf{u} = \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}\right) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (u_x, u_y, u_z)^\top = \boldsymbol{\nabla} \cdot \mathbf{u} = u_{i,i}$$

STATIC LINEAR ELASTICITY

Kinematics

Constitutive equation

Kinetics

KINEMATICS: DEFORMATION

- deformation field: vector field defined in each point x = X + u(x, y, z)
- deformation gradient: 2nd order tensor defined in each point

 $F = I + \nabla u$

- decomposition of deformation gradient to rotation and stretch tensors F = RU = VR : $R^{-1} = R^{\top}$
- right Cauchy-Green deformation tensor (square of local change)

$$C = F^{\top}F = I + \nabla u + \nabla u^{\top} + \nabla u^{\top}\nabla u$$

alternative: left Cauchy-Green deformation tensor

$$B = FF^{\top} = I + \nabla u + \nabla u^{\top} + \nabla u^{\top} \nabla u$$

KINEMATICS: STRAIN

- strain: a description of deformation in terms of relative displacement of particles in the body that excludes rigid-body motions
- different measures of strain: Green, Biot, Almansi, logarithmic strain

Green strain tensor:

$$E = \frac{1}{2}(C - I) = \frac{1}{2}(\nabla u + \nabla u^{\top} + \nabla u^{\top} \nabla u)$$
Interval:

$$E = \frac{1}{2}(C - I) = \frac{1}{2}(\nabla u + \nabla u^{\top} + \nabla u^{\top} \nabla u)$$
Interval:

$$\varepsilon = e = \frac{1}{2}(\nabla u + \nabla u^{\top})$$

$$\left[\begin{array}{c} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{array} \right] = \left[\begin{array}{c} \frac{\partial u_x}{\partial x} & \frac{1}{2}\left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x}\right) \\ \frac{1}{2}\left(\frac{\partial u_x}{\partial x} + \frac{\partial u_x}{\partial y}\right) & \frac{\partial u_y}{\partial y} & \frac{1}{2}\left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y}\right) \\ \frac{1}{2}\left(\frac{\partial u_x}{\partial x} + \frac{\partial u_x}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial z}\right) & \frac{\partial u_z}{\partial z} \end{array} \right]$$

KINEMATICS: STRAIN

components of strain: diagonal + shear strains:

$$\begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{bmatrix} = \begin{bmatrix} \frac{\partial u_x}{\partial x} & \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y} \right) & \frac{\partial u_y}{\partial y} & \frac{1}{2} \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial u_z}{\partial x} + \frac{\partial u_x}{\partial z} \right) & \frac{1}{2} \left(\frac{\partial u_z}{\partial y} + \frac{\partial u_y}{\partial z} \right) & \frac{\partial u_z}{\partial z} \end{bmatrix}$$

ELASTICITY-BASED MODELING

Kinematics

Strain – Displacement

$$\boldsymbol{\varepsilon} = \frac{1}{2} (\boldsymbol{\nabla} \mathbf{u} + \boldsymbol{\nabla} \mathbf{u}^{\top})$$

Constitutive equation

Kinetics

KINETICS: STRESS

- stress: internal forces that neighboring particles of a continuous material exert on each other
- Cauchy (true) stress tensor: 2nd order tensor that completely define stress at a point
- relates a unit length vector and stress vector: $\mathbf{t} = \boldsymbol{\sigma} \mathbf{n}$
- the components of stress vector (surface traction):

$$t_i = \frac{dg_i}{dS}$$

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \equiv \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} \equiv \begin{bmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{bmatrix}$$

STRESS TENSOR

- stress: internal forces that neighboring particles of a continuous material exert on each other
- Cauchy (true) stress tensor: 2nd order tensor that completely defines stress at a point
- conservation of linear momentum: in static equilibrium, it satisfies equilibrium equation in each point (b being the body forces)

 $div\boldsymbol{\sigma} + \mathbf{b} = 0$ i.e., $\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \mathbf{b} = 0$ i.e., $\sigma_{ij,j} + b_i = 0$

• conservation of angular momentum: symmetry (6 components instead of 9) $\sigma_{ij} = \sigma_{ji}$ $\tau_{xy} = \tau_{yx}$

$$au_{xz} = au_{zx}$$
 $au_{yz} = au_{zy}$

ELASTICITY-BASED MODELING

Kinematics

Strain – Displacement

$$\boldsymbol{\varepsilon} = \frac{1}{2} (\boldsymbol{\nabla} \mathbf{u} + \boldsymbol{\nabla} \mathbf{u}^{\top})$$

Constitutive equation

Kinetics

Stress in static equilibrium

 $\nabla \cdot \boldsymbol{\sigma} + \mathbf{b} = 0$ $\mathbf{t} = \boldsymbol{\sigma} \mathbf{n}$

CONSTITUTIVE EQUATION

- **Cauchy elastic material:** stress is a function of strain
- linear elasticity: stress is a linear function of strain
- Hooke law: the relation between stress (2nd order tensor) and strain (2nd order tensor) is a 4th order tensor

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$
 i.e., $\boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\varepsilon}$

- in general, C has 81 components: however, symmetry of strain and stress reduces the number of components to 21
- for isotropic and homogeneous material, number of parameters is reduced to two Lamé coefficients:

 $\boldsymbol{\sigma} = \lambda \mathbf{I} tr(\boldsymbol{\varepsilon}) + 2\mu \boldsymbol{\varepsilon}$

MATERIAL PARAMETERS

$$\boldsymbol{\sigma} = \lambda \mathbf{I} tr(\boldsymbol{\varepsilon}) + 2\mu \boldsymbol{\varepsilon}$$

• in tensorial notation (with Einstein summation convention):

$$\sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk} + 2\mu \varepsilon_{ij} = \lambda \delta_{ij} u_{k,k} + \mu (u_{i,j} + u_{j,i})$$

Lamé coefficients: the second is sometimes called shear modulus (G)

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \qquad \qquad \mu = \frac{E}{2+2\nu}$$

- where
 - E is the Young's modulus [Pa]: stiffness of the material
 - nu is the Poisson's ratio: incompressibility of the material <0,0.5</p>

ELASTICITY-BASED MODELING

Kinematics

Strain – Displacement

$$\boldsymbol{\varepsilon} = \frac{1}{2} (\boldsymbol{\nabla} \mathbf{u} + \boldsymbol{\nabla} \mathbf{u}^{\top})$$

Constitutive equation

Stress, static equilibrium

Kinetics

 $\nabla \cdot \boldsymbol{\sigma} + \mathbf{b} = 0$ $\mathbf{t} = \boldsymbol{\sigma} \mathbf{n}$

Stress-strain relation

 $\boldsymbol{\sigma} = \lambda \mathbf{I} tr(\boldsymbol{\varepsilon}) + 2\mu \boldsymbol{\varepsilon}$

PUTTING IT ALL TOGETHER

 $\boldsymbol{\varepsilon} = \frac{1}{2} (\boldsymbol{\nabla} \mathbf{u} + \boldsymbol{\nabla} \mathbf{u}^{\top}) \qquad \boldsymbol{\sigma} = \lambda \mathbf{I} tr(\boldsymbol{\varepsilon}) + 2\mu \boldsymbol{\varepsilon} \qquad \begin{array}{l} \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \mathbf{b} = 0 \\ \mathbf{t} = \boldsymbol{\sigma} \mathbf{n} \end{array}$

 Navier-Cauchy equation (see the proof performed by components on LinearElasticity@Wikipedia):

$$(\lambda + \mu)\nabla(\nabla \cdot \mathbf{u}) + \mu\nabla^2\mathbf{u} + \mathbf{b} = 0$$

tensor notation:

$$(\lambda + \mu)u_{j,ij} + \mu u_{i,jj} + b_i = 0$$

• per component: $K \in \{x, y, z\}$

$$(\lambda+\mu)\frac{\partial}{\partial K}\left(\frac{\partial u_x}{\partial x}+\frac{\partial u_y}{\partial y}+\frac{\partial u_z}{\partial z}\right)+\mu\left(\frac{\partial^2 u_K}{\partial x^2}+\frac{\partial^2 u_K}{\partial^2 y^2}+\frac{\partial^2 u_K}{\partial z^2}\right)+b_K=0$$

THE PROBLEM TO SOLVE

- the body given by a continuous domain $\tilde{\Omega}$ with boundary $\tilde{\Gamma} = \partial \tilde{\Omega}$
- Navier-Cauchy equation holds for every point of the domain (*f_i* being body forces per unit volume)

$$(\lambda + \mu)u_{j,ij} + \mu u_{i,jj} + b_i = 0$$

- essential boundary conditions has to be defined on a part of the boundary (to choose the particular solution of N.-C. PDE $u_i^p = \bar{u}_i^p$ for $p \in \tilde{\Gamma}_E$ where $\tilde{\Gamma}_E \subset \tilde{\Gamma}$ and $\tilde{\Gamma} = \partial \tilde{\Omega}$
- natural boundary conditions can be defined on a part of the boundary (i.e., tractions *T* along normal *n* in point *p*)

$$T_i^p = \sigma_{ij} n_j^p$$
 for $p \in \tilde{\Gamma}_N$ where $\tilde{\Gamma}_N \subset \tilde{\Gamma}$ and $\tilde{\Gamma} = \partial \tilde{\Omega}$

CONTINUOUS VS. DISCRETE SOLUTION II

the only feasible way – discretization: approximate the original continuous quantities by discrete (piecewise) functions:

$$\mathbf{u}(\mathbf{x}) \approx \sum_{n} \mathbf{U}_{n} \varphi_{n}(\mathbf{x}) \qquad \frac{\partial \mathbf{u}(\mathbf{x})}{\partial x} \approx \sum_{n} \mathbf{U}_{n} \frac{\partial \varphi_{n}(\mathbf{x})}{\partial x}$$

- central role of the interpolation (basis, shape, blending) functions
- required properties:
 - local support: the function is non-zero only inside the element
 - bound to a node n:

 $\varphi_n(\mathbf{x}_m) = \delta_{nm}$

FINITE ELEMENT METHOD

First appeared in 40s and 50s (civil engineering, aeronautics).

Weak formulation of the continuous differential problem
 – integration over domain and multiplication by test functions

2. Discretization

- discretization of the domain by the elements
- discretization of the variable and the operator
- integration over element volume (quadratures)
- Global assembling of the algebraic system of equations– imposing the compatibility between the elements
- 4. Imposition of the essential boundary conditions
- 5. Numerical solution of the algebraic system

EXAMPLE: STATIC LINEAR ELASTICITY (SLE)

Given relations (in tensor notation) Newton's law (kinetics)

linearized strain (kinetics)

linear material (constitutional law)

$$\sigma_{ij,j} + b_i = 0 \qquad e_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) \qquad \sigma_{ij} = \lambda e_{kk}\delta_{ij} + 2\mu e_{ij}$$

Weak form of the Newton's equation (Lax-Milgram lemma) -*integration* over the volume -multiplication by a *test functions* w_i $\int_{\Omega} (\sigma_{ij,j} + b_i) w_i d\Omega = 0$

The integral over volume allows to distribute the derivatives –application of chain rule–divergence theorem $\int_{\Omega} \sigma_{ij} w_{i,j} d\Omega = \int_{\Omega} b_i w_i d\Omega + \int_{\partial \Omega} t_i w_i d\Gamma$

- no derivative of the stress tensor
- the only derivative applied to the test function on the left side
- \mathbf{t}_i : tractions defined over the surface $\partial \Omega$ (natural boundary conditions)

SLE: DISCRETIZATION AND GALERKIN METHOD

The actual weak form:

where:

$$\int_{\Omega} \sigma_{ij} w_{i,j} d\Omega = \int_{\Omega} b_i w_i d\Omega + \int_{\partial \Omega} t_i w_i d\Gamma$$
$$\sigma_{ij} = \lambda e_{kk} \delta_{ij} + 2\mu e_{ij} \qquad e_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$$

Domain discretization by elements *e*: $\tilde{\Omega} \approx \Omega = \biguplus_e \Omega_e$ – element *e* given by *N* nodes

- each element "equipped" with interpolation functions $\varphi^{en}(x,y,z)$
- index *n*: node of the element (therefore *N* interpolation functions per element)

Galerkin method: use the same interpolation functions to discretize the test functions *w* and the solution *u* over an element *e*:

$$w_i = \varphi^{en} W_i^{en}$$
 $u_i = \varphi^{en} U_i^{en}$ Example of derivative:
(note: no summation over e!) $w_{i,j} = \varphi_{,j}^{en} W_i^{en}$

SLE: GALERKIN METHOD II

Discretized week form:
$$\sum_{e} \int_{\Omega_{e}} \sigma_{ij} \varphi_{,j}^{en} W_{i}^{en} d\Omega = \sum_{e} \int_{\Omega_{e}} b_{i} \varphi^{en} W_{i}^{en} d\Omega + \int_{\partial\Omega_{e}} t_{i} \varphi^{en} W_{i}^{en} d\Gamma$$
where:
$$\sigma_{ij} = \lambda e_{kk} \delta_{ij} + 2\mu e_{ij} \qquad e_{ij} = \frac{1}{2} (\varphi_{,j}^{en} U_{i}^{en} + \varphi_{,i}^{en} U_{j}^{en})$$

Galerkin method: the equations hold for any virtual displacement *W*_{*i*}:

$$\sum_{e} \int_{\Omega_{e}} \left(\sigma_{ij} \varphi_{,j}^{en} d\Omega \right) W_{i}^{en} = \sum_{e} \left(\int_{\Omega_{e}} b_{i} \varphi^{en} d\Omega + \int_{\partial\Omega_{e}} t_{i} \varphi^{en} d\Gamma \right) W_{i}^{en}$$

For each element *e*, we have the local equation:

$$\int_{\Omega_e} \sigma_{ij} \varphi_{,j}^{en} d\Omega = \int_{\Omega_e} b_i \varphi^{en} d\Omega + \int_{\partial\Omega_e} t_i \varphi^{en} d\Gamma$$

where: $\sigma_{ij} = \lambda \varphi_{,k}^{ne} U_k^{ne} \delta_{ij} + \mu (\varphi_{,j}^{en} U_i^{en} + \varphi_{,i}^{en} U_j^{en})$

SLE: THE ELEMENT EQUATION

$$\int_{\Omega_e} \sigma_{ij} \varphi_{,j}^{en} d\Omega = \int_{\Omega_e} b_i \varphi^{en} d\Omega + \int_{\partial\Omega_e} t_i \varphi^{en} d\Gamma$$

where:

$$\sigma_{ij} = \lambda \varphi_{,k}^{ne} U_k^{ne} \delta_{ij} + \mu (\varphi_{,j}^{en} U_i^{en} + \varphi_{,i}^{en} U_j^{en})$$

Right-hand side:

- we consider tractions to be zero and
- body forces to be constant w.r.t. space

$$b_i \int_{\Omega_e} \varphi^{ne} d\Omega$$

Left-hand side:

ſ

J

- clearly linear in *U* being the unknown displacements in nodes n=1...N

$$\int_{\Omega_e} \lambda \varphi_{,k}^{ne} U_k^{ne} \delta_{ij} + \mu (\varphi_{,j}^{en} U_i^{en} + \varphi_{,i}^{en} U_j^{en}) \varphi_{,j}^{en} d\Omega$$

– since linear, the left-hand side can be re-organized to $K_{ij}^{en}U_j^{en}$

VOIGT NOTATION

C

Left-hand side:

$$\int_{\Omega_e} \sigma_{ij} \varphi_{,j}^n d\Omega \qquad \text{with} \qquad \begin{aligned} \sigma_{ij} &= \lambda e_{kk} \delta_{ij} + 2\mu e_{ij} \\ e_{ij} &= \frac{1}{2} (\varphi_{,j}^n U_i^n + \varphi_{,i}^n U_j^n) \end{aligned}$$

the tensor notation has been useful to derive the final form
for implementation purposes, Voigt notation is usually employed where 3x3
symmetric 1-order tensor is stored as 6x1 vector:

$$\begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{11} & T_{2} & T_{3} \\ T_{12} & 22 & 23 \\ T_{13} & T_{23} & T_{33} \end{bmatrix} = \begin{bmatrix} T_{1} & T_{6} & T_{5} \\ . & T_{2} & T_{4} \\ . & . & T_{3} \end{bmatrix} = \begin{bmatrix} T_{1} & T_{1} & T_{2} \\ . & T_{2} & T_{4} \\ . & . & T_{3} \end{bmatrix}$$

SLE: STRESS-STRAIN MATRIX D

Applying the Voigt notation to the stress–strain relation $\sigma_{ij} = \lambda e_{kk} \delta_{ij} + 2\mu e_{ij}$ results in following matrix equation (derivation is straightforward:

$\left(\sigma_{11} \right)$	1	$\left(\lambda + 2\mu \right)$	λ	λ	0	0	0	$\left(\begin{array}{c} e_{11} \end{array} \right)$
σ_{22}		λ	$\lambda + 2\mu$	λ	0	0	0	e_{22}
σ_{33}		λ	λ	$\lambda + 2\mu$	0	0	0	e_{33}
σ_{12}	-	0	0	0	μ	0	0	$2e_{12}$
σ_{13}		0	0	0	0	μ	0	$2e_{13}$
$\left\langle \sigma_{23} \right\rangle$	/	$\setminus 0$	0	0	0	0	μ /	$\left(2e_{23} \right)$

The matrix in the middle is 6x6 stress-strain matrix (denoted further as **D**).

Before encoding the rest into matrices we have to choose the interpolation functions!

$$\int_{\Omega_e} \sigma_{ij} \varphi_{,j}^n d\Omega \qquad e_{ij} = \frac{1}{2} (\varphi_{,j}^{en} U_i^{en} + \varphi_{,i}^{en} U_j^{en})$$

Note that only derivatives of interpolation functions appear in the formulation.

P1: TETRAHEDRAL LINEAR ELEMENT

– tetrahedral: simplex in 3D having four nodes

– linear since we choose linear interpolation functions:

$$\varphi(x, y, z) = a + b(x) + c(y) + d(z)$$

(a general linear function in 3D)

- how to find the coefficients a,b,c,d? Recall the basic property of an interpolation function: $\varphi^i(x_j, y_j, z_j) = \delta_{ij} \qquad i, j \in 1, ... N$

(the value of an interpolation function associated to a node *i* is 1 when evaluated in that node $[x_i, y_i, z_i]$ and zero in any other node $[x_j, y_j, z_j]$)

SLE&P1: COMPUTING THE SHAPE FUNCTIONS

Linear P1 (Lagrangian) tetrahedral element

– putting the condition into a matrix form gives:

$\left(1 \right)$	x_1	y_1	z_1		(a)		$\left(1 \right)$	0	0	$ 0 \rangle$
	x_2				b		0	1	0	0
	x_3				С	=	0	0	1	0
	x_4)	$\left(\begin{array}{c} d \end{array} \right)$		$\int 0$	0	0	$\left \begin{array}{c}0\\0\\0\\1\end{array}\right)$

denoting V the matrix on the left (*nodal matrix*), 4 instances of coefficients corresponding to 4 interpolation functions (associated to each node) can be computed as columns of the V⁻¹ (recall the requirements for mesh quality!)
recall also that only derivatives of interpolation functions are present in the formulation (so only coefficients b,c,d) will be used

SLE&P1: STRAIN-DISPLACEMENT MATRIX **B**

Using the Voigt notation and assuming the linear P1 tetrahedra used for discretization, the left-hand side

$$\begin{split} \int_{\Omega_{e}} \sigma_{ij} \varphi_{,j}^{n} d\Omega & \sigma_{ij} = \lambda e_{kk} \delta_{ij} + 2\mu e_{ij} & e_{ij} = \frac{1}{2} (\varphi_{,j}^{en} U_{i}^{en} + \varphi_{,i}^{en} U_{j}^{en}) \\ \text{can be rewritten in matrix form as:} & \int_{\Omega_{e}} \mathbf{B}_{e}^{\top} \mathbf{D}_{e} \mathbf{B}_{e} d\Omega & \mathbf{D}_{e} = \begin{pmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu \end{pmatrix} \\ \mathbf{B}_{e} = \begin{pmatrix} b_{1} & 0 & 0 & b_{2} & 0 & 0 & b_{3} & 0 & 0 & b_{4} & 0 & 0 \\ 0 & c_{1} & 0 & 0 & c_{2} & 0 & 0 & c_{3} & 0 & 0 & d_{4} \\ 0 & 0 & d_{1} & 0 & 0 & d_{2} & 0 & 0 & d_{3} & 0 & 0 & d_{4} \\ c_{1} & b_{1} & 0 & c_{2} & b_{2} & 0 & c_{3} & b_{3} & d_{4} & 0 & b_{4} \\ 0 & d_{1} & c_{1} & 0 & d_{2} & c_{2} & 0 & d_{3} & c_{3} & 0 & d_{4} & c_{4} \end{pmatrix} \end{split}$$

SLE&P1: LOCAL STIFFNESS MATRIX

What about the integration?

- recall that only derivatives of shape functions appear in the formulation
- since interpolation functions are linear, only coefficients b,c,d appear in the matrices
- therefore, the integrand is constant (does not depend on x,y,z)
- integration of a constant over a tetrahedron is computed by multiplication of the constant by the volume of the tetrahedron
- the volume of a tetrahedron is given by determinant of nodal matrix: - the final form is therefore: $\mathcal{V}_e = \frac{|\mathbf{V}_e|}{6}$

$$\mathbf{K}_{e} = \int_{\Omega_{e}} \mathbf{B}_{e}^{\top} \mathbf{D}_{e} \mathbf{B}_{e} d\Omega = \frac{|\mathbf{V}_{e}|}{6} \mathbf{B}_{e}^{\top} \mathbf{D}_{e} \mathbf{B}_{e}$$

– the local matrices K_e are assembled into a global matrix K

– the contribution from different elements to the same node are added (*globalization matrix*)

ASSEMBLING THE GLOBAL SYSTEM

- the procedure now gives 12x12 matrix (4x4 block matrix where each block (i,j) corresponds to stiffness relation between nodes n and m (n,m=1...4)
- global assembly:
 - mapping for each node from local to global indices: (e,n) -> n
 - the block (n,m) from matrix associated to element e is added to the global block at position (n,m) in the global matrix
 - usually is done directly during the computation of local matrix
 - the global matrix is a 3Nx3N block matrix where N is the total number of DOFs (and 3N is thus the number of degrees of freedom)

BOUNDARY CONDITIONS

- choosing a particular solution (otherwise K singular)
- several options to impose a Dirichlet boundary condition u_i=V
 - elimination (projection):
 - left side: K(i,k) = K(k,i) = 0 for all $k \neq i$, K(i,i) = 1
 - right side: f(i) = V ("pseudo-loads")
 - not very flexible and difficult to parallelize
 - penalization: adding a penalization term to impose the boundary condition (reduces the "quality" of matrix in terms of the condition number)
 - Lagrange multipliers: changes the properties of the matrix (larger, possibly indefinite)

THE GLOBAL STIFFNESS MATRIX

- linear relation between forces (**f**) and displacements (**u**):
- encoding relations between nodes
- highly sparse (<3% of non-zero)
 - non-zero blocks only for combinations of nodes connected by a mesh edge
 - suitable representation [i j K_{ij}]
 - efficient matrix-vector multiplication
- regular after the imposition of boundary c
- symmetric, positive-definite, sparsity pattern depends on node numbering (can be improved e.g. by Metis)

 $\mathbf{K}\mathbf{u} = \mathbf{f}$

PRACTICAL MATRIX MANIPULATION

- sparse matrices generated from the FE formulation
 - only a small fraction of entries non-zero (<3%)
 - system of N nodes in 3D results in size of (3N)²
 - practical example: 10000 nodes in double (4B): 3.4GB
 - but 3.3GB are zeros...
 - common format: $i j A_{ij}$ (137MB, 2 x int + 1 x double)
 - row vs. column compressed
 - sometimes storing both representations can be practical

SYSTEMS OF LINEAR EQUATIONS

• scalar case:
$$ax = b$$
 \longrightarrow $x = \frac{b}{a}$

- vectorial case: Ax = b \longrightarrow $x = A^{-1}b$
- properties of A (considered being a square matrix)
 - regular matrix: inverse **A**⁻¹ exists
 - symmetric: equals to transpose, $A^T = A$
 - positive-definite: z^TAz is positive for a vector z (eigenvalues)
 - orthogonal matrix: $A^{T} = A^{-1}$ (representation of rotations)

DIRECT SOLUTION OF LINEAR SYSTEM

• solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

■ direct solutions: the inverse **A**⁻¹ computed explicitly as factorization

- for cases when you need to recompute Ax=b' for another b'
- 2 phases: decomposition (factorisation), solution (back-substitution)
- Cholesky decomposition: A = LL^T (L lower triangular matrix): symmetric positive-definite matrices, most optimal (num. of operation)
- LDL decomposition: A = LDL^T (D diagonal), works for some *indefinite* matrices where Cholesky fails
- LU decomposition: (U upper triangular matrix), general case, modified Gaussian elimination (Doolittle, Crout algorithms, pivoting)

ITERATIVE SOLUTION OF LINEAR SYSTEM

solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

- will depend on properties of A
- iterative solutions: the inverse **A**⁻¹ is not assembled explicitly
 - start with an estimation x⁽⁰⁾ and iterate until |Ax⁽ⁱ⁾-b| < e (stopping criterium usually more complicated, absolute vs. relative residual)</p>
 - conjugate gradients (CG): for symmetric, positive-definite matrices (see Shewchuk: Conjugate gradients without agonizing pain)
 - **bi-conjugate gradient (BiCG)**: generalization for non-symmetric
 - generalized minimal residual (GMRES): any regular matrix
 - preconditioned versions: approximation of A⁻¹

ISSUES WITH LINEAR ELASTICITY

 after imposition of the boundary conditions, the system can be solved

- iterative: even the matrix **K** does not have to be assembled
- direct: the both K-1 combled and stored explicitly, so u can be up

linearized Green strain does not work for large deformations

 $[\]mathbf{K}\mathbf{u} = \mathbf{f}$

TOWARDS NONLINEAR: CO-ROTATIONAL FORMULATION

- an extremely successful approach in soft-tissue modeling allowing for large displacements (but supposing small strains)
 - *C.Felippa: A systematic approach to the element-independent corotational dynamics of finite elements, 2000*
- uses the linear-elasticity but co-rotational strain
- the simulation is performed in small steps and in each step:

 $\mathbf{R}_{e}^{+}\mathbf{K}_{e}\mathbf{R}_{e}$

- the actual deformation of every element e is decomposed into rigid and deformable components w.r.t. the initial configuration
- the rigid component is given by a rotation $\mathbf{R}_{\mathbf{e}}$ of the component
- the local stiffness matrix K_e is updated as

CO-ROTATIONAL FORMULATION II

- the matrix **K** is not constant anymore ($\mathbf{K} => \mathbf{K}(\mathbf{u})$)
 - the rotational matrices $\mathbf{R}_{\mathbf{e}}(\mathbf{u})$ depend on the actual \mathbf{u}
 - in each step, Newton-Raphson method should be performed, actually, works quite stably even if only one iteration is performed
- the decomposition can be performed by various methods
 - choosing the basis
 - polar(1), QR(2), SVD

- although the large deformations are simulated realistically, only small strains are handled correctly
- more information about the implementation in SOFA:
 - M.Nesme et al.: Efficient, physically plausible finite elements, 2005

R