
Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Code Optimizations

Jǐŕı Filipovič

fall 2015

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Vector Reduction

Let v be the vector of size n. We want to compute x =
∑n

i=1 vi .

C code (not very reasonable for floats)

int x = 0 ;
for (int i = 0 ; i < n ; i++)

x += v [i] ;

There is flow dependency across iterations.

we cannot be completely parallel

addition is (at least in theory :-)) associative

so, we do not need to add numbers in sequential order

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Vector Reduction

Let v be the vector of size n. We want to compute x =
∑n

i=1 vi .
C code (not very reasonable for floats)

int x = 0 ;
for (int i = 0 ; i < n ; i++)

x += v [i] ;

There is flow dependency across iterations.

we cannot be completely parallel

addition is (at least in theory :-)) associative

so, we do not need to add numbers in sequential order

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Vector Reduction

Let v be the vector of size n. We want to compute x =
∑n

i=1 vi .
C code (not very reasonable for floats)

int x = 0 ;
for (int i = 0 ; i < n ; i++)

x += v [i] ;

There is flow dependency across iterations.

we cannot be completely parallel

addition is (at least in theory :-)) associative

so, we do not need to add numbers in sequential order

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Parallel Algorithm

The sequential algorithm performs seven steps:

((((((v1 + v2) + v3) + v4) + v5) + v6) + v7) + v8

Addition is associative... so let’s reorder brackets:
((v1 + v2) + (v3 + v4)) + ((v5 + v6) + (v7 + v8))
We can work in parallel now:

four additions in the first step

two additions in the second step

one addition in the third step

In summary, we perform n − 1 additions in log2 n parallel steps!

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Parallel Algorithm

The sequential algorithm performs seven steps:

((((((v1 + v2) + v3) + v4) + v5) + v6) + v7) + v8

Addition is associative... so let’s reorder brackets:
((v1 + v2) + (v3 + v4)) + ((v5 + v6) + (v7 + v8))

We can work in parallel now:

four additions in the first step

two additions in the second step

one addition in the third step

In summary, we perform n − 1 additions in log2 n parallel steps!

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Parallel Algorithm

The sequential algorithm performs seven steps:

((((((v1 + v2) + v3) + v4) + v5) + v6) + v7) + v8

Addition is associative... so let’s reorder brackets:
((v1 + v2) + (v3 + v4)) + ((v5 + v6) + (v7 + v8))
We can work in parallel now:

four additions in the first step

two additions in the second step

one addition in the third step

In summary, we perform n − 1 additions in log2 n parallel steps!

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Parallel Algorithm

We have found the parallel algorithm

the same number of additions as the serial algorithm

in logarithmic time (if we have enough cores)

We add results of previous additions

flow-dependency across threads

we need global barrier

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Naive Approach

The simplest scheme of the algorithm:

for even i , i < n perform v[i] += v[i+1]

repeat for n /= 2 untill n > 1

The performance is not ideal

2n numbers loaded from global memory

n numbers stored to global memory

log2 n kernel invocations

We have three memory accesses to one arithmetics operation and
considerable kernel invocation overhead.

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Exploiting Data Locality

We can add more than tuples during single kernel call.

each block bx loads m numbers into shared memory

it reduces the input (in shared memory in log2m steps)

it stores only one number containing
∑m·bx+m

i=m·bx vi

Reduces both memory transfers and number of kernel invocations

number of loads: n + n
m + n

m2 + .. + n
mlogm n = (n − 1) m

m−1
approximately n + n

m numbers read, n
m written

logm n kernel invocations

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 1

__global__ void reduce1 (int ∗v){
extern __shared__ int sv [] ;

unsigned int tid = threadIdx . x ;
unsigned int i = blockIdx . x∗blockDim . x + threadIdx . x ;
sv [tid] = v [i] ;
__syncthreads () ;

for (unsigned int s=1; s < blockDim . x ; s ∗= 2) {
if (tid % (2∗ s) == 0)

sv [tid] += sv [tid + s] ;
__syncthreads () ;

}

if (tid == 0)
v [blockIdx . x] = sv [0] ;

}

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Performance

Costly modulo operation.
Possibly high degree of divergence

during the first iteration, only half of threads is working

during the second iteration, only quarter of threads is working

etc.

Performance on GTX 280: 3.77 GB/s (0.94 MElem/s).

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 2

We will modify indexation

for (unsigned int s = 1 ; s < blockDim . x ; s ∗= 2) {
int index = 2 ∗ s ∗ tid ;
if (index < blockDim . x)

sv [index] += sv [index + s] ;
__syncthreads () ;

}

Performance: 8.33 GB/s (2.08 MElem/s).
The code is free of modulo and divergence, but generates shared
memory bank conflicts.

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 3

So we can try another indexing...

for (unsigned int s = blockDim . x /2 ; s > 0 ; s >>= 1) {
if (tid < s)

sv [tid] += sv [tid + s] ;
__syncthreads () ;

}

No divergence and no conflicts.
Performance 16.34 GB/s (4.08 MElem/s).
Half of threads do not compute...

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 4

We can add numbers during loading them from global memory.

unsigned int i = blockIdx . x ∗(blockDim . x ∗2) + threadIdx . x ;
sv [tid] = v [i] + v [i+blockDim . x] ;

Performance 27.16 GB/s (6.79 MElem/s).
There is no problem with data access, but the performance is still
low – we will focus to instructions.

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 5

The number of active threads decreases during computation in
shared memory.

in the last six iterations, only the last warp is active

the warp is synchronized implicitly, so we do not need
syncthreads() (but this is not safe optimization)

we need volatile variable in this case

condition if (tid < s) does not spare any computation

So we can unroll the last warp...

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 5

float mySum = 0 ;

for (unsigned int s = blockDim . x /2 ; s > 32 ; s >>= 1){
if (tid < s)

sv [tid] = mySum = mySum + sv [tid + s] ;
__syncthreads () ;

}

if (tid < 32){
volatile float ∗s = sv ;
s [tid] = mySum = mySum + s [tid + 32] ;
s [tid] = mySum = mySum + s [tid + 16] ;
s [tid] = mySum = mySum + s [tid + 8] ;
s [tid] = mySum = mySum + s [tid + 4] ;
s [tid] = mySum = mySum + s [tid + 2] ;
s [tid] = mySum = mySum + s [tid + 1] ;

}

We save time in all warps (the last warp is simpler, others exits
earlier from the for loop).
Performance: 37.68 GB/s (9.42 MElem/s).

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 5

For c.c. 3.0 or greater, we can use warp shuffle:

if (tid < 32){
mySum += sdata [tid + 32] ;
for (int offset = warpSize /2 ; offset > 0 ; offset /= 2)

mySum += __shfl_down (mySum , offset) ;
}

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 6

Can we unroll the for loop?
If we know the number of iterations, we can unroll it

the number of iterations depends on the block size

Can we implement it generically?

algorithm uses blocks of size 2n

the block size is upper-bounded

if we know the block size during compilation, we can use a
template

template <unsigned int blockSize>
__global__ void reduce6 (int ∗v)

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 6

Conditions using blockSize are evaluated during compilation:

if (blockSize >= 512){
if (tid < 256)

sv [tid] += sv [tid + 256] ;
__syncthreads () ;

}
if (blockSize >= 256){

if (tid < 128)
sv [tid] += sv [tid + 128] ;

__syncthreads () ;
}
if (blockSize >= 128){

if (tid < 64)
sv [tid] += sv [tid + 64] ;

__syncthreads () ;
}

Performance: 50.64 GB/s (12.66 MElem/s).

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 7

Can we implement faster algorithm?
Let’s reconsider the complexity:

log n parallel steps

n − 1 additions

time complexity for p threads running in parallel (using p
processors): O(np + log n)

Cost of parallel computation

defined as number of processors multiplied by time complexity

if we assign one thread to one data element, we get p = n

and the cost is O(n · log n)

which is not efficient

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 7

Decreasing the cost

we use O(n
log n) threads

each thread performs O(log n) sequential steps

after that, it performs O(log n) parallel steps

time complexity is the same

the cost is O(n)

What it means in practice?

we reduce overhead of the computation (e.g. integer
arithmetics)

advantage if we have much more threads that is needed to
saturate GPU

moreover, thread execution overhead is reduced

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 7

We modify loading into shared memory

unsigned int gridSize = blockSize ∗2∗ gridDim . x ;
sv [tid] = 0 ;

while (i < n){
sv [tid] += v [i] + v [i+blockSize] ;
i += gridSize ;

}
__syncthreads () ;

Performance: 77.21 GB/s (19.3 MElem/s).

You can find those implementations in CUDA SDK.

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Implementation 7

We modify loading into shared memory

unsigned int gridSize = blockSize ∗2∗ gridDim . x ;
sv [tid] = 0 ;

while (i < n){
sv [tid] += v [i] + v [i+blockSize] ;
i += gridSize ;

}
__syncthreads () ;

Performance: 77.21 GB/s (19.3 MElem/s).

You can find those implementations in CUDA SDK.

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Intra-kernel Optimizations

The compiler optimizes each kernel separately, so it may miss some
optimization opportunities.

kernel fusion – gluing code from several kernels into one kernel

kernel fission – splitting a kernel into several smaller kernels

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Kernel fusion

Performance impact of kernel fusion

reduce kernel execution overhead

may add more parallelism

allow more scalar code optimizations: common subexpression
elimination, loop fusion, condition fusion

reduce global memory transfers if kernels are flow-dependent
or input-dependent

Correctness

no flow dependency between thread blocks

shared memory and registers locality has to be maintained

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Kernel fission

Kernel fission reduces resources consumption

increases occupancy

may allow to use different algorithm (e.g. if part of the
algorithm uses different amount of parallelism or different
amount of resources)

Correctness

much easier, we just need to transfer data between new
kernels

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Problem Choice

Before we start with code acceleration, we should consider
carefully, if it is meaningful.
The accelerated code should be

critical for application performance (profile... and profile on
real data)

large enough (usually not ideal for relatively simple but
latency critical application)

parallelizable (problematic e.g. in simulations of small system
evolving for long time)

sufficient number of flops to memory transfers (consider slow
PCI-E)

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Problem Choice

Do we optimize running time or power consumption?

accelerators are usually faster, but also have higher power
consumption

how to deal with hybrid systems (e.g. CPU, GPU and Xeon
Phi)

influences decision what to buy as well as what to use (which
resources let in power-saving mode)

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Algorithm Design

Parallelization

we need to parallelize computational problem

we should be aware about target architecture even in this
stage (consider e.g. graph algorithms)

It is difficult to accelerate codes on GPU:

if threads within the warp access rather random addresses in
the memory

if threads within the warp diverges (by nature of the
algorithm)

if the parallelism is insufficient in certain parts of computation

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

How to Write Bug-Free Code

Test if API and kernel calls are successful

otherwise, errors can appear later...

The memory allocation on GPU is quite deterministic

if your kernel does not write any result, you got a result from
previous run

clear output arrays for debugging purposes

Be aware of out-of-bounds shared memory access

kernel usually runs successfully, but one block interferes with
another

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Optimization

Start with the most important optimizations and continue with less
important (so the effect of less important optimizations is not
hidden). In general, this order should work well:

PCI-E transfers reduction/overlay

global memory access (bandwidth, latency)

access to other types of memory

parallelism configuration (block size, amount of serial work
per thread)

divergence

instruction optimization

It is good idea to write your code configurable

block size, serial iteration per thread, loop unrolling factor,
used algorithm . . .

use macros or template to allow optimization during
compilation

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Interpretation of Algorithm Performance

Some optimizations may be hidden

e.g. optimizing instruction cannot help when code is bound by
wrong global memory access

can be reduced by applying more important optimizations
more early

use the profiler

The optimization space is not continuous

due to restricted amount of GPU resources

e.g. improving efficiency of scalar code by using one more
register may decrease the performance by restricting GPU
occupancy

Performance is data-dependent

data size: partition camping, underutilized GPU

data content: sparse data with varying structure

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

What is real speedup over CPU?

Comparison of theoretical peak is basic metric

however, the speedup can be lower

insufficient parallelism
inappropriate data structures, random access
PCI-E bottleneck (especially multi-GPU algorithms)

however, the speedup can be also higher

frequent usage of SFUs
complicated vectorization on CPU
insufficient scaling on SMP (cache interferences, NUMA)

different scaling of CPU and GPU with growing problem size

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Searching for Bottlenecks

The amount of arithmetic operations and memory transfers tells us
what is expected to be a limit for algorithm

sometimes bottleneck is not clear (overhead instructions,
irregular memory access)

code profiling – suitable to identify issues with instructions
throughput or bad memory access pattern, more difficult to
identify source of latency problems

code modifications – more precise, but more difficult and not
usable in all cases

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Profiling

How close is the code to the hardware limits?

profiler shows the overall utilization of particular GPU
subsystems, such as cache, global memory, FP instructions
etc.

Issues identification

profiler detects some issues, such as shared memory bank
conflicts or code divergence

We can inspect a code in details

time spent on particular instructions/C for CUDA lines of code

we need to compile the code with flag -lineinfo

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Code Modifications

Global memory performance

we comment-out the computation

but we need to somehow use loaded data (to disallow
compiler to exclude loading)

we can check with profiler that the same amount of data are
transfered

Instructions performance

we comment-out data movement

but the resulting data is needed to be stored (to disallow
compiler to exclude computation)

but we do not want to store data.... . .
we can move storing data into condition which is evaluated as
false during computation (but no during compilation)

be aware of execution overhead in the case of fast kernels

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Code Modifications

Be aware of occupancy changes

code modifications can release some resources

we can restrict occupancy by allocating some dummy shared
memory array

Interpretation of measured times

original kernel execution time is close to sum of computation
and memory kernel time – the latency is an issue

computation or memory kernel time dominates and is closed
to original kernel time – the performance is bounded by
computation or memory

computation and memory kernel times are similar to original
kernel time – we need to optimize both

Jǐŕı Filipovič Code Optimizations

Reduction Cross-kernel Optimizations General Advices Searching for Bottlenecks

Code Modifications

Approximation of optimization effect

when we already know some performance issue

when we want to know the effect of optimization before we
actually implement it

we can modify the code without preserving original
functionality, but preserving amount of work and removing
performance issue

cannot be done in all cases
may show us if we really address the performance issue
see matrix transposition example

Jǐŕı Filipovič Code Optimizations

	Reduction
	Problem Analysis
	Naive Approach
	Implementation 1
	Implementation 2
	Implementation 3
	Implementation 4
	Implementation 5
	Implementation 6
	Implementation 7

	Cross-kernel Optimizations
	Cross-kernel Optimizations

	General Advices
	Problem Choice
	Problem Choice
	Algorithm Design

	Searching for Bottlenecks
	Searching for Bottlenecks

