Jifi Filipovic

fall 2015

Ji¥i Filipovit OpenCL

Introduction
€000

OpenCL

What is OpenCL?
@ an open standard for heterogeneous systems programming

o low-level, derived from C, HW abstraction very similar to
CUDA

Advantages over CUDA

@ can be used for wide area of HW

@ open standard, independent on a single corporation
Disadvantages compared to CUDA

@ more complex API (similar to CUDA Driver API)

@ often less mature implementation

@ slower implementation of new HW features

Ji¥i Filipovit OpenCL

Introduction
0e00

Portability

One implementation can be compiled for different types of HW
o if we do not use extensions ...

However, the implementation optimized for some type of HW may
be very slow on another HW

@ we need to re-optimize for different HW architectures

So, it is the standard for programming of various types of HW, but
we need to write different kernels for different architectures.

@ high importance easily modifiable code or autotuning

Ji¥i Filipovit OpenCL

Introduction
[eYe] Yo

Performance Portability

600
500
400
<
S
& 300
=
o
-m-Fermi fast sgemm (16-1 unrolled)
200
—+—ATI fast sgemm
) _}W
0 T T T
NTOVRNONTONONTVRONTQNONTLRONT OO0 N
ITXNOCONINANTOIRXRINLDDNITITNNAISO AR © B iy
FALMRIATMNNRNRIIMIOOONSTDRONITIDB DA MmN G
A AT NN NNNMMMMMT ST TODO NN
N

Obréazek: SGEMM optimized for Fermi and Cypress, running on Fermil.

1Du et al. From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-platform GPU
Programming
povit OpenCL

Introduction
ocooe

Performance Portability

1600

1400

1200

1000

800

Gflop/s

600

400

200

-~ ATl fast sgemm

Fermi sgemm, removed array

—e—Fermi sgemm (direct translation)

192
384
576
768
960
1152

Obrazek: SGEMM optimized for Fermi a Cypress, running on Cypress

1344
1536
1728

1920 -

NS ©OOONTONONTONONT OO N
O XXRNOWMITTITNNTQO QRN QO
CNITOXONLTDRONTDLD Qi mid Kk q
NANNNNOO®O®O®OT TSI I IOWGINADG

2

2Du et al. From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-platform GPU

Programming

povit OpenCL

CUDA — OCL
.

Main Differences

OpenCL is not integrated to C/C++
o the OpenCL kernel is stored as a string, which is usually
compiled during program execution
@ kernel cannot share code with C/C++ codebase (user-defined
types, common functions etc.)
Kernels in OpenCL do not use pointers
@ we cannot dereference, use pointer arithmetics, link different
buffers
@ we can traverse the buffer by index, of course
OpenCL is strictly derived from C
@ no C++ stuff
OpenCL uses queues for HW devices
@ eases using multiple devices/streams
Queues can work out-of-order
@ eases load balancing

Ji¥i Filipovit OpenCL

CUDA — OCL
.

CUDA-OpenCL dictionary

Main differences in terminology

CUDA OpenCL
multiprocessor compute unit
scalar processor | processing element

thread work-item

thread block work-group

grid NDRange
shared memory local memory
registers private memory

Ji¥i Filipovit OpenCL

CUDA — OCL
©000000

Vector Addition — Kernel

CUDA

__global_

{

void addvec(float *a, float *b, float x*c)

int i = blockIdx.x*xblockDim.x 4+ threadIldx.x;
c[i] = a[i] + b[i];

OpenCL

__kernel void vecadd(__global float * a, __global float * b,
__global float #* c)

t int i = get_global_id (0);
c[i] = a[i] + b[i];

OpenCL

CUDA — OCL
0®00000

Vector Addition — Host Code

To execute the kernel, we need
@ to define a platform

o device (at least one)
@ context
o queues

@ allocate and copy data
@ compile the kernel code

@ configure the kernel and execute it

Ji¥i Filipovit OpenCL

CUDA — OCL
00®0000

Vector Addition — Platform Definition

cl_uint num_devices_returned;
cl_device_id cdDevice;

err = chetDeviceIDs(NULL, CL_DEVICE_TYPE_GPU, 1,
&cdDevice, &num_devices_returned);

cl_context hContext;
hContext chreateContext(O,

1, &cdDevice, NULL, NULL, &err);

cl_command_queue hQueue;
hQueue = clCreateCommandQueue(hContext, hDevice, 0, &err);

ifi Filipovit OpenCL

CUDA — OCL
000@000

Vector Addition — Platform Definition

The platform can have more devices
@ can be selected by the type (e.g. a GPU)

@ can be selected by vendor
@ we can also choose HW using finer informations

number of cores

frequency

memory size

extensions (double precision, atomic operations etc.)

Each device needs at least one queue

@ cannot be used otherwise

Ji¥i Filipovit OpenCL

CUDA — OCL
000000

Vector Addition — Memory Allocation and Copy

cl_mem hdA, hdB, hdC;
hdA = chreateBuffer(hContext, CL_MEM_READ_ONLY ,

cnDimension * sizeof(cl_float), pA, 0);
There is no explicit copy — allocation and copy is performed in lazy

fashion, i.e. in time when data are needed. Consequently, the
target device is not defined in the memory allocation.

Ji¥i Filipovit OpenCL

CUDA — OCL
000000

Vector Addition — Kernel Execution

const unsigned int cnBlockSize = 512;
const unsigned int cnBlocks = 3;
const unsigned int cnDimension = cnBlocks * cnBlockSize;

cl_program hProgram,;

hProgram = clCreateProgramWithSource(hContext, 1, sProgramSource
0, 0);

clBuildProgram(hProgram, 0, 0, 0, 0, 0);

cl_kernel hKernel;
hKernel = clCreateKernel(hProgram, "addvec”, 0);

clSetKernelArg(hKernel, 0, sizeof(cl_mem), (void =)&hdA);
clSetKernelArg(hKernel, 1, sizeof(cl_mem), (void *)&hdB);
clSetKernelArg(hKernel, 2, sizeof(cl_mem), (void x)&hdC);

clEnqueueNDRangeKernel(hQueue, hKernel, 1, 0, &cnDimension
, &cnBlockSize, 0, 0, 0);

Ji¥i Filipovit OpenCL

CUDA — OCL
000000@

Vector Addition — Cleanup

clReleaseKernel (hKernel);
clReleaseProgram(hProgram);
clReleaseMemObj (hdA);
clReleaseMemObj (hdB);
clReleaseMemObj (hdC);
clReleaseCommandQueue (hQueue);
clReleaseContext (hContext);

OpenCL

AMD GPU Architecture
©000000000

AMD VLIW GPU Architecture

Older processors
@ Evergreen and Northern Islands
We will discuss main differences between AMD and NVIDIA GPU
@ the rest is very similar
Main differences
o VLIW architecture
@ two memory access modes — the fast path and complete path

@ less sensitive to misaligned access, more sensitive to partition
camping analogy

e wavefront (the warp analogy) has 64 threads

Ji¥i Filipovit OpenCL

AMD GPU Architecture
0®00000000

VLIW Architecture

VLIW
@ the instruction word includes several independent operations

e static planning of instruction parallelism (dependencies
analyzed during compilation)
@ allows higher density of ALUs

@ threads should perform a code with sufficient instruction
parallelism and a compiler needs to recognize it

e easier in typical graphics tasks than general computating ones

o AMD GPU implements VLIW-5 or VLIW-4, 1 instruction is
SFU

Ji¥i Filipovit OpenCL

AMD GPU Architecture
00®0000000

Optimizations for VLIW

Explicit vectorization

e we work with vector variables (e.g. float4)

@ generation of VLIW is straightforward for the compiler
Implicit generation of VLIW

@ we write a scalar code

@ compiler tries to recognize independent instruction and create
VLIW code

@ we can help the compiler by unrolling and grouping the same
operations performing different iterations

Ji¥i Filipovit OpenCL

AMD GPU Architecture
000®000000

Optimizations for VLIW

Issues with VLIW
@ higher consumption of on-chip resources per thread (unrolling,
vector types)
@ we need independent instructions
e problematic e.g. with conditions
@ together with large wavefront it is highly sensitive to
divergence

Ji¥i Filipovit OpenCL

AMD GPU Architecture
0000000000

Global Memory Access

Fast path vs. complete path
o fast path is significantly faster
e fast path is used for load/store of 32-bit values

e complete path is used for everything other (values of different
size, atomics)
@ the compiler needs to explicitly use one of those paths

@ access path is the same for the whole buffer, so we can
degrade the global memory bandwidth easily

Ji¥i Filipovit OpenCL

AMD GPU Architecture
00000@0000

Fast path vs. complete path

kernel void

CopyComplete(__global const float * input, __global float* output)

int gid = get_global_id (0);
if (gid < 0){
atom_add ((__global int #) output,l);

output [gid] = input[gid];
return ;

}
Difference on Radeon HD 5870: 96 GB/s vs. 18 GB/s.

AMD GPU Architecture
0000008000

Global Memory Access

Permutation of thread-element mapping in wavefront
@ small penalization (< 10 %)
@ better than c.c. < 1.2

Faster access using 128-bit in single instruction
@ e.g. accessing float4

e 122 GB/s instead 96 GB/s using HD 5870 and the memory
copy example

Ji¥i Filipovit OpenCL

AMD GPU Architecture
0000000800

Memory Channels

Radeons of 5000 series have memory channels interleaved by 256
bytes
@ all threads within wavefront should use the same channel

e wavefront accessing the aligned contiguous block of 32-bit
elements (with arbitrary permutation of thread-element
mapping) uses the same channel

@ if multiple channels are accessed by wavefront, the access is
serialized

e occurs e.g. in misaligned access

Ji¥i Filipovit OpenCL

AMD GPU Architecture
0000000080

Bank and Channel Conflicts

Analogy of partition camping

o the global memory is accessed using banks and channels

@ concurrent workgroups should access via different channels
and different banks

e bandwidth is limited otherwise
@ the arrangement of banks depends on the number of channels

e for instance, 8 channels means that the bank switches every
2KB

@ high penalization of accessing the same channel and the same
bank (0.3 vs. 93 GB/s on Radeon HD 5870)

Ji¥i Filipovit OpenCL

AMD GPU Architecture
000000000e

Local Data Storage

Local Data Storage (LDS) is very similar to NVIDIA's shared
memory
@ composed of 32 or 16 banks

@ the quarter-wafefront needs to access different banks
simultaneously

e otherwise the bank conflicts appear
e in the case of 32 banks we can efficiently use float2

@ broadcast is supported for a single value (analogy of c.c. 1.x)

Ji¥i Filipovit OpenCL

AMD GPU Architecture
.

AMD GCN GPU Architecture

Nowadays architecture, known as Graphic Core Next.
Significantly different than previous generations

@ no VLIW, compute unit contains one scalar processor and four
vector processors

o the code performed by threads is scalar (vectorized code
usually slower because of resource consumption)
e conditions penalization is lower compared to VLIW

@ L1 cache for read and write

@ concurrent kernel invocations

Ji¥i Filipovit OpenCL

	Introduction
	Introduction

	CUDA OCL
	Main Differences
	Terminology
	Vector Addition

	AMD GPU Architecture
	AMD VLIW GPU Architecture
	AMD GCN GPU Architecture

