OpenCL for x86 CPU and Intel MIC

Ji¥i Filipovic

fall 2015

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

x86 CPU
[TeJelo)

x86 CPU Architecture

Common features of (nearly all) modern x86 processors
@ core is complex, out-of-order instruction execution, large cache
@ multiple cache coherent cores in single chip
@ vector instructions (MMX, SSE, AVX)
@ NUMA for multi-socket systems

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

x86 CPU
[o] Tolo)

CPU and OpenCL

The projection of CPU HW to OpenCL model
@ CPU cores are compute units
@ vector ALUs are processing elements

e so the number of work-items running in lock-step is

determined by instruction set (e.g. SSE, AVX) and data type
(e.g. float, double)

@ one or more work-groups create a CPU thread

o the number of work-groups should be at least equal to the
number of cores

o higher number of work-groups allows to better workload
balance (e.g. what if we have eight work-groups at six-core
CPU?), but creates overhead

@ work-items form serial loop, which may be vectorized

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

x86 CPU
[oJe] Yo)

Implicit and Explicit Vectorization

Implicit vectorization
@ we write scalar code (similarly as for NVIDIA and AMD GCN)

@ the compiler generates vector instructions from work-items
(creates loop over work-items and vectorizes this loop)

@ better portability (we do not care about vector size and
richness of vector instruction set)

@ supported by Intel OpenCL, AMD OpenCL does not support
it yet

Explicit vectorization
@ we use vector data types in our kernels
@ more complex programming, more architecture-specific

@ potentially better performance (we do not rely on compiler
ability to vectorize)

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

x86 CPU
oooe

Differences from GPU

Images
@ CPU does not support texture units, so they are emulated
@ better to not use...
Local memory
@ no special HW at CPU
@ brings overhead (additional memory copies)

@ but it is meaningful to use memory pattern common for using
local memory, as it improves cache locality

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
[Telelelele]

Intel MIC

What is MIC?

@ Many Integrated Core Architecture

e originated in Intel Larrabee project (x86 graphic card)
Main features of the architecture

@ large number of x86 cores

@ a bidirectional ring bus connecting all cores
@ cache-coherent system
°

connected to high-throughput memory

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
00000

MIC Architecture

Core Ring
Interconnect (CRI)
< DaTA>
(,

< ADDRESS >

o D D

SBOX
PCle v2.0 CORE | (CORE 660 CORE
controller,
DMA engines
7 1 T
™D TD

CORE|L2 D Distributed tag D
direct DTD
o 5 irectory () g
[¢] o °
[¢]
TD TD
CORE|L2

000

GBOX
(memory (memory
controller) controller)

Intel MIC
00000

Intel MIC

MIC core

o relatively simple (in-order in current architecture)
@ use hyperthreading (4 threads per core)
o needs to be used to exploit full performance
o fully cache coherent, 32432 KB L1 cache (I4+D), 512KB L2
cache
@ contain wide vector units (512-bit vectors)

e predicated execution
o gather/scatter instructions
e transcendentals

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
000000

Current Hardware

Xeon Phi

@ product based on MIC architecture
o PCI-E card with dedicated memory
e bootable system in future generation

@ runs own operating system (ssh from the host)
Xeon Phi 7120P

@ 61 x86 cores at 1.2GHz

e 16GB RAM

@ 1.2 TFlops SP, 2.4 TFlops DP

@ 352 GB/sec global memory bandwidth

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
0000@0

Programming Model

Native programming model
@ we can execute the code directly at accelerator (via terminal)
@ after recompilation, we can use the same code as for CPU
@ programming via OpenMP, MPI
Offload programming model
@ application is executed at host

@ code regions are offloaded to accelerator, similarly as in the
case of GPUs

e by using #pragma offload with intel tools
e by using OpenCL

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Intel MIC
[eleYelelel]

MIC and OpenCL

The projection of MIC HW to OpenCL programming model is very
similar to CPU case

@ compute units creates threads

@ processing elements creates iterations of vectorized loops

o higher number of work-items due to wider vectors
o less sensitive to divergence and uncoalesced memory access
due to richer vector instruction set

@ high need of parallelism
e e.g. 61 cores need 244 threads

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
©000000000

OpenCL Optimization for CPU and MIC

We will discuss optimizations for CPU and MIC together
@ many common concepts

o differences will be emphasized

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
0®00000000

Parallelism

How to set a work-group size?
@ we do not need high parallelism to mask memory latency
@ but we need enough work-items to fill vector width (if implicit

vectorization is employed)
@ the work-group size should be divisible by vector length, it can
by substantially higher, if we don’t use local barriers
o Intel recommends 64-128 work-items without synchronizations
and 32-64 work-items with synchronizations
e general recommendation, needs experimenting . ..

@ we can let a compiler to choose the work-group size
How many work-groups?

@ ideally multiple of (virtual) cores

@ be aware of NDRange tile effect (especially at MIC)

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
0080000000

Thread-level Parallelism

Task-scheduling overhead
@ overhead of scheduling large number of threads

e issue mainly on MIC (CPU has too low cores)
@ problematic for light-weight work groups

o low workload per work-item
e small work-groups

@ can be detected by profiler easily
Barriers overhead
@ no HW implementation of barriers, so they are expensive

@ higher slowdown on MIC

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
000@000000

Vectorization

Branches
e if possible, use uniform branching (whole work-group follows
the same branch)
@ consider the difference

o if (get_global id(0) == 0)
o if (kernel_arg == 0)

@ divergent branches

e can forbid vectorization
e can be predicated (both then and else branches are executed)

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
0000000000

Vectorization

Scatter/gather

@ supported mainly on MIC

@ for non-consecutive memory access, compiler tries to generate
scatter/gatter instructions

e instructions use 32-bit indices
o get_global_id() returns size_t (64-bit)
e we can cast indices explicitly

@ avoid pointer arithmetics, use array indexing
e more transparent for the compiler

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
0000080000

Memory Locality

Cache locality
@ the largest cache dedicated to core is L2

@ cache blocking — create work-groups using memory regions of
L2 cache

AoS

@ array of structures

@ more efficient for random access
SoA

@ structure of arrays

@ more efficient for consecutive access

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
0000008000

Memory Access

Memory access pattern

@ consecutive memory access is the most efficient in both
architectures
@ however, there are differences

e MIC is in-order, so the memory access efficiency heavily
depends on prefetching, which is more successful for
consecutive access

o CPU does not support gather/scatter, thus inefficiency comes
also from forbidding vectorization

Alignment
@ some vector instructions require alignment
o IMCI (MIC): 64-byte
e AVX: no requirements
o SSE: 16-byte

@ pad innermost dimension of arrays

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
0000000800

Memory Access

Prefetching on MIC
@ prefetching is done by HW and by SW
o generated by the compiler
o also can be explicitly programmed (function void
prefetch(const __global gentype *p, size_t
num_elements))
@ explicit prefetching helps e.g. in irregular memory access
pattern

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Optimization
0000000000

Memory Access

False sharing
@ accessing the same cache line from several threads
o 64-byte block on modern Intel processors
@ brings significant penalty
False sharing reasons

@ multiple threads access the same addresses
e it is better to create local copies and merge them when
necessary (if possible)
e reduces also synchronization
@ multiple threads access different addresses in the same cache
line
e padding

povit OpenCL for x86 CPU and Intel MIC

Optimization
0000000008

Memory Access

NUMA

@ Non-Uniform Memory Access
@ realized usually at multi-socket setups
e common with modern CPUs, can be also realized in single
chip, or memory access can be uniform (FSB)
@ each CPU has own local memory with faster access and
non-local memory with slower access (local memory of other
processors)

@ when allocated, the block of memory is inserted in local
memory
@ so access from threads running on different CPU is slower
e thread-data affinity cannot be managed with current OpenCL
specification

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Reduction
€0000

Vector reduction

Rewritten CUDA version

@ uses very similar concept as was demonstrated in former
lecture, but run in constant number of threads

@ reaches nearly peak theoretical bandwidth on both NVIDIA
and AMD GPUs

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Reduction
00000

Reduction for GPUs (1/2)

__kernel void reduce(__global const intx* in, __global intx out,
unsigned int n, __local volatile int *buf) {
unsigned int tid = get_local_id(0);
unsigned int i = get_group_id(0)*(get_local_size(0)x2)
+ get_local_id (0);
unsigned int gridSize = 256%2%get_num_groups (0);
buf [tid] = 0;

while (i < n) {
buf [tid] += in[i];
if (i 4+ 256 < n)
buf [tid] 4= in[i+256];
i += gridSize;
}

barrier (CLK_LOCAL_MEM_FENCE);

ilipovit OpenCL for x86 CPU and Intel MIC

Reduction
00000

Reduction for GPUs (2/2)

//XXX hard optimization for 256—thread work groups
if (tid < 128)
buf [tid] += buf[tid + 128];
barrier (CLK_LOCAL_MEM_FENCE);
if (tid < 64)
buf [tid] 4= buf[tid + 64];
barrier (CLK_LOCAL_MEM_FENCE);

//XXX hard optimization for 32—bit warp size, no problem at AMD
if (tid < 32) {

buf [tid] 4= buf[tid + 32];
buf [tid] += buf[tid + 16];
buf[tid] 4= buf[tid + 8];
buf [tid] 4= buf[tid + 4];
buf [tid] += buf[tid + 2];
buf [tid] 4= buf[tid + 1];
}
if (tid = 0) atomic_add(out, buf[0]);

ilipovit OpenCL for x86 CPU and Intel MIC

Reduction
00000

Vector reduction

Execution of GPU code on CPU and Phi

o difficult to vectorize

@ overhead of local reduction, which is not necessary
Optimizations for CPU and MIC

@ the simplest solution is to use only necessary amount of
parallelism

@ work-groups of one vectorized work-item

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Reduction
0oo0e

Reduction for CPU and MIC

__kernel void reduce(__global const int16#% in, __global intx out,
const unsigned int n, const unsigned int chunk) {

unsigned int start = get_global_id(0)*chunk;
unsigned int end = start + chunk;
if (end > n) end = n;

int16 tmp = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

for (int i = start/16; i < end/16; i++)
tmp += in[i];

int sum = tmp.sO + tmp.sl 4+ tmp.s2 4+ tmp.s3 + tmp.s4d
+ tmp.sb5 + tmp.s6 + tmp.s7 + tmp.s8 + tmp.s9 + tmp.sa
+ tmp.sb + tmp.sc 4+ tmp.sd + tmp.se + tmp.sf;

atomic_add(out, sum);

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Histogram
©00000000

Histogram

We will show histogram computation in C4++ using OpenMP

@ to show more common way to implement highly efficient code
for CPU and MIC

@ to show that optimization is nontrivial task even in C++

@ there are the same architecture restriction, changes are only in
programming model

Histogram

@ a distribution of numerical data (occurrence of values in
defined intervals)

@ in our case, we will create a histogram of age distribution with
equally-sized intervals

@ example taken from Parallel Programming and Optimization
with Intel Xeon Phi Coprocessors (Colfax Research)

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Histogram
0®0000000

Histogram — serial version

void Histogram(const float* age, int* const hist, const int n,
const float group_width, const int m) {
for (int i = 0; i < n; i++4) {

const int j = (int) (age[i] / group_width);
hist [§]4+;

}

Issues

@ vector dependence in loop

@ inefficient division

ilipovit OpenCL for x86 CPU and Intel MIC

Histogram
00®000000

Histogram — optimize division

void Histogram(const float* age, intx const hist, const int n,
const float group_width, const int m) {
const float invGroupWidth = 1.0f/group_width;
for (int i = 0; i < n; i++4) {

const int j = (int) (age[i] * invGroupWidth);
hist[j]++;

}

Issues

@ vector dependence in loop

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Histogram
000®00000

Histogram — vectorized

void Histogram(const float* age, intx* const hist, const int n,
const float group_width, const int m) {

const int veclLen = 16;

const float invGroupWidth = 1.0f/group_width;
//XXX: this algorithm assumes n%vecLen =— 0.
for (int ii = 0; ii < n; ii 4= veclen) {

int histIdx[vecLen];
for (int i = ii; i < ii 4 vecLen; i++4)
histIdx[i—ii] = (int) (age[i] * invGroupWidth);
for (int ¢ = 0; ¢ < veclen; c++)
hist[histIdx[c]]4++;
}

}

Issues

@ data are not aligned (if they are, compiler does not see it)

ilipovit OpenCL for x86 CPU and Intel MIC

Histogram
0000@0000

Histogram — vectorized

void Histogram(const float* age, int#* const hist, const int n,
const float group_width, const int m) {

const int vecLen = 16;

const float invGroupWidth = 1.0f/group_width;
//XXX: this algorithm assumes n%vecLen =— 0.
for (int ii = 0; ii < n; ii 4= veclen) {

int histIdx[vecLen]
#pragma vector aligned
for (int i = ii; i < ii + veclen; i++)
histIdx[i—ii] = (int) (age[i] * invGroupWidth);
for (int ¢ = 0; ¢ < veclen; c++)
hist[histIdx[c]]4++;
}

_attribute__((aligned(64)));

}

Issues

@ vectorized, but not thread-parallel

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Histogram
000000000

Histogram — thread-parallel

#pragma omp parallel for schedule(guided)
for (int ii = 0; ii < n; ii 4= veclen) {
int histIdx[vecLen] __attribute__((aligned(64)));
#pragma vector aligned
for (int i = ii; i < ii 4 vecLen; i++4)
histIdx[i—ii] = (int) (age[i] * invGroupWidth);
for (int ¢ = 0; ¢ < veclen; c++)
#pragma omp atomic
hist[histIdx[c]]++:
}
}

Issues

@ too many atomics

ilipovit OpenCL for x86 CPU and Intel MIC

Histogram
00000000

Histogram — private storage

#pragma omp parallel
{
int hist_priv[m];
hist_priv[:] = 0;
int histIdx[vecLen] __attribute__((aligned(64)));
#pragma omp for schedule(guided)
for (int ii = 0; ii < n; ii 4= veclLen) {
#pragma vector aligned
for (int i = ii; i < ii 4 vecLen; i++4)
histIdx[i—ii] = (int) (age[i] * invGroupWidth);
for (int ¢ = 0; ¢ < veclen; c++)
hist_priv[histIdx[c]]++;
}

for (int ¢ = 0; ¢ < m; c++4) {
#pragma omp atomic
hist[c] 4= hist_priv[c];
}
}

Issues
o false sharing for small m

Ji¥i Filipovit OpenCL for x86 CPU and Intel MIC

Histogram
00000000

Histogram — padding private storage

const int paddingBytes = 64;

const int paddingElements = paddingBytes / sizeof(int);
const int mPadded = m + (paddingElementS— %paddingElements);
int hist_priv[nThreads][mPadded];

hist_priv[:][:] = 0;

hist_priv[][histIdx[c]]++;

ilipovit OpenCL for x86 CPU and Intel MIC

Histogram
00000000@

Performance

Xeon Phi 7120P (61 physical cores) vs. dual-socket Intel Xeon
E5-2697 v2 (24 physical cores)

[Implementation [CPU time [MIC time [CPU speedup [MIC speedup]
Serial 5.06s 71.3s 1x 1x
Vectorized serial 1.27s 9.23s 3.98x 7.72%
Vectorized parallel 24.0s 37.7s 4.74 % 1.89x
Removed atomics 0.116s 0.073s 43.6x 977 x
Removed atomics, m=5 1.6s 0.72s 3.16x 99 x
Padding to 256 bytes 0.114s 0.068 s 44 .4x 1049 x

ilipovit OpenCL for x86 CPU and Intel MIC

	x86 CPU
	x86 CPU

	Intel MIC
	Intel MIC

	Optimization
	Optimization

	Reduction
	Reduction

	Histogram
	Histogram

