
x86 CPU Intel MIC Optimization Reduction Histogram

OpenCL for x86 CPU and Intel MIC

Jǐŕı Filipovič

fall 2015

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

x86 CPU Architecture

Common features of (nearly all) modern x86 processors

core is complex, out-of-order instruction execution, large cache

multiple cache coherent cores in single chip

vector instructions (MMX, SSE, AVX)

NUMA for multi-socket systems

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

CPU and OpenCL

The projection of CPU HW to OpenCL model

CPU cores are compute units

vector ALUs are processing elements

so the number of work-items running in lock-step is
determined by instruction set (e.g. SSE, AVX) and data type
(e.g. float, double)

one or more work-groups create a CPU thread

the number of work-groups should be at least equal to the
number of cores
higher number of work-groups allows to better workload
balance (e.g. what if we have eight work-groups at six-core
CPU?), but creates overhead

work-items form serial loop, which may be vectorized

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Implicit and Explicit Vectorization

Implicit vectorization

we write scalar code (similarly as for NVIDIA and AMD GCN)

the compiler generates vector instructions from work-items
(creates loop over work-items and vectorizes this loop)

better portability (we do not care about vector size and
richness of vector instruction set)

supported by Intel OpenCL, AMD OpenCL does not support
it yet

Explicit vectorization

we use vector data types in our kernels

more complex programming, more architecture-specific

potentially better performance (we do not rely on compiler
ability to vectorize)

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Differences from GPU

Images

CPU does not support texture units, so they are emulated

better to not use...

Local memory

no special HW at CPU

brings overhead (additional memory copies)

but it is meaningful to use memory pattern common for using
local memory, as it improves cache locality

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Intel MIC

What is MIC?

Many Integrated Core Architecture

originated in Intel Larrabee project (x86 graphic card)

Main features of the architecture

large number of x86 cores

a bidirectional ring bus connecting all cores

cache-coherent system

connected to high-throughput memory

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

MIC Architecture

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Intel MIC

MIC core

relatively simple (in-order in current architecture)

use hyperthreading (4 threads per core)

needs to be used to exploit full performance

fully cache coherent, 32+32 KB L1 cache (I+D), 512 KB L2
cache

contain wide vector units (512-bit vectors)

predicated execution
gather/scatter instructions
transcendentals

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Current Hardware

Xeon Phi

product based on MIC architecture

PCI-E card with dedicated memory

bootable system in future generation

runs own operating system (ssh from the host)

Xeon Phi 7120P

61 x86 cores at 1.2GHz

16GB RAM

1.2 TFlops SP, 2.4 TFlops DP

352 GB/sec global memory bandwidth

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Programming Model

Native programming model

we can execute the code directly at accelerator (via terminal)

after recompilation, we can use the same code as for CPU

programming via OpenMP, MPI

Offload programming model

application is executed at host

code regions are offloaded to accelerator, similarly as in the
case of GPUs

by using #pragma offload with intel tools
by using OpenCL

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

MIC and OpenCL

The projection of MIC HW to OpenCL programming model is very
similar to CPU case

compute units creates threads

processing elements creates iterations of vectorized loops

higher number of work-items due to wider vectors
less sensitive to divergence and uncoalesced memory access
due to richer vector instruction set

high need of parallelism

e.g. 61 cores need 244 threads

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

OpenCL Optimization for CPU and MIC

We will discuss optimizations for CPU and MIC together

many common concepts

differences will be emphasized

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Parallelism

How to set a work-group size?

we do not need high parallelism to mask memory latency

but we need enough work-items to fill vector width (if implicit
vectorization is employed)

the work-group size should be divisible by vector length, it can
by substantially higher, if we don’t use local barriers

Intel recommends 64-128 work-items without synchronizations
and 32-64 work-items with synchronizations
general recommendation, needs experimenting . . .

we can let a compiler to choose the work-group size

How many work-groups?

ideally multiple of (virtual) cores

be aware of NDRange tile effect (especially at MIC)

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Thread-level Parallelism

Task-scheduling overhead

overhead of scheduling large number of threads

issue mainly on MIC (CPU has too low cores)

problematic for light-weight work groups

low workload per work-item
small work-groups

can be detected by profiler easily

Barriers overhead

no HW implementation of barriers, so they are expensive

higher slowdown on MIC

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Vectorization

Branches

if possible, use uniform branching (whole work-group follows
the same branch)

consider the difference

if (get global id(0) == 0)

if (kernel arg == 0)

divergent branches

can forbid vectorization
can be predicated (both then and else branches are executed)

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Vectorization

Scatter/gather

supported mainly on MIC

for non-consecutive memory access, compiler tries to generate
scatter/gatter instructions

instructions use 32-bit indices
get global id() returns size t (64-bit)
we can cast indices explicitly

avoid pointer arithmetics, use array indexing

more transparent for the compiler

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Memory Locality

Cache locality

the largest cache dedicated to core is L2

cache blocking – create work-groups using memory regions of
L2 cache

AoS

array of structures

more efficient for random access

SoA

structure of arrays

more efficient for consecutive access

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Memory Access

Memory access pattern

consecutive memory access is the most efficient in both
architectures

however, there are differences

MIC is in-order, so the memory access efficiency heavily
depends on prefetching, which is more successful for
consecutive access
CPU does not support gather/scatter, thus inefficiency comes
also from forbidding vectorization

Alignment

some vector instructions require alignment

IMCI (MIC): 64-byte
AVX: no requirements
SSE: 16-byte

pad innermost dimension of arrays

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Memory Access

Prefetching on MIC

prefetching is done by HW and by SW

generated by the compiler
also can be explicitly programmed (function void

prefetch(const global gentype *p, size t

num elements))

explicit prefetching helps e.g. in irregular memory access
pattern

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Memory Access

False sharing

accessing the same cache line from several threads

64-byte block on modern Intel processors

brings significant penalty

False sharing reasons

multiple threads access the same addresses

it is better to create local copies and merge them when
necessary (if possible)
reduces also synchronization

multiple threads access different addresses in the same cache
line

padding

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Memory Access

NUMA

Non-Uniform Memory Access

realized usually at multi-socket setups

common with modern CPUs, can be also realized in single
chip, or memory access can be uniform (FSB)

each CPU has own local memory with faster access and
non-local memory with slower access (local memory of other
processors)

when allocated, the block of memory is inserted in local
memory

so access from threads running on different CPU is slower
thread-data affinity cannot be managed with current OpenCL
specification

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Vector reduction

Rewritten CUDA version

uses very similar concept as was demonstrated in former
lecture, but run in constant number of threads

reaches nearly peak theoretical bandwidth on both NVIDIA
and AMD GPUs

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Reduction for GPUs (1/2)

__kernel void reduce (__global const int∗ in , __global int∗ out ,
unsigned int n , __local volatile int ∗buf) {

unsigned int tid = get_local_id (0) ;
unsigned int i = get_group_id (0)∗ (get_local_size (0)∗2)

+ get_local_id (0) ;
unsigned int gridSize = 256∗2∗ get_num_groups (0) ;
buf [tid] = 0 ;

while (i < n) {
buf [tid] += in [i] ;
if (i + 256 < n)

buf [tid] += in [i+256] ;
i += gridSize ;

}
barrier (CLK_LOCAL_MEM_FENCE) ;

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Reduction for GPUs (2/2)

//XXX hard o p t im i z a t i o n f o r 256− t h r ead work groups
if (tid < 128)

buf [tid] += buf [tid + 128] ;
barrier (CLK_LOCAL_MEM_FENCE) ;
if (tid < 64)

buf [tid] += buf [tid + 64] ;
barrier (CLK_LOCAL_MEM_FENCE) ;

//XXX hard o p t im i z a t i o n f o r 32− b i t warp s i z e , no problem at AMD
if (tid < 32) {

buf [tid] += buf [tid + 32] ;
buf [tid] += buf [tid + 16] ;
buf [tid] += buf [tid + 8] ;
buf [tid] += buf [tid + 4] ;
buf [tid] += buf [tid + 2] ;
buf [tid] += buf [tid + 1] ;

}

if (tid == 0) atomic_add (out , buf [0]) ;
}

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Vector reduction

Execution of GPU code on CPU and Phi

difficult to vectorize

overhead of local reduction, which is not necessary

Optimizations for CPU and MIC

the simplest solution is to use only necessary amount of
parallelism

work-groups of one vectorized work-item

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Reduction for CPU and MIC

__kernel void reduce (__global const int16∗ in , __global int∗ out ,
const unsigned int n , const unsigned int chunk) {

unsigned int start = get_global_id (0)∗ chunk ;
unsigned int end = start + chunk ;
if (end > n) end = n ;

int16 tmp = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ;
for (int i = start /16 ; i < end /16 ; i++)

tmp += in [i] ;

int sum = tmp . s0 + tmp . s1 + tmp . s2 + tmp . s3 + tmp . s4
+ tmp . s5 + tmp . s6 + tmp . s7 + tmp . s8 + tmp . s9 + tmp . sa
+ tmp . sb + tmp . sc + tmp . sd + tmp . se + tmp . sf ;

atomic_add (out , sum) ;
}

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Histogram

We will show histogram computation in C++ using OpenMP

to show more common way to implement highly efficient code
for CPU and MIC

to show that optimization is nontrivial task even in C++

there are the same architecture restriction, changes are only in
programming model

Histogram

a distribution of numerical data (occurrence of values in
defined intervals)

in our case, we will create a histogram of age distribution with
equally-sized intervals

example taken from Parallel Programming and Optimization
with Intel Xeon Phi Coprocessors (Colfax Research)

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Histogram – serial version

void Histogram (const float∗ age , int∗ const hist , const int n ,
const float group_width , const int m) {

for (int i = 0 ; i < n ; i++) {
const int j = (int) (age [i] / group_width) ;
hist [j]++;

}
}

Issues

vector dependence in loop

inefficient division

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Histogram – optimize division

void Histogram (const float∗ age , int∗ const hist , const int n ,
const float group_width , const int m) {

const float invGroupWidth = 1.0 f/group_width ;
for (int i = 0 ; i < n ; i++) {

const int j = (int) (age [i] ∗ invGroupWidth) ;
hist [j]++;

}
}

Issues

vector dependence in loop

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Histogram – vectorized

void Histogram (const float∗ age , int∗ const hist , const int n ,
const float group_width , const int m) {

const int vecLen = 16 ;
const float invGroupWidth = 1.0 f/group_width ;
//XXX: t h i s a l g o r i t hm assumes n%vecLen == 0 .
for (int ii = 0 ; ii < n ; ii += vecLen) {

int histIdx [vecLen] ;
for (int i = ii ; i < ii + vecLen ; i++)

histIdx [i−ii] = (int) (age [i] ∗ invGroupWidth) ;
for (int c = 0 ; c < vecLen ; c++)

hist [histIdx [c]]++;
}

}

Issues

data are not aligned (if they are, compiler does not see it)

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Histogram – vectorized

void Histogram (const float∗ age , int∗ const hist , const int n ,
const float group_width , const int m) {

const int vecLen = 16 ;
const float invGroupWidth = 1.0 f/group_width ;
//XXX: t h i s a l g o r i t hm assumes n%vecLen == 0 .
for (int ii = 0 ; ii < n ; ii += vecLen) {

int histIdx [vecLen] __attribute__ ((aligned (6 4))) ;
#pragma v e c t o r a l i g n e d

for (int i = ii ; i < ii + vecLen ; i++)
histIdx [i−ii] = (int) (age [i] ∗ invGroupWidth) ;

for (int c = 0 ; c < vecLen ; c++)
hist [histIdx [c]]++;

}
}

Issues

vectorized, but not thread-parallel

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Histogram – thread-parallel

#pragma omp p a r a l l e l for s c h edu l e (gu ided)
for (int ii = 0 ; ii < n ; ii += vecLen) {

int histIdx [vecLen] __attribute__ ((aligned (6 4))) ;
#pragma v e c t o r a l i g n e d

for (int i = ii ; i < ii + vecLen ; i++)
histIdx [i−ii] = (int) (age [i] ∗ invGroupWidth) ;

for (int c = 0 ; c < vecLen ; c++)
#pragma omp atomic

hist [histIdx [c]]++;
}

}

Issues

too many atomics

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Histogram – private storage

#pragma omp p a r a l l e l
{

int hist_priv [m] ;
hist_priv [:] = 0 ;
int histIdx [vecLen] __attribute__ ((aligned (6 4))) ;

#pragma omp for s c h edu l e (gu ided)
for (int ii = 0 ; ii < n ; ii += vecLen) {

#pragma v e c t o r a l i g n e d
for (int i = ii ; i < ii + vecLen ; i++)

histIdx [i−ii] = (int) (age [i] ∗ invGroupWidth) ;
for (int c = 0 ; c < vecLen ; c++)

hist_priv [histIdx [c]]++;
}
for (int c = 0 ; c < m ; c++) {

#pragma omp atomic
hist [c] += hist_priv [c] ;

}
}

Issues

false sharing for small m

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Histogram – padding private storage

const int paddingBytes = 64 ;
const int paddingElements = paddingBytes / sizeof (int) ;
const int mPadded = m + (paddingElements−m%paddingElements) ;
int hist_priv [nThreads] [mPadded] ;
hist_priv [:] [:] = 0 ;
. . .
hist_priv [] [histIdx [c]]++;
. . .

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Histogram

Performance

Xeon Phi 7120P (61 physical cores) vs. dual-socket Intel Xeon
E5-2697 v2 (24 physical cores)

Implementation CPU time MIC time CPU speedup MIC speedup

Serial 5.06 s 71.3 s 1× 1×
Vectorized serial 1.27 s 9.23 s 3.98× 7.72×
Vectorized parallel 24.0 s 37.7 s 4.74× 1.89×
Removed atomics 0.116 s 0.073 s 43.6× 977×
Removed atomics, m=5 1.6 s 0.72 s 3.16× 99×
Padding to 256 bytes 0.114 s 0.068 s 44.4× 1049×

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

	x86 CPU
	x86 CPU

	Intel MIC
	Intel MIC

	Optimization
	Optimization

	Reduction
	Reduction

	Histogram
	Histogram

