University of

waterloo Department of Electrical and Computer Engineering
University of Waterloo

VHDL Tutornial

The development of these VHDL tutorial slides has been funded by
Microsoft Corporation as part of the Microsoft Online Learning
Initiatives in the Department of Electrical and Computer Engineering
at the University of Waterloo.

Questions or comments about these VHDL tutorial slides should be
directed to the author:

William D. Bishop
wdbishop@uwaterloo.ca

Copyright © 2005 by W. D. Bishop. All Rights Reserved

VHDL Tutorial Outline

e VHDL Overview
— Introduction to VHDL
— History of VHDL
— Important Terminology
— The Standardization of VHDL

e VHDL Fundamentals
— Libraries and Packages
— Entities, Architectures, and Configurations
— Signals and Data Types
— Operators

— Processes

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

VHDL Tutorial Outline (cont.)

e VHDL Examples
— Combinational circuits
— Sequential circuits

— Type conversion

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

ngmt%lt’ylbo Department of Electrical and Computer Engineering
University of Waterloo

VHDL Overview

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Introduction to VHDL

e VHDL is a language that is used to describe the behavior of
digital circuit designs

V|ery High Speed Integrated Circuit
H/ardware

D|escription

Ljanguage

e VHDL designs can be simulated and translated into a form
suitable for hardware implementation

e Hierarchical use of VHDL designs permits the rapid creation of
complex digital circuit designs

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

History of VHDL

e VHDL was developed by the VHSIC (Very High Speed Integrated
Circuit) Program in the late 1970s and early 1980s

— The VHSIC program was funded by the U.S. Department of Defense

Existing tools were inadequate for complex hardware designs

e The evolution of VHDL has included the following milestones:

In 1981, VHDL was first proposed as a hardware description language
In 1986, VHDL was proposed as an IEEE standard

In 1987, the first VHDL standard (IEEE-1076-1987) was adopted

In 1993, a revised VHDL standard (IEEE-1076-1993) was adopted

In 2002, the current VHDL standard (IEEE-1076-2002) was adopted

e VHDL is now used extensively by industry and academia for the
purpose of simulating and synthesizing digital circuit designs

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Important Terminology

e Simulation is the prediction of the behavior of a design

— VHDL provides many features suitable for the simulation of digital
circuit designs

— Functional simulation approximates the behavior of a hardware
design by assuming that all outputs change at the same time

— Timing simulation predicts the exact behavior of a hardware
design

e Synthesis is the translation of a design into a netlist file that
describes the structure of a hardware design

- VHDL was not designed for the purpose of synthesis

— Not all VHDL statements are synthesizable

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Important Terminology (cont.)

e Field-Programmable Gate Arrays (FPGAs) are programmable
logic devices that permit the rapid prototyping of a digital

circuit design
— Configuring a device allows the FPGA to implement virtually any
digital circuit design

— VHDL designs may be created for the purpose of generating a
bitstream file to configure a device

o Application-Specific Integrated Circuits (ASICs) are custom
integrated circuits designed to implement a specific
application

— VHDL designs may be created for the purpose of generating the
detailed layout files necessary to fabricate an ASIC

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Comments on VHDL Synthesis

e Perhaps Brown and Vranesic summed up the hazards of VHDL

synthesis best in their text when they wrote:

— The tendency for the novice is to write code that resembles a
computer program, containing many variables and loops. It is

difficult to determine what logic circuit the CAD tools will produce
when synthesizing such code.

e Brown and Vranesic suggest the following:

— A good general guideline is to assume that if the designer cannot
readily determine what logic circuit is described by the VHDL

code, then the CAD tools are not likely to synthesize the circuit
that the designer is trying to describe.

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

The Standardization of VHDL

e IEEE 1076-1987
— Standard VHDL Language Reference Manual [Out of Print]

e IEEE 1076 INTERPRETATIONS-1991
— Standard VHDL Language Reference Manual Interpretations [1-55937-181-1]

e IEEE 1076-1993
— Standard VHDL Language Reference Manual [1-55937-376-8]

e IEEE 1076-2000
- Standard VHDL Language Reference Manual [0-7381-3326-4]

e IEEE 1076-2002
- Standard VHDL Language Reference Manual [0-7381-3247-0]

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Extensions to VHDL

e IEEE 1076.1-1999
- IEEE Standard VHDL Analog and Mixed-Signal Extensions [0-7381-1640-8]

e IEEE 1076.2-1996
- IEEE Standard VHDL Mathematical Packages [1-55937-894-8]

e IEEE 1076.3-1997
- IEEE Standard VHDL Synthesis Packages [1-55937-923-5]

e IEEE 1076.4-1995
— IEEE Standard VITAL ASIC Modeling Specification [1-55937-691-0]

e IEEE 1076.5-xxxXx
- IEEE Standard VHDL Utilities Packages [Not Standardized]

e IEEE 1076.6-1999
— IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis [0-7381-1819-2]

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Related IEEE Standards

e IEEE 1164-1993
— Standard Multivalue Logic System for VHDL Model Interoperability [1-55937-299-0]

e IEEE 1364-1995

— IEEE Standard Description Language Based on the Verilog™ Hardware Description
Language [1-55937-727-5]

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

VHDL References

e These tutorial slides provide an overview of the essential
features of VHDL

e For more information on VHDL, refer to the following
references:

— Douglas Perry, VHDL, 3 Edition, McGraw Hill, New York, NY,
1998.

— Peter]. Ashenden, The Designer’s Guide to VHDL, 2"d Edition,
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2002.

— Stephen Brown and Zvonko Vranesic, Fundamentals of Digital
Logic with VHDL Design, 2" Edition, McGraw-Hill, New York, NY,
2004.

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

ngmt%lt’ylbo Department of Electrical and Computer Engineering
University of Waterloo

VHDL Fundamentals

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Naming Conventions

e For the purpose of this tutorial, the following naming
conventions will be used:

— All VHDL keywords are shown in uppercase
— All identifiers are shown in lowercase

— The color highlighting used by Altera Quartus II has been used to
enhance the readability of the VHDL code fragments

e In general, you should consult the style guide for your tools

— Most (if not all tools) provide a VHDL coding style guide with
style recommendations

— Most companies implement a VHDL coding style to improve the
readability of hardware designs

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Libraries and Packages

e Libraries provide a set of packages, components, and
functions that simplify the task of designing hardware

e Packages provide a collection of related data types and
subprograms

e The following is an example of the use of the ieece library and
its std_logic_1164 package:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Entities, Architectures, and
Configurations

e The structure of a VHDL design resembles the structure of a
modern, object-oriented software design

e All VHDL designs provide an external interface and an internal
implementation

e A VHDL design consists of entities, architectures, and
configurations

Entity

Architecture 1

Architecture n

Configuration 2

A 4

Architecture 2

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Entities

e An entity is a specification of the design’s external interface

e Entity declarations specify the following:

1. The name of the entity

2. A set of generic declarations specifying instance-specific
parameters

3. A set of port declarations defining the inputs and outputs of the
hardware design

e Generic declarations and port declarations are optional

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Entity Declarations

e Entity declarations are specified as follows:

ENTITY entity_name IS

GENERIC (
generic_1_name : generic_1_type;
generic_2Z_name : generic_2_type;
generic_n_name : generic_n_type

) ;

PORT (
port_1_name : port_1_dir port_1_type;
port_2_name : port_2_dir port_2_type;
port_n_name : port_n_dir port_n_type

) 7
END entity_name;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Example Entity Declaration

e The following is an example of an entity declaration for an

AND gate:
ENTITY andgate IS
PORT (a : IN std_logic;
b : IN std_logic;
c : OUT std_logic);

END andgate;

NOTE:

In the PORT declaration, the
semi-colon is used as a
separator.

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Ports

e Port name choices:
— Consist of letters, digits, and/or underscores
— Always begin with a letter

— Case insensitive

e Port direction choices: NOTE:
IN Input port
OUT Output port A buffer is an output that
o _ can be “read” by the
INOUT Bidirectional port architecture of the entity.

BUFFER Buffered output port

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Ports (cont.)

e JEEE standard 1164-1993 defines a package which provides a
set of data types that are useful for logic synthesis

— The external pins of a synthesizable design must use data types
specified in the std_logic_1164 package

— IEEE recommends the use of the following data types to
represent signals in a synthesizable system:

std_logic

std_logic_vector (<max> DOWNTO <min>)

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Architectures

e An architecture is a specification of the design’s internal
implementation

e Multiple architectures can be created for a particular entity

e For example, you might wish to create several architectures
for a particular entity with each architecture optimized with
respect to a design goal:

- Performance
- Area
- Power Consumption

— Ease of Simulation

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Architecture Declarations

e Architecture declarations are specified as follows:

ARCHITECTURE architecture_name OF entity_name IS

BEGIN
—— Insert VHDL statements to assign outputs to
—— each of the output signals defined in the
—— entity declaration.

END architecture_name;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Example Architecture Declaration

e The following is an example of an architecture declaration for
an AND gate:

ARCHITECTURE synthesisl OF andgate IS
BEGIN

c <= a AND b;
END synthesisl;

NOTE:

The keyword AND denotes
the use of an AND gate.

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Configurations

e A configuration is a specification of the mapping between an
architecture and a particular instance of an entity

e By default, a configuration exists for each entity

e The default configuration maps the most recently compiled
architecture to the entity

e Configurations are most often used to specify alternative
architectures for hardware designs

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Signals

e Signals represent wires and storage elements

e Signals may only be defined inside architectures
e Signals are associated with a data type

e Signals have attributes

e VHDL is a strongly-typed language:
— Explicit type conversion is supported

— Implicit type conversion is not supported

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Sighal Representations

e Binary number representations are sufficient for software
programming languages

Binary
Forcing1l |'1" |Forcing QO |'0’

e Physical wires cannot be modelled accurately using a binary
number representation

e Additional values are necessary to accurately represent the
state of a wire

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Multi-Valued Logic Representations

e MVL (Multi-Valued Logic) representations provide the
additional values necessary to represent high-impedance and
unknown signals

e Two popular multi-valued signal representations are defined
by ieee.std_logic_1164:

- MVL-4
- MVL-9

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

MVL -4

e MVL - 4 adds 2 values ('x" and 'z’) to model the state of
signals more accurately:

MVL -4
Forcing 1 ‘1" | Forcing Unknown 'x’
Forcing O ‘0" | High Impedance A

e Wires can be driven with multiple values

e MVL-4 is rarely used since it still does not provide enough
states to model signals accurately

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

MVL -9

e MVL - 9 adds 5 more values to model the state of signals very

accurately:
MVL -9
Uninitialized ‘U" | Weak 1 ‘H'
Don’t Care -’ | Weak O ‘L’
Forcing 1 ‘1" | Weak Unknown |'W’
Forcing O ‘0" | High Impedance | 'z’
Forcing Unknown |'X’

e Signals can be driven with multiple values

e Signals can be resolved when conflicting values have been
driven

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

More on MVL-9

e Four standardized types use MVL-9:

Unresolved Types

std_ulogic

std_ulogic_vector (<max> DOWNTO <min>)

Resolved Types

std_logic

std_logic_vector (<max> DOWNTO <min>)

e Resolved types use resolution functions to determine the
value on a signal when conflicting values are driven on the
signal at the same time

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Built-In Data Types

e VHDL supports a rich set of built-in data types as well as
user-defined data types

Data Type Characteristics
BIT Binary, Unresolved
BIT_VECTOR Binary, Unresolved, Array
INTEGER Binary, Unresolved, Array
REAL Floating Point

e Built-in data types work well for simulation but not so well for
synthesis

e Built-in data types are suitable for use inside an architecture
but should not be used for external pins

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Synthesis Vs. Simulation

e All synthesizable designs can be simulated
e Not all simulation designs can be synthesized

e Consider the following VHDL code:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY simple_buffer IS
PORT (din : IN std_logic;
dout : OUT std_logic);
END simple_buffer;

ARCHITECTURE behaviourall OF simple_buffer IS
BEGIN

dout <= din AFTER 10 ns;
END behaviourall;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Synthesis Vs. Simulation (cont.)

e The input din is assigned to dout after 10 ns

— Can this represent a real-world system? YES
— Can this be implemented in a device? PERHAPS
— Can this be implemented in all devices? NO

e This architecture can be simulated but not synthesized

e Some VHDL design entry tools only permit the use of
synthesizable keywords

e Most tools understand a synthesizable subset of VHDL93

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Logical Operators

e VHDL supports the following logical operators:

AND NAND | NOT
OR NOR
XOR XNOR

e VHDL also supports the overloading of existing operators and
the creation of new operators using functions

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Other Operators

e VHDL supports the following relational operators:
= (Equal)
/= (Not Equal)
< (Less Than)
> (Greater Than)

e VHDL supports the following mathematical operators:

+ (Addition)

- (Subtraction)
* (Multiplication)
/ (Division)

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Assignment Statements

SIGNAL a, b, c : std_logic;
SIGNAL avec, bvec, cvec : std_logic_vector (7 DOWNTO 0);

—— Concurrent Signal Assignment Statements
—— NOTE: Both a and avec are produced concurrently
a <= b AND c;

avec <= bvec OR cvec;

—— Alternatively, signals may be assigned constants

a <= '0";
b <= '1’;
C <= '7Z'";
avec <= "00111010"; —— Assigns O0x3A to avec
bvec <= X"3A"; —— Assigns Ox3A to bvec
cvec <= X"3" & X"A"; —— Assigns O0x3A to cvec

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Assignment Statements (cont.)

SIGNAL a, b, ¢, d :std_logic;
SIGNAL avec :std_logic_vector (1 DOWNTO O);
SIGNAL bvec :std_logic_vector (2 DOWNTO O);

—— Conditional Assignment Statement
—— NOTE: This implements a tree structure of logic gates

a <= "o’ WHEN avec = “00” ELSE
b WHEN avec = “11” ELSE
C WHEN d = "1’ ELSE
Ill;

—— Selected Signal Assignment Statement

—— NOTE: The selection values must be constants
bvec <= d & avec;

WITH bvec SELECT

a <= 1o’ WHEN “000”,
b WHEN “0117,
C WHEN “1--", —— Some tools won’t synthesize ‘-’/ properly
r1r WHEN OTHERS;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Assignment Statements (cont.)

SIGNAL a :std_logic;
SIGNAL avec, bvec :std_logic_vector (7 DOWNTO O);

—— Selected Signal Assignment Statement
—— NOTE: Selected signal assignments also work
—— with vectors
WITH a SELECT
avec <= "“01010101" WHEN "17,
bvec WHEN OTHERS;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Process Statements

e \VVHDL supports processes
e Processes encapsulate a portion of a design

e Processes have a sensitivity list that specifies signals and
ports that cause changes in the outputs of the process

— Sensitivity lists can be used to preserve the state of a hardware
system

e For example, an edge-triggered flip-flop circuit is sensitive to
a particular clock edge

— The output of the edge-triggered flip-flop changes if and only if a
particular clock edge is received

— Otherwise, the previous output remains asserted

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Process Statements

e The keywords used for conditional assignments and selected
assignments differ from those used within a process:

Outside Processes Inside Processes

WHEN. .ELSE IF..ELSIF..ELSE..END IF

WITH..SELECT..WHEN CASE..WHEN..END CASE

o A selected assignment outside a process is functionally
equivalent to a case statement within a process

Processes can be used for combinational logic but most often,
processes encapsulate sequential logic

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Process Statements (cont.)

SIGNAL reset, clock, d, g :std_logic;

PROCESS (reset, clock)

—— reset and clock are in the sensitivity list to

—— indicate that they are important inputs to the process

BEGIN
—-— IF keyword is only valid in a process
IF (reset = ’'0’) THEN
q <= 0;
ELSTF (clock’EVENT AND clock = "1") THEN
q <= d;
END IF;

END PROCESS;

The EVENT attribute is true if
an edge has been detected
on the corresponding signal.

March 1, 2005 VHDL Tutorial

NOTE:

This implements a D flip-flop
with an asynchronous active-
low reset signal.

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Process Statements (cont.)

SIGNAL a, b, c, d

PROCESS (a, b, d)
-— a, b, and d are in
—— the outputs of the
BEGIN
—— CASE keyword 1is
CASE d IS
WHEN ‘0’ =>

c <=

:std_logic;

the sensitivity 1list to indicate that

process are sensitive to changes in them

only valid in a process

a AND b;

WHEN OTHERS =>

c <=
END CASE;
END PROCESS;

March 1, 2005

\1’;

VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

NOTE:

This implements a
combinational circuit.

D Flip-Flop Example

e Using a process and the EVENT attribute of a signal, it is
possible to specify a D flip-flop

e The EVENT attribute can be used to check for the rising edge
of a clock signal

e The block diagram of a D Flip-Flop is shown below:

clk > DFFE

ena

rst

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

VHDL Specification of a D Flip-Flop

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY dffe IS
PORT (rst, clk, ena, d : IN std_logic;
q : OUT std_logic);
END dffe;

ARCHITECTURE synthesisl OF dffe IS

BEGIN
PROCESS (rst, clk)
BEGIN
IF (rst = ‘1’) THEN
q <= '0";

ELSIF (clk’EVENT) AND (clk = ‘1’) THEN
IF (ena = ‘1’) THEN
q <= d;
END IF;
END IF;
END PROCESS;
END synthesisl;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Complex Sequential Circuits

e Complex circuits may be constructed using FSMs (Finite State
Machines)

e FSMs are easily specified using processes and the CASE
statement

e For those interested, an example of a FSM specified in VHDL
is provided on the next two slides

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Finite State Machine Example

Idle
no lights on

All buttons
pressed

button(0)
pressed

button(1)
pressed |

Opt2
lights(1) on

Opt1
lights(0) on

Error
all lights on

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY vending IS

PORT (
reset : IN std_logic;
clock : IN std_logic;
buttons : IN std_logic_vector (1 DOWNTO O0);
lights : OUT std_logic_vector (1 DOWNTO O0)

) i
END vending;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Finite State Machine Example (cont.)

ARCHITECTURE synthesisl OF vending IS

TYPE statetype IS (Idle, Optl, Opt2, Error);

SIGNAL currentstate, nextstate : statetype;
BEGIN

fsml: PROCESS (buttons, currentstate)

BEGIN

CASE currentstate IS
WHEN Idle =>
lights <= “00";
CASE buttons IS
WHEN “00"” =>
nextstate <= Idle;
WHEN “01” =>
nextstate <= Optl;
WHEN “10” =>
nextstate <= Opt2;
WHEN OTHERS =>
nextstate <= Error;
END CASE;
WHEN Optl =>
lights <= “01";
IF buttons /= “01” THEN
nextstate <= Idle;
END IF;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Finite State Machine Example (cont.)

WHEN Opt2 =>
lights <= “10";
IF buttons /= “10” THEN
nextstate <= Idle;
END IF;
WHEN Error =>
lights <= “11";
IF buttons = “00” THEN
nextstate <= Idle;
END IF;
END CASE;
END PROCESS;

fsm2: PROCESS(reset, clock)
BEGIN
IF (reset = ‘0’) THEN
currentstate <= Idle;
ELSIF (clock’EVENT) AND (clock = ‘1’) THEN
currentstate <= nextstate;
END IF;
END PROCESS;
END synthesisl;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

ngmt%lt’ylbo Department of Electrical and Computer Engineering
University of Waterloo

VHDL Examples

Audio commentary is not yet available for this portion of the
VHDL Tutorial. Feel free to advance the slides manually using
the on-screen controls.

As you browse these slides, it is HIGHLY recommended that you
attempt to solve each question prior to advancing to the
solution.

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Comment on VHDL Examples

e The following slides present examples of synthesizable VHDL
code

e Ideally, you should complete each question before viewing the
solution

— The solutions presented can be simulated and synthesized using

any of the VHDL synthesis tools available at the University of
Waterloo

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Example 1A

e Design a VHDL entity named andnand to specify the interface
of the following circuit:

a | o o E q
b |, iy, | gbar

e Use std_logic for the port signal types of all input and
output pins

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Example 1A - Solution

e The VHDL description of the andnand entity should resemble
the following:

ENTITY andnand IS

PORT (a : IN std_logic;
b : IN std_logic;
q : OUT std_logic;

gbar : OUT std_logic);
END andnand;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Circuit Example 1B

e Design a VHDL architecture to specify the internal
implementation of andnand

a | - i q
b | § iy, abar

e Name the architecture synthesisl

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Example 1B - Solution

e The VHDL description of the andnand architecture should
resemble the following:

ARCHITECTURE synthesisl OF andnand IS
BEGIN

g <= a AND Db;

gbar<= a NAND b;
END synthesisl;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Example 2A

e Design a VHDL entity named quadmux to specify the interface
of the Quad 2-Input MUX shown below:

20 | Quad o[3..01
b[3..0] 2-nput ——
" MUX

sel f

Port Type Width Direction
a std_logic_vector 4 IN
b std_logic_vector 4 IN

sel std_logic 1 IN
C std_logic_vector 4 ouT

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Example 2A - Solution

e The VHDL description of the quadmux entity should resemble
the following:

ENTITY quadmux IS

PORT (a : IN std_logic_vector (3 DOWNTO O0);
b : IN std_logic_vector (3 DOWNTO O0);
sel : IN std_logic;
C : OUT std_logic_vector (3 DOWNTO 0));

END guadmux;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Example 2B

e Design a VHDL architecture to specify the internal
implementation of quadmux

260 | Quad c[3..0]
b[3..0] 2-lnput +——
— 1 MUX
sel f
e Recall that a Quad 2-Input MUX implements the following
truth table:
sel cl[3..0]
0 al[3..0]
1 b[3..0]

e Name the architecture synthesisl

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Example 2B - Solution

e The VHDL description of the quadmux architecture should
resemble the following:

ARCHITECTURE synthesisl OF quadmux IS

BEGIN
WITH sel SELECT
c <= a WHEN ‘07,

b WHEN OTHERS;
END synthesisl;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Example 3

e Design a synthesizable VHDL specification of a Seven
Segment Display Controller

e The Seven Segment Display Controller is shown in the
system below:

Seven-Segment
Display Controller

Hardware y seven se ,
System 4 " -S€g 7 >
dataln[3..0] segments[7..0]

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Combinational Example 3 - Solution

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY seven_seg IS
PORT (dataln : IN std_logic_vector (3 DOWNTO O0);
segments : OUT std_logic_vector (7 DOWNTO 0));
END seven_seg;

ARCHITECTURE synthesisl OF seven_seg IS
BEGIN
WITH datalIn SELECT
segments <= “10000001” WHEN “0000", —=

“11001111" WHEN “0O0O01", —=
“10010010” WHEN “0010", —=
“10000110” WHEN “0011", -
“11001100” WHEN “0100", —=
“10100100” WHEN “0101", -
“10100000” WHEN “0110", —=
“10001111” WHEN “0111", -
“10000000” WHEN “10007, —=
“10000100” WHEN “1001", -
“11111111"” WHEN OTHERS;

O 00 J o U1 x» W DN O

END synthesisl;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Sequential Example 1

e Design a synthesizable VHDL specification of a 8-bit register
with an enable signal and an asynchronous reset signal

e The block diagram of the 8-bit register is shown below:

d[7..0] q[7..0]
clk 8-Bit
D Register
ena
rst

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Sequential Example 1 - Solution

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY dregister IS

PORT (rst, clk, ena : IN std_logic;
d : IN std_logic_vector (7 DOWNTO O0);
q : OUT std_logic_vector (7 DOWNTO 0));

END dregister;

ARCHITECTURE synthesisl OF dregister IS
BEGIN
PROCESS (rst, clk)
BEGIN
IF (rst = ‘1’) THEN
g <= X"00";
ELSTF (clk’EVENT) AND (clk = ‘1’) THEN
IF (ena = ‘1’) THEN
q <= d;
END IF;
END IF;
END PROCESS;
END synthesisl;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Sequential Example 2

e Design a synthesizable VHDL implementation of a 32-bit
counter with an enable signal and an asynchronous reset

signal

e The block diagram of the 32-bit counter is shown below:

32—-Bit Counter

clock

enable

reset value[31..0]

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Sequential Example 2 - Solution

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY counter IS

PORT (
reset : IN std_logic;
clock : IN std_logic;
enable : IN std_logic;
value : OUT std_logic_vector (31 DOWNTO O0)

) ;

END counter;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Sequential Example 2 - Solution (cont.)

ARCHITECTURE synthesisl OF counter IS

—— The unsigned type is used
SIGNAL count : unsigned (31 DOWNTO 0); -- so that unsigned arithmetic
—— will be synthesized

BEGIN
PROCESS (reset, clock)
BEGIN
IF (reset = ‘1’) THEN
count <= X”00000000";
ELSIF (clock’EVENT) AND (clock = ‘1’) THEN
IF (enable = ‘1’) THEN
count <= count + 1;
END IF;
END IF;
END PROCESS;
—— Here, the count value 1is
value <= std_logic_vector (count); —— converted to std_logic_vector
—— using a conversion function

END synthesisl;

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

Acknowledgements

e These VHDL tutorial slides have been adapted from the notes
created for ECE 324 by the following people:

Wayne M. Loucks Rob B. Gorbet

Carol C. W. Hulls William D. Bishop
Roger Sanderson

e In addition, examples and comments have been extracted
from the notes for SE 141, ECE 223, and ECE 427 produced
by the following people:

Mark Aagaard Andrew Kennings

March 1, 2005 VHDL Tutorial

Copyright © 2005 by W. D. Bishop. All Rights Reserved

