
GRAFICKÝ
DIZAJN

ÚVOD DO
PROBLEMATIKY

Mgr.art Katarína Czikorová, ArtD.

GRAPHIC
DESIGN POSTER
PRINCIPLES

Vizuálna informácia

Oblasti grafického dizajnu

Definícia grafického dizajnu

Slovník pojmov

Zdroje

01
02
03
04
05

ÚVOD

Definition of graphic design

Graphic design principles

Typography

Process of creating a poster

Case study

Graphic design
DEFINITON

Čo je vizuálne informácia
Definícia

Vizuálne informácie majú tri typické úrovne:
1. Symboly — vizuálny vstup

2. Reprezentáciu — forma prezentácie informácie

3. Abstraktnú podštruktúru — forma všetkého, čo vidíme,
 prirodzená alebo komponovaná

Podľa Sutnara* intenzita vizuálnej komunikácie by mala:
— byť opticky zaujímavá
— vzbudiť u percipienta pozornosť.

*

Vizuálna jednoduchosť zobrazenia
a usporiadania umožňuje rýchle
čítanie a pochopenie obsahu.

Dôležitá je vizuálna kontinuita, ktorá
umožňuje jasné pochopenie sledu
prvkov.

Výsledok pochopenia informácie je
ovplyvnený jednotlivými vizuálnymi
elementami.

*
SUTNAR, Ladislav. PRAGUE-NEW
YORK-DESIGN IN ACTION. 1st ed.
Prague: Argo, 2003, 389 s.
ISBN 8071010502.

Graphic design
Definition

Graphic design

function

content

usage

beauty

format

form

 Ladislav SUTNAR
*

POSTER

Poster
Definition

Large printed format consisting
of text, image, photography

On public places

To inform

Format

841 mm 1000 mm 917 mm
118

9
m

m

14
14

 m
m

12
97

 m
m

A0 B0 C0

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4
A5 B5 C5

A6 B6 C6
A7 B7 C7

A8 B8 C8

Format

A0, A1 Science posters and technichal drawings
A1, A2 Working boards (at meetings)
A2, A3 Diagrams, drawings and big boards
A4 Magazines, letter, leaflets,...
A5 Notebooks, calendars
A6 Postcards
B5, A5, B6, A6 Books
C4, C5, C6 Letter envelopes
B4, A3 Newspaper
B8, A8 Playing cards

Science posters
Case studies

Instructions dependent on
the input are computed.

Dependent instructions are substi-
tuted with symbolic calls, path con-
dition manipulations are added.

Dependence graph of LLVM
instructions is created from the
control flow of a program.

A program simulating
original instructions in
a symbolic manner.

LLVM bitcode
is generated from
C++ source code.

LLVM LLVM
SYM

Henrich Lauko, Vladimír Štill, Petr Ročkai, Jan Mrázek and Jiří Barnat

DIVINE is a tool for verification of
parallel C++ programs. By using the
LLVM compilation framework with
the Clang compiler and the libc++ li-
brary it provides support for most
of the standard C++ library and all
the C++ language features. DIVINE
is rather efficient when dealing with

programs without inputs (for exam-
ple test cases). A big downside of the
current version of DIVINE is that for
programs with inputs, this input has to
be simulated by nondeterministic choice
which is very inefficient. Therefore
we present an approach for symbolic
representation of inputs in DIVINE.

Consider a simple program with
32 bit input variable x and a
branch on the value of this vari-
able. In the current DIVINE, this
program gives rise to 232 possible
memory configurations. In sym-
bolic version, possible values of
variables x and b are represented
symbolically using bitvector for-
mulae, therefore, there are only
two possible configurations at the
end of the program.

LART takes the LLVM bitcode of the program and libraries produced by the
compiler and transforms it into a bitcode which manipulates data symbolically.
In this modified program, any variable which can depend on an input value is
represented symbolically using bitvector formulae. Bitvector formulae describe
integers of fixed bit width with overflow and bitwise operations, and therefore

are well suited for exact representation of computer integers. All the manip-
ulations with such variables have to be transformed to their symbolic ver-
sions which modify the formulae accordingly. Furthermore, any branch which
depends on an input value has to put constraints on the possible values of sym-
bolic variables (this constraint is given in the form of a path condition formula).

Compiler

Explicit Approach

Symbolic Approach

Details of Program Transformation

Proposed Approach

LART

Verification
algorithm

SMT Solver

To take advantage of symbolic representation of states, we transform the LLVM bit-
code in such a way that it represents variables which can contain values dependent on
inputs symbolically. This transformation is performed by LART and is resented

in detail later. Apart from that, the verification algorithm is modified to handle
symbolic states with the help of an SMT solver.

Our approach aims for minimizing changes to the LLVM interpreter that is used to
execute instructions in DIVINE. The reason is that the interpreter is complex
and performance tuned and therefore it is not desirable to make it even more
complex by adding symbolic data manipulation into it. Instead, symbolic data are
to be handled by the program itself. To encode symbolic manipulations into the
program we transform the LLVM bitcode produced by the compiler and create
symbolic LLVM from it. This not only minimizes changes to the interpreter, but

the transformation can also be used for different representation of symbolic
data quite easily. The transformation is handled by LART – LLVM Abstraction &
Refinement Tool. Furthermore, DIVINE’s verification algorithm has to be
modified. It has to check if symbolic states are valid (nonempty), that is if
they can represent at least one concrete state. It also has to handle comparison
of symbolic states. For both of these tasks, DIVINE has to extract SMT formulae
from the program state and use SMT solver.

Interpreter

Verification
algorithm

Verification of Programs with Inputs EACirc
Using genetics to improve encryption

Martin Ukrop, Petr Švenda, Marek Sýs, Václav Matyáš et alii

Fork m
e on G

itH
ub!

github.com
/crocs-m

uni/eacirc

Problem statement

EACirc workflow

Comparison to existing tools

1. Forming a population
A set of currently considered

 partial solutions (gate circuits

distinguishing cipher data from

random data). The initial

population is created randomly.

5. Mutation & crossover
To form new individuals, we use

mutation and crossover. Mutation

makes small random changes in

nodes and connectors. Crossover

creates an offspring by combining

different parts from two circuits

taken from the population.

The new population now enters

the evolution cycle again, gradually

improving its fitness.

Iterative design
The designed distinguisher is in the

form of a gate circuit (layers of

simple interconnected functions).

It processes binary data and

outputs a randomness verdict.

It is improved iteratively, using

ideas from evolutionary algorithms

(see the next section for details).

Randomness testing
The ciphertext produced by

encryption should be completely

indistinguishable from random

data. But how to compare?

EACirc is a framework for designing

a distinguisher – a simple program

that decides whether generated

ciphertext looks random enough.

2. Test vector generation
Testing data for learning is

sampled from both sources.

That is, non-random data from the

inspected cipher and random data

from a truly random source.

4. Survival of the fittest
Unfit individuals are discarded,

better ones survive to the next

generation. The higher the fitness,

the bigger is the chance of survival.

The evolution works as a heuristics

looking for better individals – gate

circuits distinguishing random and

non-random data with higher

probability than random guessing.

Further information
Interested in EACirc? See the papers referenced

below or ask directly at the lab (CRoCS @ FI MU).

[1] Švenda, Ukrop, Matyáš. Determining cryptographic

distinguishers for eStream and SHA-3 candidate functions with

evolutionary circuits. In: E-Business and Telecommunications.

Vol. 456 (SECRYPT 2013). Springer Berlin Heidelberg, 2014.

[2] Kubíček, Novotný, Švenda, Ukrop. New results on reduced-

round Tiny Encryption Algorithm using genetic programming.

IEEE Infocommunications. Vol. 8, iss. 1. 2016.

EACirc vs statistical testing
The standard way to assess randomness is to

 use batteries of statistical tests such as NIST STS,

 Dieharder or TestU01. We run them along with

EACirc and compare the results.

To have a fine-grained comparison, we have

analyzed 77 different functions (eStream, SHA-3

and CAESAR candidates). For 2-round Hermes and

 1-round Fubuki we confidently surpass NIST STS.

3. Fitness assessment
Each circuit from the population is

evaluated on all test vectors from

the current set. Based on the

outputs, it is assigned a fitness

 value from the interval [0,1].

1011
0100

1010
0101

1000
0111

1001
01011

0
0
0
x

current test vector set

(periodically renewed) 0.792 0.503 0.357 0.845 0.228

0010
01015

0
0
x

1110
10115

0
0
x

0.357

0.503

0.228

0.845
0.792

Diehard(er)
A Random Number Test Suite

Statistical Testing Suite

MASARYK
UNIVERSITY

...

Centre for Research on

Cryptography and Security

This work was supported by the Czech Science

Foundation project GAP202/11/0422.

0111
10111110

1011

randomness verdict

binary ciphertext

change wires

and functions

try again

analyze success

XOR
XOR

ˇ

-

SCIENTIFIC CLOUD

CERIT Scienti�c Cloud
Looking for Synergies in Scienti�c Computing
David Antoš, Aleš Křenek, Ivana Křenková, Luděk Matyska
Institute of Compt. Science, Masaryk University, Brno

Mission
CERIT Scieti�c Cloud centre, the successor of Supercompu-
ting Centre Brno at Masaryk University, is a national centre
providing �exible computational and storage capacities.
Provision of these resources is complemented with extensi-
ve research activities, carried both in cooperation with the
user communities and in the e-Infrastructure area itself.

Scienti�c director Prof. RNDr. Luděk Matyska, CSc.

Project manager Roman Čermák, M.Sc., MBA

 http://www.cerit-sc.cz

SCIENTIFIC CLOUD

History
Supercomputing Centre Brno (SCB) is a part of Institute of
Compt. Science, Masaryk University. SCB was founded
in 1994 as one of big supercomputing centres in the Czech
Republic of that time. Similar cooperating centres were
founded by other universities (Prague, Pilsen, Brno,
Ostrava).

SCB has been working with Faculty of Informatics, Masaryk
University, for a long time. The cooperation is both perso-
nal and factual, formally expressed, e.g., in a common re-
search intent “Highly parallel and distributed computation
systems”.

Flexible Resources
Provision of the resources will range from traditional batch queues, through interactive
access upto the cloud paradigm. The resources will be provided free of charge.

Prioritization of the users will be based on their scienti�c results; resulting resource allo-
cation will be achieved by technical means, combining advanced resource scheduling, vir-
tualization, and the cloud paradigm; no complex administrative process will be required.

By careful ballancing the scheduling strategies, successful users will get better share while
new users, students etc. will not be prevented from using the resources.

CERIT-SC computational resources are intended to serve unexpected and unplanned re-
quirements of the users primarily.

Data resources will serve to store and share data semipermanently and permanently.
They will be tightly integrated with the computational resources. The target community
are the end-users again.

Equipment and Purchase Schedule
The project will purchase the following resources:
• SMP – Symmetric MultiProcessing clusters, with more than

64 cores and 128 GB memory per node (1000 cores total)
• HD – High Density clusters with higher number of nodes with

8-16 cores and 16-32 GB memory (2500 cores total)
• HSM Hierarchical Storage Management (3 PB)
• disk storage (600 TB)
• development tools and application software

Cooperation with Users
Deluge of experimental data is expected in near future. Many existing computational me-
thods will break or stop scaling, new developments will be required.

User communities will come up with interesting problems, CERIT-SC will provide the ne-
cessary IT expertise. We expect formation of joint teams
• consisting of experts from both sides,
• addressing specific research areas – both ad-hoc and long term work,
• involving students (undergraduate and Ph.D.).

This work will result in common publications. Targeted projects are also expected.

Formal agreement on future collaboration (LoI):
• R&DI: AdMaS, BIOCEV, CEITEC, CzechGlobe, RECAMO
• cooperating institutions: IBA, MZK, Loschmidt Labs., RECETOX
• ESFRI projects (in negotiation): LINDAT-CLARIN, Euro-BioImaging

This poster presentation is
partially supported by pro-
ject “Vzdělávání akademic-
kých pracovníků v oblasti

eInfrastruktur
(CZ.1.07/2.3.00/09.0074)”

Goals
CERIT-SC will provide highly �exible computation environment and primary data sto-
rage capacities for the national e-Infrastructure.

Research and development in CERIT-SC is focused on
• work with the users on tools and means for e�cient use of the e-infrastructure by appli-

cations
• cooperation with the users in development, deployment, and operation of

• new and modified systems and programs running in flexible computation environ-
ment

• systems for storing, archiving, and retrieval of data
• tools and protocols for data storage facilities interconnection, …

The research work will evolve in a doctoral school with student participation from both IT
and application areas.

CERIT-SC will become an important node of national e-Infrastructure, including integra-
tion into the European Grid Infrastrucute. This will be achieved by tight cooperation with
CESNET on development and adoption of appropriate standards.

Funding
Transformation of SCB into CERIT-SC will be supported by
a project of the 3rd axis of the RD&I Operational Program-
me. The project will be realised from May 2011 to October
2013. Its overall budget is 5 MEur.

CERIT-SC is included in the Roadmap for Large Research,
Development and Innovation Infrastructures in the
Czech Republic.

Q3/2011 Q4/2011 Q1/2012 Q2/2012 Q3/2012 Q4/2012 Q1/2013

SM
P

clu
st

er
 (5

00
 co

re
s)

HSM
 sy

st
em

 (3
 P

B)

di
sk

 st
or

ag
e

(2
50

 T
B)

HD cl
us

te
r (

50
0

co
re

s)

SM
P

clu
st

er
 (5

00
 co

re
s)

HD cl
us

te
r (

20
00

 co
re

s)

di
sk

 st
or

ag
e

(3
50

 T
B)

 cores, capacities in current price/capacity ratios

Composition

picture

infographics

text

Comoposition

Balance between various elements

Comoposition

Vertical objects appear heavier than horizontal objects.

A diagonal orientation carries more visual weight than

a horizontal or vertical one.

Comoposition

White square on the black background appears

bigger than the black square on white colour.

Comoposition

The visual weight of an object increases in

proportion to its distance from the center (or

dominant area) of the composition.

Comoposition

Horizontal lines makes shape higher, vertical lines

makes it wider.

Comoposition

Border horizontal lines makes shape wider,

vertical lines makes it higher.

Comoposition
The Golden Section or Ratio is is a ratio or
proportion defined by the number Phi
(= 1.618033988749895…)

Jan Tschichold

Comoposition

Portrait of Bindo Altoviti (1514), Raphael
– mouth and eyes are the key points
places in optical centre

Comoposition
Optical centre Rudolf Arnheim's diagram

Case studies
Centered layout

Instructions dependent on
the input are computed.

Dependent instructions are substi-
tuted with symbolic calls, path con-
dition manipulations are added.

Dependence graph of LLVM
instructions is created from the
control flow of a program.

A program simulating
original instructions in
a symbolic manner.

LLVM bitcode
is generated from
C++ source code.

LLVM LLVM
SYM

Henrich Lauko, Vladimír Štill, Petr Ročkai, Jan Mrázek and Jiří Barnat

DIVINE is a tool for verification of
parallel C++ programs. By using the
LLVM compilation framework with
the Clang compiler and the libc++ li-
brary it provides support for most
of the standard C++ library and all
the C++ language features. DIVINE
is rather efficient when dealing with

programs without inputs (for exam-
ple test cases). A big downside of the
current version of DIVINE is that for
programs with inputs, this input has to
be simulated by nondeterministic choice
which is very inefficient. Therefore
we present an approach for symbolic
representation of inputs in DIVINE.

Consider a simple program with
32 bit input variable x and a
branch on the value of this vari-
able. In the current DIVINE, this
program gives rise to 232 possible
memory configurations. In sym-
bolic version, possible values of
variables x and b are represented
symbolically using bitvector for-
mulae, therefore, there are only
two possible configurations at the
end of the program.

LART takes the LLVM bitcode of the program and libraries produced by the
compiler and transforms it into a bitcode which manipulates data symbolically.
In this modified program, any variable which can depend on an input value is
represented symbolically using bitvector formulae. Bitvector formulae describe
integers of fixed bit width with overflow and bitwise operations, and therefore

are well suited for exact representation of computer integers. All the manip-
ulations with such variables have to be transformed to their symbolic ver-
sions which modify the formulae accordingly. Furthermore, any branch which
depends on an input value has to put constraints on the possible values of sym-
bolic variables (this constraint is given in the form of a path condition formula).

Compiler

Explicit Approach

Symbolic Approach

Details of Program Transformation

Proposed Approach

LART

Verification
algorithm

SMT Solver

To take advantage of symbolic representation of states, we transform the LLVM bit-
code in such a way that it represents variables which can contain values dependent on
inputs symbolically. This transformation is performed by LART and is resented

in detail later. Apart from that, the verification algorithm is modified to handle
symbolic states with the help of an SMT solver.

Our approach aims for minimizing changes to the LLVM interpreter that is used to
execute instructions in DIVINE. The reason is that the interpreter is complex
and performance tuned and therefore it is not desirable to make it even more
complex by adding symbolic data manipulation into it. Instead, symbolic data are
to be handled by the program itself. To encode symbolic manipulations into the
program we transform the LLVM bitcode produced by the compiler and create
symbolic LLVM from it. This not only minimizes changes to the interpreter, but

the transformation can also be used for different representation of symbolic
data quite easily. The transformation is handled by LART – LLVM Abstraction &
Refinement Tool. Furthermore, DIVINE’s verification algorithm has to be
modified. It has to check if symbolic states are valid (nonempty), that is if
they can represent at least one concrete state. It also has to handle comparison
of symbolic states. For both of these tasks, DIVINE has to extract SMT formulae
from the program state and use SMT solver.

Interpreter

Verification
algorithm

Verification of Programs with Inputs EACirc
Using genetics to improve encryption

Martin Ukrop, Petr Švenda, Marek Sýs, Václav Matyáš et alii

Fork m
e on G

itH
ub!

github.com
/crocs-m

uni/eacirc

Problem statement

EACirc workflow

Comparison to existing tools

1. Forming a population
A set of currently considered

 partial solutions (gate circuits

distinguishing cipher data from

random data). The initial

population is created randomly.

5. Mutation & crossover
To form new individuals, we use

mutation and crossover. Mutation

makes small random changes in

nodes and connectors. Crossover

creates an offspring by combining

different parts from two circuits

taken from the population.

The new population now enters

the evolution cycle again, gradually

improving its fitness.

Iterative design
The designed distinguisher is in the

form of a gate circuit (layers of

simple interconnected functions).

It processes binary data and

outputs a randomness verdict.

It is improved iteratively, using

ideas from evolutionary algorithms

(see the next section for details).

Randomness testing
The ciphertext produced by

encryption should be completely

indistinguishable from random

data. But how to compare?

EACirc is a framework for designing

a distinguisher – a simple program

that decides whether generated

ciphertext looks random enough.

2. Test vector generation
Testing data for learning is

sampled from both sources.

That is, non-random data from the

inspected cipher and random data

from a truly random source.

4. Survival of the fittest
Unfit individuals are discarded,

better ones survive to the next

generation. The higher the fitness,

the bigger is the chance of survival.

The evolution works as a heuristics

looking for better individals – gate

circuits distinguishing random and

non-random data with higher

probability than random guessing.

Further information
Interested in EACirc? See the papers referenced

below or ask directly at the lab (CRoCS @ FI MU).

[1] Švenda, Ukrop, Matyáš. Determining cryptographic

distinguishers for eStream and SHA-3 candidate functions with

evolutionary circuits. In: E-Business and Telecommunications.

Vol. 456 (SECRYPT 2013). Springer Berlin Heidelberg, 2014.

[2] Kubíček, Novotný, Švenda, Ukrop. New results on reduced-

round Tiny Encryption Algorithm using genetic programming.

IEEE Infocommunications. Vol. 8, iss. 1. 2016.

EACirc vs statistical testing
The standard way to assess randomness is to

 use batteries of statistical tests such as NIST STS,

 Dieharder or TestU01. We run them along with

EACirc and compare the results.

To have a fine-grained comparison, we have

analyzed 77 different functions (eStream, SHA-3

and CAESAR candidates). For 2-round Hermes and

 1-round Fubuki we confidently surpass NIST STS.

3. Fitness assessment
Each circuit from the population is

evaluated on all test vectors from

the current set. Based on the

outputs, it is assigned a fitness

 value from the interval [0,1].

1011
0100

1010
0101

1000
0111

1001
01011

0
0
0
x

current test vector set

(periodically renewed) 0.792 0.503 0.357 0.845 0.228

0010
01015

0
0
x

1110
10115

0
0
x

0.357

0.503

0.228

0.845
0.792

Diehard(er)
A Random Number Test Suite

Statistical Testing Suite

MASARYK
UNIVERSITY

...

Centre for Research on

Cryptography and Security

This work was supported by the Czech Science

Foundation project GAP202/11/0422.

0111
10111110

1011

randomness verdict

binary ciphertext

change wires

and functions

try again

analyze success

XOR
XOR

Comoposition
Optical centre

geometric centre

optical centre

path eye

The optical center is a point that attracts
the viewer’s eye unless other visual
elements pull the eye elsewhere.

Colour

Colour

Meaning of colour is always completely accepted
subjectively. The perception depends on two
imperfect human organs – eyes
and brain, depends on light waves.

Colour has a powerful function in graphic design.

Colour defines hue, saturation and lighteness.

Red colour – seems to be heaviest colour Yellow colour – seems to be lightest

Colour
Warmer colours appear heavier
than cooler colours

Contrast

Contrast

colour contrast
contrast
between
elements

contrast
between
elements

and
background

Relation between two different
elements

Contrast
Colour High-Intensity colours appear

heavier than low-intensity ones

Contrast
Elements

positive and neagtive space

geometric and biomorph shapes

softness and sharpness

stillness and movement

big and small

12

12

Contrast
Elements and background

poor contrast effective contrast

The higher the value-contrast, the
heavier the weight of the object

12

12

White space

White space, unprinted space
without any element which
surrounds other elements to make
design more legibile and lighter.

White space

25 %25 %

White space
Ladislav Sutnar

50 %

25 %25 %

50 %

Orientation in space according the
white space.

White space

White space

White space
between elements

Lorem ipsum dolor sit amet, consec-
 tetur adipiscing elit. Aenean neque
 quam, interdum non aliquet non,
sagittis vel sapien. In risus purus, rut-

 rum aliquam massa id, elementum
 vestibulum dolor. Curabitur id dolor
 tellus. Donec interdum mi purus, eu
maximus mi efficitur eu. Vestibu-
lum porttitor est in venenatis eges-

 tas. Morbi placerat maximus suscipit.
 Proin
Lorem ipsum dolor sit amet, consec-
 tetur adipiscing elit. Aenean neque
 quam, interdum non aliquet non,
sagittis vel sapien. In risus purus, rut-

 rum aliquam massa id, elementum
 vestibulum dolor. Curabitur id dolor
 tellus. Donec interdum mi purus, eu
maximus mi efficitur eu. Vestibu-
lum porttitor est in venenatis eges-

 tas. Morbi placerat maximus suscipit.
 Proin interdum diam massa. Lorem
 ipsum dolor sit amet, consectetur
 adipiscing elit. Aenean neque quam,
 interdum non aliquet non, sagittis
vel sapien. In risus purus, rutrum al-

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi
 purus, eu maximus mi efficitur
 eu. Vestibulum porttitor est in
venenatis egestas. Morbi plac-

 erat maximus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id

iquam massa id, elementum vestib-
 ulum dolor. Curabitur id dolor tellus.
 Donec Lorem ipsum dolor sit amet,
 consectetur adipiscing elit. Aenean
 neque quam, interdum non aliquet
non, sagittis vel sapien. In risus pu-
rus, rutrum aliquam massa id, ele-
 mentum vestibulum dolor. Curabitur
 id dolor tellus. Donec interdum mi
 purus, eu maximus mi efficitur eu.
Vestibulum porttitor est in venena-
 tis egestas. Morbi placerat maximus
 suscipit. Proin
Lorem ipsum dolor sit amet, consec-
 tetur adipiscing elit. Aenean neque
 quam, interdum non aliquet non,
sagittis vel sapien. In risus purus, rut-
 rum aliquam massa id, elementum
 vestibulum dolor. Curabitur id dolor
 tellus.Proin interdum diam massa.
 Consectetur adipiscing elit. Aenean
 neque quam, interdum non aliquet
non, sagittis vel sapien. In risus pu-
rus, rutrum aliquam massa id, ele-
 mentum vestibulum dolor. Curabitur
 id dolor tellus. Donec interdum mi

 dolor tellus. Donec interdum
mi purus, eu maximus mi effi-
 citur eu. Vestibulum porttitor
est in venenatis egestas. Mor-

 bi placerat maximus suscipit.
 Proin interdum diam massa.
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
dolor tellus. Donec Lorem ip-

 sum dolor sit amet, consectetur
 adipiscing elit. Aenean neque
 quam, interdum non aliquet
non, sagittis vel sapien. In ris-
us purus, rutrum aliquam mas-

White space

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi
 purus, eu maximus mi efficitur
 eu. Vestibulum porttitor est in
venenatis egestas. Morbi plac-

 erat maximus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum
mi purus, eu maximus mi effi-

 citur eu. Vestibulum porttitor
est in venenatis egestas. Mor-

 bi placerat maximus suscipit.
 Proin interdum diam massa.
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi
 purus, eu maximus mi efficitur
 eu. Vestibulum porttitor est in
venenatis egestas. Morbi plac-

 erat maximus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum
mi purus, eu maximus mi effi-

 citur eu. Vestibulum porttitor
est in venenatis egestas. Mor-

 bi placerat maximus suscipit.
 Proin interdum diam massa.
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-
 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi
 purus, eu maximus mi efficitur
 eu. Vestibulum porttitor est in

 vestibulum dolor. Curabitur id
dolor tellus. Donec Lorem ip-

 sum dolor sit amet, consectetur
 adipiscing elit. Aenean neque
 quam, interdum non aliquet
non, sagittis vel sapien. In ris-
us purus, rutrum aliquam mas-
 sa id, elementum vestibulum
 dolor. Curabitur id dolor tellus.
 Donec interdum mi purus, eu
maximus mi efficitur eu. Vesti-

 bulum porttitor est in venenatis
egestas. Morbi placerat maxi-

 mus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur
 id dolor tellus.Proin interdum
diam massa. Consectetur adip-

 iscing elit. Aenean neque quam,
interdum non aliquet non, sag-

 ittis vel sapien. In risus purus,
rutrum aliquam massa id, el-

 ementum vestibulum dolor.
 Curabitur id dolor tellus. Donec
interdum mi purus, eu maxi-

 mus mi interdum mi purus, eu

 vestibulum dolor. Curabitur id
dolor tellus. Donec Lorem ip-

 sum dolor sit amet, consectetur
 adipiscing elit. Aenean neque
 quam, interdum non aliquet
non, sagittis vel sapien. In ris-
us purus, rutrum aliquam mas-
 sa id, elementum vestibulum
 dolor. Curabitur id dolor tellus.
 Donec interdum mi purus, eu
maximus mi efficitur eu. Vesti-

 bulum porttitor est in venenatis
egestas. Morbi placerat maxi-

 mus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur
 id dolor tellus.Proin interdum
diam massa. Consectetur adip-

 iscing elit. Aenean neque quam,
interdum non aliquet non, sag-

 ittis vel sapien. In risus purus,
rutrum aliquam massa id, el-

 ementum vestibulum dolor.
 Curabitur id dolor tellus. Donec
interdum mi purus, eu maxi-

 mus mi interdum mi purus, eu

venenatis egestas. Morbi plac-
 erat maximus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-
 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi

White space

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi
 purus, eu maximus mi efficitur
 eu. Vestibulum porttitor est in
venenatis egestas. Morbi plac-

 erat maximus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum
mi purus, eu maximus mi effi-

 citur eu. Vestibulum porttitor
est in venenatis egestas. Mor-

 bi placerat maximus suscipit.
 Proin interdum diam massa.
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi
 purus, eu maximus mi efficitur
 eu. Vestibulum porttitor est in
venenatis egestas. Morbi plac-

 erat maximus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum
mi purus, eu maximus mi effi-

 citur eu. Vestibulum porttitor
est in venenatis egestas. Mor-

 bi placerat maximus suscipit.
 Proin interdum diam massa.
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-
 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi
 purus, eu maximus mi efficitur
 eu. Vestibulum porttitor est in

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi
 purus, eu maximus mi efficitur
 eu. Vestibulum porttitor est in

 vestibulum dolor. Curabitur id
dolor tellus. Donec Lorem ip-
 sum dolor sit amet, consectetur
 adipiscing elit. Aenean neque
 quam, interdum non aliquet
non, sagittis vel sapien. In ris-
us purus, rutrum aliquam mas-
 sa id, elementum vestibulum
 dolor. Curabitur id dolor tellus.
 Donec interdum mi purus, eu
maximus mi efficitur eu. Vesti-

 bulum porttitor est in venenatis
egestas. Morbi placerat maxi-

 mus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur
 id dolor tellus.Proin interdum
diam massa. Consectetur adip-

 iscing elit. Aenean neque quam,
interdum non aliquet non, sag-

 ittis vel sapien. In risus purus,
rutrum aliquam massa id, el-

 ementum vestibulum dolor.
 Curabitur id dolor tellus. Donec
interdum mi purus, eu maxi-

 mus mi interdum mi purus, eu

 vestibulum dolor. Curabitur id
dolor tellus. Donec Lorem ip-

 sum dolor sit amet, consectetur
 adipiscing elit. Aenean neque
 quam, interdum non aliquet
non, sagittis vel sapien. In ris-
us purus, rutrum aliquam mas-
 sa id, elementum vestibulum
 dolor. Curabitur id dolor tellus.
 Donec interdum mi purus, eu
maximus mi efficitur eu. Vesti-

 bulum porttitor est in venenatis
egestas. Morbi placerat maxi-

venenatis egestas. Morbi plac-
 erat maximus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-
 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi

venenatis egestas. Morbi plac-
 erat maximus suscipit. Proin
 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ae-

 nean neque quam, interdum
 non aliquet non, sagittis vel
 sapien. In risus purus, rutrum
 aliquam massa id, elementum
 vestibulum dolor. Curabitur id
 dolor tellus. Donec interdum mi

Case study
White space Jan Tschichold

Die neue typographie

Case study
White space

Instructions dependent on
the input are computed.

Dependent instructions are substi-
tuted with symbolic calls, path con-
dition manipulations are added.

Dependence graph of LLVM
instructions is created from the
control flow of a program.

A program simulating
original instructions in
a symbolic manner.

LLVM bitcode
is generated from
C++ source code.

LLVM LLVM
SYM

Henrich Lauko, Vladimír Štill, Petr Ročkai, Jan Mrázek and Jiří Barnat

DIVINE is a tool for verification of
parallel C++ programs. By using the
LLVM compilation framework with
the Clang compiler and the libc++ li-
brary it provides support for most
of the standard C++ library and all
the C++ language features. DIVINE
is rather efficient when dealing with

programs without inputs (for exam-
ple test cases). A big downside of the
current version of DIVINE is that for
programs with inputs, this input has to
be simulated by nondeterministic choice
which is very inefficient. Therefore
we present an approach for symbolic
representation of inputs in DIVINE.

Consider a simple program with
32 bit input variable x and a
branch on the value of this vari-
able. In the current DIVINE, this
program gives rise to 232 possible
memory configurations. In sym-
bolic version, possible values of
variables x and b are represented
symbolically using bitvector for-
mulae, therefore, there are only
two possible configurations at the
end of the program.

LART takes the LLVM bitcode of the program and libraries produced by the
compiler and transforms it into a bitcode which manipulates data symbolically.
In this modified program, any variable which can depend on an input value is
represented symbolically using bitvector formulae. Bitvector formulae describe
integers of fixed bit width with overflow and bitwise operations, and therefore

are well suited for exact representation of computer integers. All the manip-
ulations with such variables have to be transformed to their symbolic ver-
sions which modify the formulae accordingly. Furthermore, any branch which
depends on an input value has to put constraints on the possible values of sym-
bolic variables (this constraint is given in the form of a path condition formula).

Compiler

Explicit Approach

Symbolic Approach

Details of Program Transformation

Proposed Approach

LART

Verification
algorithm

SMT Solver

To take advantage of symbolic representation of states, we transform the LLVM bit-
code in such a way that it represents variables which can contain values dependent on
inputs symbolically. This transformation is performed by LART and is resented

in detail later. Apart from that, the verification algorithm is modified to handle
symbolic states with the help of an SMT solver.

Our approach aims for minimizing changes to the LLVM interpreter that is used to
execute instructions in DIVINE. The reason is that the interpreter is complex
and performance tuned and therefore it is not desirable to make it even more
complex by adding symbolic data manipulation into it. Instead, symbolic data are
to be handled by the program itself. To encode symbolic manipulations into the
program we transform the LLVM bitcode produced by the compiler and create
symbolic LLVM from it. This not only minimizes changes to the interpreter, but

the transformation can also be used for different representation of symbolic
data quite easily. The transformation is handled by LART – LLVM Abstraction &
Refinement Tool. Furthermore, DIVINE’s verification algorithm has to be
modified. It has to check if symbolic states are valid (nonempty), that is if
they can represent at least one concrete state. It also has to handle comparison
of symbolic states. For both of these tasks, DIVINE has to extract SMT formulae
from the program state and use SMT solver.

Interpreter

Verification
algorithm

Verification of Programs with Inputs

white space

Case study
White space

without white
space

Unity

All elements should
collerate together

Unity

typography graphic style
of elements

grid

Case study
Graphic design style EACirc

Using genetics to improve encryption
Martin Ukrop, Petr Švenda, Marek Sýs, Václav Matyáš et alii

Fork m
e on G

itH
ub!

github.com
/crocs-m

uni/eacirc

Problem statement

EACirc workflow

Comparison to existing tools

1. Forming a population
A set of currently considered

 partial solutions (gate circuits

distinguishing cipher data from

random data). The initial

population is created randomly.

5. Mutation & crossover
To form new individuals, we use

mutation and crossover. Mutation

makes small random changes in

nodes and connectors. Crossover

creates an offspring by combining

different parts from two circuits

taken from the population.

The new population now enters

the evolution cycle again, gradually

improving its fitness.

Iterative design
The designed distinguisher is in the

form of a gate circuit (layers of

simple interconnected functions).

It processes binary data and

outputs a randomness verdict.

It is improved iteratively, using

ideas from evolutionary algorithms

(see the next section for details).

Randomness testing
The ciphertext produced by

encryption should be completely

indistinguishable from random

data. But how to compare?

EACirc is a framework for designing

a distinguisher – a simple program

that decides whether generated

ciphertext looks random enough.

2. Test vector generation
Testing data for learning is

sampled from both sources.

That is, non-random data from the

inspected cipher and random data

from a truly random source.

4. Survival of the fittest
Unfit individuals are discarded,

better ones survive to the next

generation. The higher the fitness,

the bigger is the chance of survival.

The evolution works as a heuristics

looking for better individals – gate

circuits distinguishing random and

non-random data with higher

probability than random guessing.

Further information
Interested in EACirc? See the papers referenced

below or ask directly at the lab (CRoCS @ FI MU).

[1] Švenda, Ukrop, Matyáš. Determining cryptographic

distinguishers for eStream and SHA-3 candidate functions with

evolutionary circuits. In: E-Business and Telecommunications.

Vol. 456 (SECRYPT 2013). Springer Berlin Heidelberg, 2014.

[2] Kubíček, Novotný, Švenda, Ukrop. New results on reduced-

round Tiny Encryption Algorithm using genetic programming.

IEEE Infocommunications. Vol. 8, iss. 1. 2016.

EACirc vs statistical testing
The standard way to assess randomness is to

 use batteries of statistical tests such as NIST STS,

 Dieharder or TestU01. We run them along with

EACirc and compare the results.

To have a fine-grained comparison, we have

analyzed 77 different functions (eStream, SHA-3

and CAESAR candidates). For 2-round Hermes and

 1-round Fubuki we confidently surpass NIST STS.

3. Fitness assessment
Each circuit from the population is

evaluated on all test vectors from

the current set. Based on the

outputs, it is assigned a fitness

 value from the interval [0,1].

1011
0100

1010
0101

1000
0111

1001
01011

0
0
0
x

current test vector set

(periodically renewed) 0.792 0.503 0.357 0.845 0.228

0010
01015

0
0
x

1110
10115

0
0
x

0.357

0.503

0.228

0.845
0.792

Diehard(er)
A Random Number Test Suite

Statistical Testing Suite

MASARYK
UNIVERSITY

...

Centre for Research on

Cryptography and Security

This work was supported by the Czech Science

Foundation project GAP202/11/0422.

0111
10111110

1011

randomness verdict

binary ciphertext

change wires

and functions

try again

analyze success

XOR
XOR

san serif
typography

left and right
alignment

Style of typography

Case study
Unity EACirc

Using genetics to improve encryption
Martin Ukrop, Petr Švenda, Marek Sýs, Václav Matyáš et alii

Fork m
e on G

itH
ub!

github.com
/crocs-m

uni/eacirc

Problem statement

EACirc workflow

Comparison to existing tools

1. Forming a population
A set of currently considered

 partial solutions (gate circuits

distinguishing cipher data from

random data). The initial

population is created randomly.

5. Mutation & crossover
To form new individuals, we use

mutation and crossover. Mutation

makes small random changes in

nodes and connectors. Crossover

creates an offspring by combining

different parts from two circuits

taken from the population.

The new population now enters

the evolution cycle again, gradually

improving its fitness.

Iterative design
The designed distinguisher is in the

form of a gate circuit (layers of

simple interconnected functions).

It processes binary data and

outputs a randomness verdict.

It is improved iteratively, using

ideas from evolutionary algorithms

(see the next section for details).

Randomness testing
The ciphertext produced by

encryption should be completely

indistinguishable from random

data. But how to compare?

EACirc is a framework for designing

a distinguisher – a simple program

that decides whether generated

ciphertext looks random enough.

2. Test vector generation
Testing data for learning is

sampled from both sources.

That is, non-random data from the

inspected cipher and random data

from a truly random source.

4. Survival of the fittest
Unfit individuals are discarded,

better ones survive to the next

generation. The higher the fitness,

the bigger is the chance of survival.

The evolution works as a heuristics

looking for better individals – gate

circuits distinguishing random and

non-random data with higher

probability than random guessing.

Further information
Interested in EACirc? See the papers referenced

below or ask directly at the lab (CRoCS @ FI MU).

[1] Švenda, Ukrop, Matyáš. Determining cryptographic

distinguishers for eStream and SHA-3 candidate functions with

evolutionary circuits. In: E-Business and Telecommunications.

Vol. 456 (SECRYPT 2013). Springer Berlin Heidelberg, 2014.

[2] Kubíček, Novotný, Švenda, Ukrop. New results on reduced-

round Tiny Encryption Algorithm using genetic programming.

IEEE Infocommunications. Vol. 8, iss. 1. 2016.

EACirc vs statistical testing
The standard way to assess randomness is to

 use batteries of statistical tests such as NIST STS,

 Dieharder or TestU01. We run them along with

EACirc and compare the results.

To have a fine-grained comparison, we have

analyzed 77 different functions (eStream, SHA-3

and CAESAR candidates). For 2-round Hermes and

 1-round Fubuki we confidently surpass NIST STS.

3. Fitness assessment
Each circuit from the population is

evaluated on all test vectors from

the current set. Based on the

outputs, it is assigned a fitness

 value from the interval [0,1].

1011
0100

1010
0101

1000
0111

1001
01011

0
0
0
x

current test vector set

(periodically renewed) 0.792 0.503 0.357 0.845 0.228

0010
01015

0
0
x

1110
10115

0
0
x

0.357

0.503

0.228

0.845
0.792

Diehard(er)
A Random Number Test Suite

Statistical Testing Suite

MASARYK
UNIVERSITY

...

Centre for Research on

Cryptography and Security

This work was supported by the Czech Science

Foundation project GAP202/11/0422.

0111
10111110

1011

randomness verdict

binary ciphertext

change wires

and functions

try again

analyze success

XOR
XOR

same styles of
arrows

same colour
of background

shapes

same weights of
strokes

Same graphic style should be
applied on each element

Case study
Unity

different styles
of graphics

Same graphic style should be
applied on each element

Case study
Grid EACirc

Using genetics to improve encryption
Martin Ukrop, Petr Švenda, Marek Sýs, Václav Matyáš et alii

Fork m
e on G

itH
ub!

github.com
/crocs-m

uni/eacirc

Problem statement

EACirc workflow

Comparison to existing tools

1. Forming a population
A set of currently considered

 partial solutions (gate circuits

distinguishing cipher data from

random data). The initial

population is created randomly.

5. Mutation & crossover
To form new individuals, we use

mutation and crossover. Mutation

makes small random changes in

nodes and connectors. Crossover

creates an offspring by combining

different parts from two circuits

taken from the population.

The new population now enters

the evolution cycle again, gradually

improving its fitness.

Iterative design
The designed distinguisher is in the

form of a gate circuit (layers of

simple interconnected functions).

It processes binary data and

outputs a randomness verdict.

It is improved iteratively, using

ideas from evolutionary algorithms

(see the next section for details).

Randomness testing
The ciphertext produced by

encryption should be completely

indistinguishable from random

data. But how to compare?

EACirc is a framework for designing

a distinguisher – a simple program

that decides whether generated

ciphertext looks random enough.

2. Test vector generation
Testing data for learning is

sampled from both sources.

That is, non-random data from the

inspected cipher and random data

from a truly random source.

4. Survival of the fittest
Unfit individuals are discarded,

better ones survive to the next

generation. The higher the fitness,

the bigger is the chance of survival.

The evolution works as a heuristics

looking for better individals – gate

circuits distinguishing random and

non-random data with higher

probability than random guessing.

Further information
Interested in EACirc? See the papers referenced

below or ask directly at the lab (CRoCS @ FI MU).

[1] Švenda, Ukrop, Matyáš. Determining cryptographic

distinguishers for eStream and SHA-3 candidate functions with

evolutionary circuits. In: E-Business and Telecommunications.

Vol. 456 (SECRYPT 2013). Springer Berlin Heidelberg, 2014.

[2] Kubíček, Novotný, Švenda, Ukrop. New results on reduced-

round Tiny Encryption Algorithm using genetic programming.

IEEE Infocommunications. Vol. 8, iss. 1. 2016.

EACirc vs statistical testing
The standard way to assess randomness is to

 use batteries of statistical tests such as NIST STS,

 Dieharder or TestU01. We run them along with

EACirc and compare the results.

To have a fine-grained comparison, we have

analyzed 77 different functions (eStream, SHA-3

and CAESAR candidates). For 2-round Hermes and

 1-round Fubuki we confidently surpass NIST STS.

3. Fitness assessment
Each circuit from the population is

evaluated on all test vectors from

the current set. Based on the

outputs, it is assigned a fitness

 value from the interval [0,1].

1011
0100

1010
0101

1000
0111

1001
01011

0
0
0
x

current test vector set

(periodically renewed) 0.792 0.503 0.357 0.845 0.228

0010
01015

0
0
x

1110
10115

0
0
x

0.357

0.503

0.228

0.845
0.792

Diehard(er)
A Random Number Test Suite

Statistical Testing Suite

MASARYK
UNIVERSITY

...

Centre for Research on

Cryptography and Security

This work was supported by the Czech Science

Foundation project GAP202/11/0422.

0111
10111110

1011

randomness verdict

binary ciphertext

change wires

and functions

try again

analyze success

XOR
XOR

grid

Keeping elements within
the grid

Case study
Unity

grid

Connection & Disconnection

Connection and Disconnection

colour position shape

Connection and Disconnection
Colour

connection disconnection

Elements with the same colours
are perceived as one group

GESTALT principles
*

Connection and Disconnection
Positioning

one group separete shapes

Closer elements relate together

GESTALT principles
*

Connection and Disconnection
Shape

one group different shapes

Same shapes are perceived
as a group

GESTALT principles
*

Connection and Disconnection
Case study

ˇ

-

SCIENTIFIC CLOUD

CERIT Scienti�c Cloud
Looking for Synergies in Scienti�c Computing
David Antoš, Aleš Křenek, Ivana Křenková, Luděk Matyska
Institute of Compt. Science, Masaryk University, Brno

Mission
CERIT Scieti�c Cloud centre, the successor of Supercompu-
ting Centre Brno at Masaryk University, is a national centre
providing �exible computational and storage capacities.
Provision of these resources is complemented with extensi-
ve research activities, carried both in cooperation with the
user communities and in the e-Infrastructure area itself.

Scienti�c director Prof. RNDr. Luděk Matyska, CSc.

Project manager Roman Čermák, M.Sc., MBA

 http://www.cerit-sc.cz

SCIENTIFIC CLOUD

History
Supercomputing Centre Brno (SCB) is a part of Institute of
Compt. Science, Masaryk University. SCB was founded
in 1994 as one of big supercomputing centres in the Czech
Republic of that time. Similar cooperating centres were
founded by other universities (Prague, Pilsen, Brno,
Ostrava).

SCB has been working with Faculty of Informatics, Masaryk
University, for a long time. The cooperation is both perso-
nal and factual, formally expressed, e.g., in a common re-
search intent “Highly parallel and distributed computation
systems”.

Flexible Resources
Provision of the resources will range from traditional batch queues, through interactive
access upto the cloud paradigm. The resources will be provided free of charge.

Prioritization of the users will be based on their scienti�c results; resulting resource allo-
cation will be achieved by technical means, combining advanced resource scheduling, vir-
tualization, and the cloud paradigm; no complex administrative process will be required.

By careful ballancing the scheduling strategies, successful users will get better share while
new users, students etc. will not be prevented from using the resources.

CERIT-SC computational resources are intended to serve unexpected and unplanned re-
quirements of the users primarily.

Data resources will serve to store and share data semipermanently and permanently.
They will be tightly integrated with the computational resources. The target community
are the end-users again.

Equipment and Purchase Schedule
The project will purchase the following resources:
• SMP – Symmetric MultiProcessing clusters, with more than

64 cores and 128 GB memory per node (1000 cores total)
• HD – High Density clusters with higher number of nodes with

8-16 cores and 16-32 GB memory (2500 cores total)
• HSM Hierarchical Storage Management (3 PB)
• disk storage (600 TB)
• development tools and application software

Cooperation with Users
Deluge of experimental data is expected in near future. Many existing computational me-
thods will break or stop scaling, new developments will be required.

User communities will come up with interesting problems, CERIT-SC will provide the ne-
cessary IT expertise. We expect formation of joint teams
• consisting of experts from both sides,
• addressing specific research areas – both ad-hoc and long term work,
• involving students (undergraduate and Ph.D.).

This work will result in common publications. Targeted projects are also expected.

Formal agreement on future collaboration (LoI):
• R&DI: AdMaS, BIOCEV, CEITEC, CzechGlobe, RECAMO
• cooperating institutions: IBA, MZK, Loschmidt Labs., RECETOX
• ESFRI projects (in negotiation): LINDAT-CLARIN, Euro-BioImaging

This poster presentation is
partially supported by pro-
ject “Vzdělávání akademic-
kých pracovníků v oblasti

eInfrastruktur
(CZ.1.07/2.3.00/09.0074)”

Goals
CERIT-SC will provide highly �exible computation environment and primary data sto-
rage capacities for the national e-Infrastructure.

Research and development in CERIT-SC is focused on
• work with the users on tools and means for e�cient use of the e-infrastructure by appli-

cations
• cooperation with the users in development, deployment, and operation of

• new and modified systems and programs running in flexible computation environ-
ment

• systems for storing, archiving, and retrieval of data
• tools and protocols for data storage facilities interconnection, …

The research work will evolve in a doctoral school with student participation from both IT
and application areas.

CERIT-SC will become an important node of national e-Infrastructure, including integra-
tion into the European Grid Infrastrucute. This will be achieved by tight cooperation with
CESNET on development and adoption of appropriate standards.

Funding
Transformation of SCB into CERIT-SC will be supported by
a project of the 3rd axis of the RD&I Operational Program-
me. The project will be realised from May 2011 to October
2013. Its overall budget is 5 MEur.

CERIT-SC is included in the Roadmap for Large Research,
Development and Innovation Infrastructures in the
Czech Republic.

Q3/2011 Q4/2011 Q1/2012 Q2/2012 Q3/2012 Q4/2012 Q1/2013
SM

P
clu

st
er

 (5
00

 co
re

s)

HSM
 sy

st
em

 (3
 P

B)

di
sk

 st
or

ag
e

(2
50

 T
B)

HD cl
us

te
r (

50
0

co
re

s)

SM
P

clu
st

er
 (5

00
 co

re
s)

HD cl
us

te
r (

20
00

 co
re

s)

di
sk

 st
or

ag
e

(3
50

 T
B)

 cores, capacities in current price/capacity ratios

disconnection

disconnection

Usage

Usage

Position of the poster

poster

Usage

Distance between medium

poster

Ways of reading

Navigation

Position of elements, contrast, style of shapes could navigate user
how to read the poster.

Colours and movents attracts attention

Input element

The element which should be read the first.

Ways of reading
from left to right

← ← ← ← ← ←
← ← ← ← ← ←
← ← ← ← ← ←
← ← ← ← ← ←

Latin – from left to right

Ways of reading
from left to right

Ways of reading
from left to right

A

A

B

Ways of reading
from left to right

A

B

C

Ways of reading
from left to right

EACirc
Using genetics to improve encryption

Martin Ukrop, Petr Švenda, Marek Sýs, Václav Matyáš et alii

Fork m
e on G

itH
ub!

github.com
/crocs-m

uni/eacirc

Problem statement

EACirc workflow

Comparison to existing tools

1. Forming a population
A set of currently considered

 partial solutions (gate circuits

distinguishing cipher data from

random data). The initial

population is created randomly.

5. Mutation & crossover
To form new individuals, we use

mutation and crossover. Mutation

makes small random changes in

nodes and connectors. Crossover

creates an offspring by combining

different parts from two circuits

taken from the population.

The new population now enters

the evolution cycle again, gradually

improving its fitness.

Iterative design
The designed distinguisher is in the

form of a gate circuit (layers of

simple interconnected functions).

It processes binary data and

outputs a randomness verdict.

It is improved iteratively, using

ideas from evolutionary algorithms

(see the next section for details).

Randomness testing
The ciphertext produced by

encryption should be completely

indistinguishable from random

data. But how to compare?

EACirc is a framework for designing

a distinguisher – a simple program

that decides whether generated

ciphertext looks random enough.

2. Test vector generation
Testing data for learning is

sampled from both sources.

That is, non-random data from the

inspected cipher and random data

from a truly random source.

4. Survival of the fittest
Unfit individuals are discarded,

better ones survive to the next

generation. The higher the fitness,

the bigger is the chance of survival.

The evolution works as a heuristics

looking for better individals – gate

circuits distinguishing random and

non-random data with higher

probability than random guessing.

Further information
Interested in EACirc? See the papers referenced

below or ask directly at the lab (CRoCS @ FI MU).

[1] Švenda, Ukrop, Matyáš. Determining cryptographic

distinguishers for eStream and SHA-3 candidate functions with

evolutionary circuits. In: E-Business and Telecommunications.

Vol. 456 (SECRYPT 2013). Springer Berlin Heidelberg, 2014.

[2] Kubíček, Novotný, Švenda, Ukrop. New results on reduced-

round Tiny Encryption Algorithm using genetic programming.

IEEE Infocommunications. Vol. 8, iss. 1. 2016.

EACirc vs statistical testing
The standard way to assess randomness is to

 use batteries of statistical tests such as NIST STS,

 Dieharder or TestU01. We run them along with

EACirc and compare the results.

To have a fine-grained comparison, we have

analyzed 77 different functions (eStream, SHA-3

and CAESAR candidates). For 2-round Hermes and

 1-round Fubuki we confidently surpass NIST STS.

3. Fitness assessment
Each circuit from the population is

evaluated on all test vectors from

the current set. Based on the

outputs, it is assigned a fitness

 value from the interval [0,1].

1011
0100

1010
0101

1000
0111

1001
01011

0
0
0
x

current test vector set

(periodically renewed) 0.792 0.503 0.357 0.845 0.228

0010
01015

0
0
x

1110
10115

0
0
x

0.357

0.503

0.228

0.845
0.792

Diehard(er)
A Random Number Test Suite

Statistical Testing Suite

MASARYK
UNIVERSITY

...

Centre for Research on

Cryptography and Security

This work was supported by the Czech Science

Foundation project GAP202/11/0422.

0111
10111110

1011

randomness verdict

binary ciphertext

change wires

and functions

try again

analyze success

XOR
XOR

1. pictures – infographics

2. title

3. text

Ways of reading
Case study

A

B

C

Ways of reading
Case study

Instructions dependent on
the input are computed.

Dependent instructions are substi-
tuted with symbolic calls, path con-
dition manipulations are added.

Dependence graph of LLVM
instructions is created from the
control flow of a program.

A program simulating
original instructions in
a symbolic manner.

LLVM bitcode
is generated from
C++ source code.

LLVM LLVM
SYM

Henrich Lauko, Vladimír Štill, Petr Ročkai, Jan Mrázek and Jiří Barnat

DIVINE is a tool for verification of
parallel C++ programs. By using the
LLVM compilation framework with
the Clang compiler and the libc++ li-
brary it provides support for most
of the standard C++ library and all
the C++ language features. DIVINE
is rather efficient when dealing with

programs without inputs (for exam-
ple test cases). A big downside of the
current version of DIVINE is that for
programs with inputs, this input has to
be simulated by nondeterministic choice
which is very inefficient. Therefore
we present an approach for symbolic
representation of inputs in DIVINE.

Consider a simple program with
32 bit input variable x and a
branch on the value of this vari-
able. In the current DIVINE, this
program gives rise to 232 possible
memory configurations. In sym-
bolic version, possible values of
variables x and b are represented
symbolically using bitvector for-
mulae, therefore, there are only
two possible configurations at the
end of the program.

LART takes the LLVM bitcode of the program and libraries produced by the
compiler and transforms it into a bitcode which manipulates data symbolically.
In this modified program, any variable which can depend on an input value is
represented symbolically using bitvector formulae. Bitvector formulae describe
integers of fixed bit width with overflow and bitwise operations, and therefore

are well suited for exact representation of computer integers. All the manip-
ulations with such variables have to be transformed to their symbolic ver-
sions which modify the formulae accordingly. Furthermore, any branch which
depends on an input value has to put constraints on the possible values of sym-
bolic variables (this constraint is given in the form of a path condition formula).

Compiler

Explicit Approach

Symbolic Approach

Details of Program Transformation

Proposed Approach

LART

Verification
algorithm

SMT Solver

To take advantage of symbolic representation of states, we transform the LLVM bit-
code in such a way that it represents variables which can contain values dependent on
inputs symbolically. This transformation is performed by LART and is resented

in detail later. Apart from that, the verification algorithm is modified to handle
symbolic states with the help of an SMT solver.

Our approach aims for minimizing changes to the LLVM interpreter that is used to
execute instructions in DIVINE. The reason is that the interpreter is complex
and performance tuned and therefore it is not desirable to make it even more
complex by adding symbolic data manipulation into it. Instead, symbolic data are
to be handled by the program itself. To encode symbolic manipulations into the
program we transform the LLVM bitcode produced by the compiler and create
symbolic LLVM from it. This not only minimizes changes to the interpreter, but

the transformation can also be used for different representation of symbolic
data quite easily. The transformation is handled by LART – LLVM Abstraction &
Refinement Tool. Furthermore, DIVINE’s verification algorithm has to be
modified. It has to check if symbolic states are valid (nonempty), that is if
they can represent at least one concrete state. It also has to handle comparison
of symbolic states. For both of these tasks, DIVINE has to extract SMT formulae
from the program state and use SMT solver.

Interpreter

Verification
algorithm

Verification of Programs with Inputs

1. pictures – infographics

2. title

3. text

A

B

C

Ways of reading
Case study

ˇ

-

SCIENTIFIC CLOUD

CERIT Scienti�c Cloud
Looking for Synergies in Scienti�c Computing
David Antoš, Aleš Křenek, Ivana Křenková, Luděk Matyska
Institute of Compt. Science, Masaryk University, Brno

Mission
CERIT Scieti�c Cloud centre, the successor of Supercompu-
ting Centre Brno at Masaryk University, is a national centre
providing �exible computational and storage capacities.
Provision of these resources is complemented with extensi-
ve research activities, carried both in cooperation with the
user communities and in the e-Infrastructure area itself.

Scienti�c director Prof. RNDr. Luděk Matyska, CSc.

Project manager Roman Čermák, M.Sc., MBA

 http://www.cerit-sc.cz

SCIENTIFIC CLOUD

History
Supercomputing Centre Brno (SCB) is a part of Institute of
Compt. Science, Masaryk University. SCB was founded
in 1994 as one of big supercomputing centres in the Czech
Republic of that time. Similar cooperating centres were
founded by other universities (Prague, Pilsen, Brno,
Ostrava).

SCB has been working with Faculty of Informatics, Masaryk
University, for a long time. The cooperation is both perso-
nal and factual, formally expressed, e.g., in a common re-
search intent “Highly parallel and distributed computation
systems”.

Flexible Resources
Provision of the resources will range from traditional batch queues, through interactive
access upto the cloud paradigm. The resources will be provided free of charge.

Prioritization of the users will be based on their scienti�c results; resulting resource allo-
cation will be achieved by technical means, combining advanced resource scheduling, vir-
tualization, and the cloud paradigm; no complex administrative process will be required.

By careful ballancing the scheduling strategies, successful users will get better share while
new users, students etc. will not be prevented from using the resources.

CERIT-SC computational resources are intended to serve unexpected and unplanned re-
quirements of the users primarily.

Data resources will serve to store and share data semipermanently and permanently.
They will be tightly integrated with the computational resources. The target community
are the end-users again.

Equipment and Purchase Schedule
The project will purchase the following resources:
• SMP – Symmetric MultiProcessing clusters, with more than

64 cores and 128 GB memory per node (1000 cores total)
• HD – High Density clusters with higher number of nodes with

8-16 cores and 16-32 GB memory (2500 cores total)
• HSM Hierarchical Storage Management (3 PB)
• disk storage (600 TB)
• development tools and application software

Cooperation with Users
Deluge of experimental data is expected in near future. Many existing computational me-
thods will break or stop scaling, new developments will be required.

User communities will come up with interesting problems, CERIT-SC will provide the ne-
cessary IT expertise. We expect formation of joint teams
• consisting of experts from both sides,
• addressing specific research areas – both ad-hoc and long term work,
• involving students (undergraduate and Ph.D.).

This work will result in common publications. Targeted projects are also expected.

Formal agreement on future collaboration (LoI):
• R&DI: AdMaS, BIOCEV, CEITEC, CzechGlobe, RECAMO
• cooperating institutions: IBA, MZK, Loschmidt Labs., RECETOX
• ESFRI projects (in negotiation): LINDAT-CLARIN, Euro-BioImaging

This poster presentation is
partially supported by pro-
ject “Vzdělávání akademic-
kých pracovníků v oblasti

eInfrastruktur
(CZ.1.07/2.3.00/09.0074)”

Goals
CERIT-SC will provide highly �exible computation environment and primary data sto-
rage capacities for the national e-Infrastructure.

Research and development in CERIT-SC is focused on
• work with the users on tools and means for e�cient use of the e-infrastructure by appli-

cations
• cooperation with the users in development, deployment, and operation of

• new and modified systems and programs running in flexible computation environ-
ment

• systems for storing, archiving, and retrieval of data
• tools and protocols for data storage facilities interconnection, …

The research work will evolve in a doctoral school with student participation from both IT
and application areas.

CERIT-SC will become an important node of national e-Infrastructure, including integra-
tion into the European Grid Infrastrucute. This will be achieved by tight cooperation with
CESNET on development and adoption of appropriate standards.

Funding
Transformation of SCB into CERIT-SC will be supported by
a project of the 3rd axis of the RD&I Operational Program-
me. The project will be realised from May 2011 to October
2013. Its overall budget is 5 MEur.

CERIT-SC is included in the Roadmap for Large Research,
Development and Innovation Infrastructures in the
Czech Republic.

Q3/2011 Q4/2011 Q1/2012 Q2/2012 Q3/2012 Q4/2012 Q1/2013

SM
P

clu
st

er
 (5

00
 co

re
s)

HSM
 sy

st
em

 (3
 P

B)

di
sk

 st
or

ag
e

(2
50

 T
B)

HD cl
us

te
r (

50
0

co
re

s)

SM
P

clu
st

er
 (5

00
 co

re
s)

HD cl
us

te
r (

20
00

 co
re

s)

di
sk

 st
or

ag
e

(3
50

 T
B)

 cores, capacities in current price/capacity ratios

1. pictures – infographics

2. title

3. textA

B

C

Function of image

← ← ← ← ← ←
← ← ← ← ← ←
← ← ← ← ← ←
← ← ← ← ← ←

Arabic – from right to left

Ways of reading
from right to left

←
 ←

 ←
 ←

 ←
 ←

←

 ←
 ←

 ←
 ←

 ←

←
 ←

 ←
 ←

 ←
 ←

←

 ←
 ←

 ←
 ←

 ←

Chinese – ideograms from top to bottom

Ways of reading
from top to bottom

13 %

42 % 20 %

25 %

Ways of reading
from left to right

Percentual result of European
reading.

Location of elements

The visual weight of an element attracts neighboring elements,
imparting direction to them

Shape of element

The shapes of an object creates an axis that imparts directional
forces in two opposing directions along that axis

Subject matter of an element

Objects in a design may naturally point in a direction. For example
an arrow.
Objects opposing the intrinsic directional forces of an object can
impart visual direction to other elements in the composition

Ways of reading
Visual direction

Visual elements and Hierarchy

Hierarchy

HIERARCHY:

visual elemenets composed in a logical sequence

crucial elements in contrast with elements with less
importance

layering of elements according to their importance

position of elements leads the way how the image is to be read

Hierarchy

highlighting various information and its importance

working with different size of font

working with various weights of font

TYPOGRAPHIC HIERARCHY:

Hierarchy

Hierarchy

Hierarchy

Hierarchy

Hierarchy

Ogilvy's way of reading posters

HOW WE LOOK AT A POSTER
OGILVY:

illustration > upper element

title > above the illustration

text > above the title

Ogilvy

Ogilvy

Typography

Typography

Font style Font family Font weights

Typography

Setting of text
boxes

DIVINE is a tool for verification of
parallel C++ programs. By using
the LLVM compilation framework
with the Clang compiler and the
libc++ library it provides support
for most of the standard C++
library and all the C++ language
features. DIVINE is rather efficient
when dealing with programs
without inputs (for example
test cases). A big downside of the
current version of DIVINE is that
for programs with inputs, this
input has to be simulated by
nondeterministic choice
which is very inefficient.
Therefore we present an
approach for symbolic
representation of inputs in
DIVINE.

DIVINE is a tool for verification of
parallel C++ programs. By using
the LLVM compilation framework
with the Clang compiler and the
libc++ library it provides support
for most of the standard C++
library and all the C++ language
features. DIVINE is rather efficient
when dealing with programs
without inputs (for example
test cases). A big downside of the
current version of DIVINE is that
for programs with inputs, this
input has to be simulated by
nondeterministic choice which
is very inefficient. Therefore we
present an approach for symbolic
representation of inputs in DIVINE.

left alignment left justify
alignment

Typography

Setting of text
boxes

DIVINE is a tool for verification of
parallel C++ programs. By using
the LLVM compilation framework
with the Clang compiler and the
libc++ library it provides support
for most of the standard C++
library and all the C++ language
features. DIVINE is rather efficient
when dealing with programs
without inputs (for example
test cases). A big downside of the
current version of DIVINE is that
for programs with inputs, this
input has to be simulated by
nondeterministic choice
which is very inefficient.
Therefore we present an
approach for symbolic
representation of inputs in
DIVINE.

DIVINE is a tool for verification of
parallel C++ programs. By using
the LLVM compilation framework
with the Clang compiler and the
libc++ library it provides support
for most of the standard C++
library and all the C++ language
features. DIVINE is rather efficient
when dealing with programs
without inputs (for example
test cases). A big downside of the
current version of DIVINE is that
for programs with inputs, this
input has to be simulated by
nondeterministic choice which
is very inefficient. Therefore we
present an approach for symbolic
representation of inputs in DIVINE.

alignment

width of a text box

font size

leading

Case study
Typography EACirc

Using genetics to improve encryption
Martin Ukrop, Petr Švenda, Marek Sýs, Václav Matyáš et alii

Fork m
e on G

itH
ub!

github.com
/crocs-m

uni/eacirc

Problem statement

EACirc workflow

Comparison to existing tools

1. Forming a population
A set of currently considered

 partial solutions (gate circuits

distinguishing cipher data from

random data). The initial

population is created randomly.

5. Mutation & crossover
To form new individuals, we use

mutation and crossover. Mutation

makes small random changes in

nodes and connectors. Crossover

creates an offspring by combining

different parts from two circuits

taken from the population.

The new population now enters

the evolution cycle again, gradually

improving its fitness.

Iterative design
The designed distinguisher is in the

form of a gate circuit (layers of

simple interconnected functions).

It processes binary data and

outputs a randomness verdict.

It is improved iteratively, using

ideas from evolutionary algorithms

(see the next section for details).

Randomness testing
The ciphertext produced by

encryption should be completely

indistinguishable from random

data. But how to compare?

EACirc is a framework for designing

a distinguisher – a simple program

that decides whether generated

ciphertext looks random enough.

2. Test vector generation
Testing data for learning is

sampled from both sources.

That is, non-random data from the

inspected cipher and random data

from a truly random source.

4. Survival of the fittest
Unfit individuals are discarded,

better ones survive to the next

generation. The higher the fitness,

the bigger is the chance of survival.

The evolution works as a heuristics

looking for better individals – gate

circuits distinguishing random and

non-random data with higher

probability than random guessing.

Further information
Interested in EACirc? See the papers referenced

below or ask directly at the lab (CRoCS @ FI MU).

[1] Švenda, Ukrop, Matyáš. Determining cryptographic

distinguishers for eStream and SHA-3 candidate functions with

evolutionary circuits. In: E-Business and Telecommunications.

Vol. 456 (SECRYPT 2013). Springer Berlin Heidelberg, 2014.

[2] Kubíček, Novotný, Švenda, Ukrop. New results on reduced-

round Tiny Encryption Algorithm using genetic programming.

IEEE Infocommunications. Vol. 8, iss. 1. 2016.

EACirc vs statistical testing
The standard way to assess randomness is to

 use batteries of statistical tests such as NIST STS,

 Dieharder or TestU01. We run them along with

EACirc and compare the results.

To have a fine-grained comparison, we have

analyzed 77 different functions (eStream, SHA-3

and CAESAR candidates). For 2-round Hermes and

 1-round Fubuki we confidently surpass NIST STS.

3. Fitness assessment
Each circuit from the population is

evaluated on all test vectors from

the current set. Based on the

outputs, it is assigned a fitness

 value from the interval [0,1].

1011
0100

1010
0101

1000
0111

1001
01011

0
0
0
x

current test vector set

(periodically renewed) 0.792 0.503 0.357 0.845 0.228

0010
01015

0
0
x

1110
10115

0
0
x

0.357

0.503

0.228

0.845
0.792

Diehard(er)
A Random Number Test Suite

Statistical Testing Suite

MASARYK
UNIVERSITY

...

Centre for Research on

Cryptography and Security

This work was supported by the Czech Science

Foundation project GAP202/11/0422.

0111
10111110

1011

randomness verdict

binary ciphertext

change wires

and functions

try again

analyze success

XOR
XOR

left alignment

Left alignment keeps same
gaps between words

Black text on a white

background allows

common speed

reading.

Text and legibility

Black text on a white

background allows

common speed of

reading.

White text on black

background

reduces reading

process of 15 %.

Text and legibility

Text and legibility

White text on black

background is

optically thicker.

Text in Italics reduces redability of 15 %.

Text and legibility

Text and legibility

LONGER UPPERCASE TEXT REDUCES
REDABILITY OF 15 %

TEXT

Left alignment doesn't

have any affect on speed

of reading.

Left alignment doesn't

have any affect on speed

of reading.

TEXT

Left justify alignment

doesn't have any affect

on speed of reading. Left

justify alignment doesn't

have any affect on speed

of reading.

Text and legibility

Typography and errors

Dr. Jozef Ferenczy učil
celé generácie študentov
a nitrianske gymnázium
malo aj jeho zásluhou veľmi
dobré meno. Okrem Karola
Pongrácza k jeho žiakom
patril okrem iných i maliar
Maximilián Schurmann
(1890 – 1960).

gaps in typesetting, which appear
to run through a paragraph of text,
due to a coincidental alignment of
spaces

spaces caused by full text
justification or monospaced fonts

no hyphenation

A TYPOGRAPHIC RIVERS

Case study
Typography

left justify
alignment

typographic
rivers

without
hyphenation

Left alignment keeps same
gaps between words

Infographics

Infographics

Infographics

Infographics

Infographics

Infographics

Case study
Graphic design style EACirc

Using genetics to improve encryption
Martin Ukrop, Petr Švenda, Marek Sýs, Václav Matyáš et alii

Fork m
e on G

itH
ub!

github.com
/crocs-m

uni/eacirc

Problem statement

EACirc workflow

Comparison to existing tools

1. Forming a population
A set of currently considered

 partial solutions (gate circuits

distinguishing cipher data from

random data). The initial

population is created randomly.

5. Mutation & crossover
To form new individuals, we use

mutation and crossover. Mutation

makes small random changes in

nodes and connectors. Crossover

creates an offspring by combining

different parts from two circuits

taken from the population.

The new population now enters

the evolution cycle again, gradually

improving its fitness.

Iterative design
The designed distinguisher is in the

form of a gate circuit (layers of

simple interconnected functions).

It processes binary data and

outputs a randomness verdict.

It is improved iteratively, using

ideas from evolutionary algorithms

(see the next section for details).

Randomness testing
The ciphertext produced by

encryption should be completely

indistinguishable from random

data. But how to compare?

EACirc is a framework for designing

a distinguisher – a simple program

that decides whether generated

ciphertext looks random enough.

2. Test vector generation
Testing data for learning is

sampled from both sources.

That is, non-random data from the

inspected cipher and random data

from a truly random source.

4. Survival of the fittest
Unfit individuals are discarded,

better ones survive to the next

generation. The higher the fitness,

the bigger is the chance of survival.

The evolution works as a heuristics

looking for better individals – gate

circuits distinguishing random and

non-random data with higher

probability than random guessing.

Further information
Interested in EACirc? See the papers referenced

below or ask directly at the lab (CRoCS @ FI MU).

[1] Švenda, Ukrop, Matyáš. Determining cryptographic

distinguishers for eStream and SHA-3 candidate functions with

evolutionary circuits. In: E-Business and Telecommunications.

Vol. 456 (SECRYPT 2013). Springer Berlin Heidelberg, 2014.

[2] Kubíček, Novotný, Švenda, Ukrop. New results on reduced-

round Tiny Encryption Algorithm using genetic programming.

IEEE Infocommunications. Vol. 8, iss. 1. 2016.

EACirc vs statistical testing
The standard way to assess randomness is to

 use batteries of statistical tests such as NIST STS,

 Dieharder or TestU01. We run them along with

EACirc and compare the results.

To have a fine-grained comparison, we have

analyzed 77 different functions (eStream, SHA-3

and CAESAR candidates). For 2-round Hermes and

 1-round Fubuki we confidently surpass NIST STS.

3. Fitness assessment
Each circuit from the population is

evaluated on all test vectors from

the current set. Based on the

outputs, it is assigned a fitness

 value from the interval [0,1].

1011
0100

1010
0101

1000
0111

1001
01011

0
0
0
x

current test vector set

(periodically renewed) 0.792 0.503 0.357 0.845 0.228

0010
01015

0
0
x

1110
10115

0
0
x

0.357

0.503

0.228

0.845
0.792

Diehard(er)
A Random Number Test Suite

Statistical Testing Suite

MASARYK
UNIVERSITY

...

Centre for Research on

Cryptography and Security

This work was supported by the Czech Science

Foundation project GAP202/11/0422.

0111
10111110

1011

randomness verdict

binary ciphertext

change wires

and functions

try again

analyze success

XOR
XOR

Infographics enhance the
design

Process of creating poster

Define a grid

Define a layout

Define a positon of text and pictures

1

picture

text text text

title

Hierarchy of information

Compose elements

Try to find balance between text an images

2

DIVINE is a tool for verification of
parallel C++ programs. By using
the LLVM compilation framework
with the Clang compiler and the
libc++ library it provides support
for most of the standard C++
library and all the C++ language
features. DIVINE is rather efficient
when dealing with programs
without inputs (for example
test cases).

DIVINE

Instructions dependent on
the input are computed.

Dependent instructions are substi-
tuted with symbolic calls, path con-
dition manipulations are added.

Dependence graph of LLVM
instructions is created from the
control flow of a program.

A program simulating
original instructions in
a symbolic manner.

LLVM bitcode
is generated from
C++ source code.

LLVM LLVM
SYM

Henrich Lauko, Vladimír Štill, Petr Ročkai, Jan Mrázek and Jiří Barnat

DIVINE is a tool for verification of
parallel C++ programs. By using the
LLVM compilation framework with
the Clang compiler and the libc++ li-
brary it provides support for most
of the standard C++ library and all
the C++ language features. DIVINE
is rather efficient when dealing with

programs without inputs (for exam-
ple test cases). A big downside of the
current version of DIVINE is that for
programs with inputs, this input has to
be simulated by nondeterministic choice
which is very inefficient. Therefore
we present an approach for symbolic
representation of inputs in DIVINE.

Consider a simple program with
32 bit input variable x and a
branch on the value of this vari-
able. In the current DIVINE, this
program gives rise to 232 possible
memory configurations. In sym-
bolic version, possible values of
variables x and b are represented
symbolically using bitvector for-
mulae, therefore, there are only
two possible configurations at the
end of the program.

LART takes the LLVM bitcode of the program and libraries produced by the
compiler and transforms it into a bitcode which manipulates data symbolically.
In this modified program, any variable which can depend on an input value is
represented symbolically using bitvector formulae. Bitvector formulae describe
integers of fixed bit width with overflow and bitwise operations, and therefore

are well suited for exact representation of computer integers. All the manip-
ulations with such variables have to be transformed to their symbolic ver-
sions which modify the formulae accordingly. Furthermore, any branch which
depends on an input value has to put constraints on the possible values of sym-
bolic variables (this constraint is given in the form of a path condition formula).

Compiler

Explicit Approach

Symbolic Approach

Details of Program Transformation

Proposed Approach

LART

Verification
algorithm

SMT Solver

To take advantage of symbolic representation of states, we transform the LLVM bit-
code in such a way that it represents variables which can contain values dependent on
inputs symbolically. This transformation is performed by LART and is resented

in detail later. Apart from that, the verification algorithm is modified to handle
symbolic states with the help of an SMT solver.

Our approach aims for minimizing changes to the LLVM interpreter that is used to
execute instructions in DIVINE. The reason is that the interpreter is complex
and performance tuned and therefore it is not desirable to make it even more
complex by adding symbolic data manipulation into it. Instead, symbolic data are
to be handled by the program itself. To encode symbolic manipulations into the
program we transform the LLVM bitcode produced by the compiler and create
symbolic LLVM from it. This not only minimizes changes to the interpreter, but

the transformation can also be used for different representation of symbolic
data quite easily. The transformation is handled by LART – LLVM Abstraction &
Refinement Tool. Furthermore, DIVINE’s verification algorithm has to be
modified. It has to check if symbolic states are valid (nonempty), that is if
they can represent at least one concrete state. It also has to handle comparison
of symbolic states. For both of these tasks, DIVINE has to extract SMT formulae
from the program state and use SMT solver.

Interpreter

Verification
algorithm

Verification of Programs with Inputs

Instructions dependent on
the input are computed.

Dependent instructions are substi-
tuted with symbolic calls, path con-
dition manipulations are added.

Dependence graph of LLVM
instructions is created from the
control flow of a program.

A program simulating
original instructions in
a symbolic manner.

LLVM bitcode
is generated from
C++ source code.

LLVM LLVM
SYM

Henrich Lauko, Vladimír Štill, Petr Ročkai, Jan Mrázek and Jiří Barnat

DIVINE is a tool for verification of
parallel C++ programs. By using the
LLVM compilation framework with
the Clang compiler and the libc++ li-
brary it provides support for most
of the standard C++ library and all
the C++ language features. DIVINE
is rather efficient when dealing with

programs without inputs (for exam-
ple test cases). A big downside of the
current version of DIVINE is that for
programs with inputs, this input has to
be simulated by nondeterministic choice
which is very inefficient. Therefore
we present an approach for symbolic
representation of inputs in DIVINE.

Consider a simple program with
32 bit input variable x and a
branch on the value of this vari-
able. In the current DIVINE, this
program gives rise to 232 possible
memory configurations. In sym-
bolic version, possible values of
variables x and b are represented
symbolically using bitvector for-
mulae, therefore, there are only
two possible configurations at the
end of the program.

LART takes the LLVM bitcode of the program and libraries produced by the
compiler and transforms it into a bitcode which manipulates data symbolically.
In this modified program, any variable which can depend on an input value is
represented symbolically using bitvector formulae. Bitvector formulae describe
integers of fixed bit width with overflow and bitwise operations, and therefore

are well suited for exact representation of computer integers. All the manip-
ulations with such variables have to be transformed to their symbolic ver-
sions which modify the formulae accordingly. Furthermore, any branch which
depends on an input value has to put constraints on the possible values of sym-
bolic variables (this constraint is given in the form of a path condition formula).

Compiler

Explicit Approach

Symbolic Approach

Details of Program Transformation

Proposed Approach

LART

Verification
algorithm

SMT Solver

To take advantage of symbolic representation of states, we transform the LLVM bit-
code in such a way that it represents variables which can contain values dependent on
inputs symbolically. This transformation is performed by LART and is resented

in detail later. Apart from that, the verification algorithm is modified to handle
symbolic states with the help of an SMT solver.

Our approach aims for minimizing changes to the LLVM interpreter that is used to
execute instructions in DIVINE. The reason is that the interpreter is complex
and performance tuned and therefore it is not desirable to make it even more
complex by adding symbolic data manipulation into it. Instead, symbolic data are
to be handled by the program itself. To encode symbolic manipulations into the
program we transform the LLVM bitcode produced by the compiler and create
symbolic LLVM from it. This not only minimizes changes to the interpreter, but

the transformation can also be used for different representation of symbolic
data quite easily. The transformation is handled by LART – LLVM Abstraction &
Refinement Tool. Furthermore, DIVINE’s verification algorithm has to be
modified. It has to check if symbolic states are valid (nonempty), that is if
they can represent at least one concrete state. It also has to handle comparison
of symbolic states. For both of these tasks, DIVINE has to extract SMT formulae
from the program state and use SMT solver.

Interpreter

Verification
algorithm

Verification of Programs with Inputs

Typography

Choose typography

Find a way how to highlight the text – working with different styles (italic, bold,...)

3

DIVINE is a tool for verification of
parallel C++ programs. By using
the LLVM compilation framework
with the Clang compiler and the
libc++ library it provides support
for most of the standard C++
library and all the C++ language
features. DIVINE is rather efficient
when dealing with programs
without inputs (for example
test cases).

DIVINE is a tool for verification of
parallel C++ programs. By using
the LLVM compilation framework
with the Clang compiler and the
libc++ library it provides support
for most of the standard C++
library and all the C++ language
features. DIVINE is rather efficient
when dealing with programs
without inputs (for example
test cases).

DIVINE is a tool for verification of
parallel C++ programs. By using
the LLVM compilation framework
with the Clang compiler and the
libc++ library it provides support
for most of the standard C++
library and all the C++ language
features. DIVINE is rather efficient
when dealing with programs
without inputs (for example
test cases).

DIVINE DIVINE DIVINE

Case study
Good balance between
pictures and text

How Visual Weight and
Direction Impact Design

Balance

Your composition needs to be in balance, whether symmetrical, asymmetrical, or radial.
You’ll achieve this balance by placing elements of combined equal visual weight on either
side of the optical center

Dominance/Focal Points

Focal points are elements that attract the eye. They’re elements of greater visual weight.
The dominant element of a design is the element with the greatest visual weight.

Flow

Through focal points, hierarchy, and visual direction you can lead the eye from one part of
your design to the next. You’ll create a flow through your design.

Hierarchy

By creating a scale of focal points or elements of different visual weights you can create
a hierarchy of design elements. The difference in visual weights is what makes certain
elements stand out improving scanability.

Depth

Elements with greater visual weight appear to move forward in a design while visually
lighter elements recede into the background. We can use this understanding to create depth
in a design.

Proportion

Is the relationship in scale between elements. Different proportions in a composition relate
to different kinds of balance and can help establish visual weight and depth.

Scale

Is generally considered to be the relative size of different objects. Here we can consider it in
the context of the relative visual weight of different objects.

Case study
POSTERS

Case study
Posters

Case study
Posters

text – title

text

images

logos

Case study
Posters

Suggestions

Case study
Posters

more space between
elements

Suggestions

Case study
Posters

more space between
elements

background photo
makes text illegible

Suggestions

Case study
Posters

more space between
elements

background photo
makes text illegible

unite the size and positions of elements

Suggestions

Case study
Posters

more space between
elements

background photo
makes text illegible

unite the size and positions of elements

too many overlapping elements –
visualizations, photos, ...

Suggestions

Case study
Posters

more space between
elements

background photo
makes text illegible

unite the size and positions of elements

too many overlapping elements –
visualizations, photos, ...

more space between logos and graphic
elements

Suggestions

Case study
Posters

more space between
elements

background photo
makes text illegible

unite the size and positions of elements

too many overlapping elements –
visualizations, photos, ...

more space between logos and graphic
elements

keep a safety zone
around the logo

Suggestions

Case study
Posters

Typography

 Nis escienime namende corepe

 nobis ullam, aut elenda coris

 exero volorpo ressund empore

 pa vendem. Bit ut aligendunt

 alique isti cusa nihic to tem sant

 quias ea dolorum eumquatem

 quae nulpa cuptata ipisciuntis

 dolorescid et abor alitinc

 imilleste pro volendam, ut

 voluptata qui consedit aut

 rectotatur, nis ut porum eos

 samusae consequodi dunt

 excerio consedit iderum ne

 sum volorib usapediscias.

 Nis escienime namende corepe nobis ullam, aut elenda

 coris exero volorpo ressund empore pa vendem.

 Bit ut aligendunt alique isti cusa nihic to tem sant

 quias ea dolorum eumquatem quae nulpa cuptata

 ipisciuntis dolorescid et abor alitinc imilleste pro

 volendam, ut voluptata qui consedit aut rectotatur,

 nis ut porum eos samusae consequodi dunt excerio

consedit iderum ne sum volorib usapediscia

rivers

wider text box

Case study
Posters

Settings of type
and type box

influences the layout

 Nis escienime namende corepe

 nobis ullam, aut elenda coris

 exero volorpo ressund empore

 pa vendem. Bit ut aligendunt

 alique isti cusa nihic to tem sant

 quias ea dolorum eumquatem

 quae nulpa cuptata ipisciuntis

 dolorescid et abor alitinc

 imilleste pro volendam, ut

 voluptata qui consedit aut

 rectotatur, nis ut porum eos

 samusae consequodi dunt

 excerio consedit iderum ne

 sum volorib usapediscias.

 Nis escienime namende

 corepe nobis ullam, aut

 elenda coris exero volorpo

 ressund empore pa vendem.

 Bit ut aligendunt alique isti

 cusa nihic to tem sant quias

 ea dolorum eumquatem quae

 nulpa cuptata ipisciuntis

 dolorescid et abor alitinc

 imilleste pro volendam, ut

 voluptata qui consedit aut

 rectotatur, nis ut porum eos

 samusae consequodi dunt

 excerio consedit iderum ne

rivers left alignment

Case study
Posters

Settings of type
and type box

influences the layout

 Nis escienime namende corepe

 nobis ullam, aut elenda coris

 exero volorpo ressund empore

 pa vendem. Bit ut aligendunt

 alique isti cusa nihic to tem sant

 quias ea dolorum eumquatem

 quae nulpa cuptata ipisciuntis

 dolorescid et abor alitinc

 imilleste pro volendam, ut

 voluptata qui consedit aut

 rectotatur, nis ut porum eos

 samusae consequodi dunt

 excerio consedit iderum ne

 sum volorib usapediscias.

Nis escienime namende corepe nobis ul-

lam, aut elenda coris exero volorpo res-

sund empore pa vendem. Bit ut aligend-

 unt alique isti cusa nihic to tem sant quias

ea dolorum eumquatem quae nulpa cup-

 tata ipisciuntis dolorescid et abor alitinc

 imilleste pro volendam, ut voluptata qui

 consedit aut rectotatur, nis ut porum eos

samusae consequodi dunt excerio conse-

.dit iderum ne sum volorib usapediscias

rivers smaller font size
+ hyphenation

Case study
Posters

Logo safety zone

THANK YOU :)

