Pattern Mining in Dynamic Graphs

Karel Vaculík

Outline

- Introduction
- Frequent patterns
- Anomalous patters
- Future directions

Outline

- Introduction
- Frequent patterns
- Anomalous patters
- Future directions

Introduction

Introduction

Introduction

An example of a rule:

Applications

- Citation / bibliographic networks
 - Collaboration patterns
 - Evolution of publication behaviour
- Social networks
 - Leaving community / change of attributes after specific interactions (behaviour patterns)
- Communication networks
 - Utilization of common communication patterns for productivity increase

Outline

- Introduction
- Frequent patterns
- Anomalous patters
- Future directions

DGRMiner

- Frequent pattern mining
- Anomaly detection and explanation
- Considers various types of changes:
 - Vertex addition / deletion
 - Edge addition / deletion
 - Change of vertex / edge labels
- Undirected as well as directed edges; multiedges
- Single dynamic graph or multiple dynamic graphs on input

DGRMiner: Union Graph Representation

a predictive graph rule:

union graph of the rule:

+X ... addition -X ... deletion Y=>X ... Change from Y to X

DGRMiner: Support and Confidence

- Support of the freq. pattern: 3/5 (or 3 as absolute)
- Confidence of the freq. pattern: 3/4

DGRMiner: Frequent Pattern Mining

Based on gSpan algorithm:

- 1. Mine frequent change vertices
- 2. Mine frequent patterns built from change edges
 - in a depth-first-search manner
 - avoids duplicate patterns

*gSpan (Yan & Han @ ICDM'02); modified image of the tree from the same paper

Outline

- Introduction
- Frequent patterns
- Anomalous patters
- Future directions

DGRMiner: Anomalies

• Frequent pattern

• Anomalous pattern = deviation from the frequent pattern

Outlierness = 1 - confidence

Single-vertex Anomalies

Frequent pattern	Possible anomalies
-A	A, A=>C (where C ≠ A)
A=>B	A, -A, A=>C (where C ≠ B)
+B	!B

• How to compute support of these anomalies?

union graph of the rule:

• Frequent patterns without "additions": simple enumeration of antecedents

• Frequent patterns with "additions":

• Frequent patterns with "additions":

• Solution: Maximal common subgraphs of the freq. pattern and the input union graph

How to compute support of non-trivial anomalies?

- Simple if the corresponding frequent pattern contains "non-additions"
- Otherwise:

Enron

Enron (unique vertex labels)

Resolution proofs

Outline

- Introduction
- Frequent patterns
- Anomalous patters
- Future directions

Support Definition

- DGRMiner at this moment: count at most one occurrence in each union graph
- Counting as many occurrences as possible:

Anti-monotonicity is broken!

Support Definition

=> solve the Maximum Independent Set problem on the graph of embeddings

Patterns with deviating "additions"