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ABSTRACT1
Transit vehicles create special challenges for urban traffic signal control. Signal timing plans are2
typically designed for the flow of passenger vehicles, but transit vehicles, with frequent stops and3
uncertain dwell times, may have very different flow patterns that fail to match signal coordina-4
tion plans. The presence of transit vehicles stopping on urban streets can also restrict or block5
other traffic on the road, resulting in further disruption to coordination. These factors can result6
in increased overall wait times and delays throughout the system for transit vehicles and other7
traffic. Transit signal priority (TSP) systems are often used to mitigate some of these issues, pri-8
marily addressing delay to the transit vehicles. However, predominant existing TSP strategies give9
unconditional priority to transit vehicles, thereby exacerbating quality of service for other modes.10

In areas where transit vehicles have significant effects on traffic congestion, particularly in11
urban areas, using more realistic models of bus behavior in traffic signal control strategies could12
reduce delay for all travel modes, particularly in a connected vehicle context using adaptive control.13
However, estimating the arrival time of a transit vehicle at an intersection requires an accurate14
model of transit stop dwell times. As a first step toward developing a dwell time model for purposes15
of predicting bus arrival times, this paper analyzes trends in automatic vehicle location (AVL)16
data provided by the Port Authority of Allegheny County (PAAC) collected over the two year17
period from September 2012 – August 2014 for two major bus routes. Our analysis enables several18
inferences to be drawn. First, the statistical properties of dwell times are similar (for most stops)19
across years for a given season and hence it is fine to join the data for the same season (or month)20
across years. Second, the probability of a non-zero dwell time varies from stop to stop in a given21
route suggesting that buses need not be given same priority at all signalized intersections. Third,22
cumulative density functions (CDFs) of dwell time distributions do provide insights into reliability23
of dwell times for a given stop; this information is especially useful in real-time control decisions;24
Fourth, fifteen minute interval dwell time CDFs of peak hour demonstrate the highly stochastic25
nature of dwell times. Based on this trend analysis, we argue that an effective predictive dwell26
time distribution model must treat independent variables as random or stochastic regressors.27
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INTRODUCTION1
Control of urban transportation networks is complicated by the multi-modal nature of traffic dy-2
namics, involving passenger cars, pedestrians, transit vehicles, bicyclists, and other modes of3
travel. Transit vehicles in particular create special challenges for urban traffic signal control.4

Most traffic signal timing plans are designed for the flow of passenger vehicles, but transit5
vehicles may have very different driving behaviors, particularly in urban areas. Unlike passen-6
ger vehicles, transit vehicles may have frequent stops with uncertain dwell times, producing flow7
patterns that fail to match signal coordination plans. The presence of transit vehicles stopping on8
urban streets can also restrict or block other traffic on the road depending on stop locations, result-9
ing in further disruption to coordinated traffic flow. These factors can result in increased overall10
wait times and delays throughout the system. This decrease in mobility, in turn, deeply impacts the11
reliability of transit vehicle schedules, degrading the experience of the large number of travelers12
who depend on transit for mobility (which ultimately affects ridership levels).13

To help mitigate these delays to transit vehicles, cities often deploy transit signal priority14
(TSP) systems. In these systems, transit vehicles are equipped with a device that has the ability15
to communicate priority requests to the roadside signal control infrastructure; TSP control logic16
in turn responds to this request by implementing one of two actions: 1) holding the green for17
transit vehicles (if priority is requested on the existing phase in service), or 2) abruptly ending the18
current phase in order to serve the phase that the priority request came from. Even though these19
systems can significantly improve the mobility of transit vehicles in urban signalized networks,20
they have several shortcomings. First, the use of unconditional priority in signal control systems21
is most appropriate for safety reasons (e.g., rail preemption or emergency vehicles). Giving strict22
priority to transit vehicles ignores the rest of the traffic on the road, and can have deleterious effects23
on overall system wait times and throughput. Second, in circumstances with competing priority24
requests, the adverse effects to overall traffic flow are compounded by a basic first come, first serve25
policy. Third, special priority needs only be given to buses when they are running behind schedule.26

One way to address these shortcomings is to consider a better model of transit vehicle27
behaviors in the broader context of real-time traffic signal control, and attempt to factor in other28
traffic flows when optimizing bus movements. A step in this direction has been taken recently29
in (1) where bus priority is considered together with vehicle platoon “coordination” priority to30
make real-time phase change decisions. However, this scheme assumes a specification of the31
relative importance of different priority requests, and hence still gives strict preference to higher32
priority requests. We believe that a weighted priority scheme, such as that employed in the adaptive33
traffic signal control strategy of the Surtrac system (2, 3) can provide an alternative basis for34
optimizing the movements of buses that does not require strict stratification of priority requests.35
Priority is most often based on vehicle delay, but the fullness of a transit vehicle could allow its36
weight (priority) to be based on person delay instead. This approach is capable of better balancing37
competing traffic flows (e.g., should a bus always have priority over a vehicle platoon, regardless38
of platoon size?), particularly in dense transit areas where the needs of competing transit vehicles39
must be balanced.40

To model the movement of transit vehicles, reliable prediction of dwell times is essential.41
While transit vehicles differ in other ways from passenger vehicles, such as slower acceleration42
and lower maneuverability, the frequency of stops and the length of those stops are what most set43
transit vehicle trajectories apart from smaller passenger vehicles. Dwell times — the length of44
time a transit vehicle is stopped to unload and load passengers — are determined by many factors,45
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such as: the number of passengers boarding or alighting, the types of passengers (handicapped1
passengers often require more time), or the way a passenger pays for their trip (cash payments2
require longer dwell times than smart cards or off-board payment). In trying to predict dwell3
times, we must first understand the statistical properties of dwell times in order to determine the4
feasibility of taking this approach to multi-modal traffic signal control.5

In this paper, we take the first step toward developing a dwell time model for the purpose of6
predicting bus arrival times, by analyzing trends in automatic vehicle location (AVL) data. Using7
data provided by the Port Authority of Allegheny County (PAAC) collected over the two year pe-8
riod from September 2012 – August 2014, we consider two major bus routes, focusing on a segment9
of the route through a corridor of interest where both a vehicle-to-infrastructure (V2I) communi-10
cations testbed using dedicated short-range commuication (DSRC) and the Surtrac adaptive traffic11
signal control system are currently deployed. Ultimately, a system to incorporate bus movement12
prediction into Surtrac is envisioned, using DSRC as a mechanism to detect bus locations.13

This paper is organized as follows. First, we present a review of related literature. We then14
describe the transit AVL dataset and present analysis of the data. A more thorough look at how15
this analysis could be incorporated into a real-time, model-based optimization approach to traffic16
signal control is presented, along with other potential applications of the analysis in this paper.17
Finally, we present some conclusions.18

LITERATURE REVIEW19
Transit bus dwell time is defined as the duration a transit vehicle is stopped for serving passen-20
gers, including the time needed to open and close passenger doors (4). It is widely accepted that21
bus dwell times play an instrumental role in transit operations (5). Widespread implementation22
of automatic passenger counting (APC), automatic fare counting (AFC), and automatic vehicle23
location (AVL) systems data provide a basis for rich statistical insights into dwell times. Even24
though dwell times are highly correlated with the number of passengers boarding and alighting,25
secondary factors such as crowding or fare type (e.g., card vs cash) may also have a large effect26
on dwell times. Transit operators are interested in understanding bus dwell times with an intention27
of coming up with better strategies to improve service. Hence, previous research efforts on dwell28
time prediction models have focused on the factors influencing average dwell times (6–12). Vari-29
ous approaches such as regression models (13), probabilistic approaches (14), decision trees (11),30
or time series models (15) have been studied to compute the bus dwell time, though not always31
using information available during real-time operations. A model for the computation of the bus32
dwell times based on information available in real-time was published in (16) as a part of a study33
devoted to the computation of bus arrival and departure times. A prediction model was developed34
using Kalman filters for passenger arrival rate and the headway, where headway corresponds to35
the actual arrival time of the last bus minus the predicted arrival time of the next bus. Algorithms36
employ historical data over several days as well as the data from the previous bus. More recent37
work inspired by this model in (17) developed a basis for predicting the number of boarding and38
alighting passengers, based on historical data and the information of the previous bus on the cur-39
rent day, and these predictions were then used together with crowding effects to compute the bus40
dwell time. Evaluation in both studies (16, 17) was completed using AVL and APC data from just41
a few days, where one set of days (four days in (16), two days in (17)) were used for the model42
calibration and the performance evaluation was completed using the data of the last day.43

Transit signal priority (TSP) has been studied in the United States since the 1970s (18). A44
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recent review of TSP is available at (19). Various studies (20–22) have investigated the problem1
of priority from the standpoint of giving spatial priority for buses (e.g., design of bus lanes), while2
other studies (23, 24) have focused on optimal detector placement for TSP. There are numerous3
studies (25–31) that explore various control strategies for TSP. Recent studies on TSP proposed4
strategies using connected vehicle technology (32, 33) and demonstrated the advantages of real-5
time information. Most recently, Ding et al. (34) strives to integrate bus dwell times into transit6
signal priority. While this is an interesting study, the authors’ dwell time prediction model is based7
on only three days of video detection and station survey data.8

APPLICATION CONTEXT9
As mentioned earlier, the analysis of bus dwell times described in this paper is part of a larger10
effort aimed at incorporating knowledge of buses into the real-time adaptive signal control strategy11
of the Surtrac system and using this information to optimize bus movements in an integrated way.12
Surtrac takes a decentralized, online planning approach to intersection control. In brief, each in-13
tersection senses its approaching traffic and (in real-time) constructs a phase schedule (i.e., timing14
plan) that moves approaching traffic through the intersection with minimal cumulative wait time.15
The head of this phase schedule is executed in rolling horizon fashion and its tail is recomputed16
and extended every few seconds. Each time a new phase schedule is generated, expected outflows17
are communicated to downstream neighbors, providing an expectation of what traffic is coming18
behind current locally sensed traffic, thus enabling coordinated activity at the network level. In its19
initial 9-intersection deployment in the East Liberty area of Pittsburgh PA, Surtrac achieved sub-20
stantial reductions in travel times (25%), wait times (40%), and emissions (projected at 20%) (2).21
This deployment has subsequently been expanded several times and Surtrac currently controls a22
network of 50 interconnected intersections. Dedicated short-range communication (DSRC) road23
side equipment (RSE) units were installed at 24 intersections during the most recent expansion24
of the system to provide a test bed for integrating Surtrac adaptive signal control with connected25
vehicle technology. One initial focus is to equip some number of buses that move through this test26
bed corridor with DSRC on board units (OBUs) and exploit real-time mode information to move27
buses more effectively.28

Surtrac’s intersection scheduling approach provides a natural basis for exploiting real-time29
mode information to give active attention to bus movements. The key to its online planning effec-30
tiveness is its formulation of the intersection control problem as a special type of “single-machine”31
scheduling problem (3). Detected approaching traffic is aggregated into sequences of clusters32
(queues and platoons), which preserves the non-linear nature of traffic flows while allowing ef-33
ficient (sub-second) computation of long horizon schedules. This scheduling model can be aug-34
mented in two ways to account for and optimize bus movements. First, mode information can be35
incorporated into the aggregate cluster representation and used together with knowledge of bus36
stop locations and dwell time information to more accurately project when a bus (and those vehi-37
cles traveling behind it) will actually arrive at the intersection; this information alone can lead to38
signal control decisions that improve bus movements. Second, clusters can also be weighted by39
mode, to give preference to clusters that contain buses without unconditionally favoring them.40

TRANSIT DATA41
As a first step toward developing and utilizing dwell time information to more accurately predict42
when traffic clusters will arrive at the intersection, this paper analyzes trends in AVL data provided43
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FIGURE 1 Surtrac Connected Vehicle Test Bed

by the Port Authority of Allegheny County (PAAC) for the period from September 2012 – August1
2014 for two major bus routes - 71A and 71C - that travel through the Surtrac connected vehicle test2
bed corridor. The test bed corridor and bus routes are depicted in Figure 1. These data are recorded3
for weekdays, and each record corresponds to one bus stopping. The information recorded in4
each record includes the route (e.g., 71A), the direction of the trip (inbound directs to downtown,5
outbound from downtown), trip identification by start time and date of the trip, and the bus stop6
(identified by the unique PAAC identification number and the sequential stop number is assigned7
to each bus stop in the trip). There is also a bus dwell time, specified as a difference between door8
open and door close times.9

Of course there are various artifacts in real-life data. We were not able to obtain August10
2013 and November 2013 data; hence our seasonal trend analysis relies on three other months11
(February, July, and October). There was a small fraction of the data marked as invalid bus stops12
for the route, which was deleted from the data set used. The name of one bus stop used in our13
study was changed over the lifetime of the data, so we standardized on the older name which was14
present in most files (i.e., Centre Ave at Craig St NS is now called Craig St at Centre Ave FS). Data15
were missing for some sequential stop numbers (see for example the sequential stop number 23 in16
Figure 2a) implying that a small portion of bus stops is changing over the years (and the sequential17
stop number may change for the given PAAC number).18

We restrict our analysis here to inbound trips only, i.e., the buses toward Downtown Pitts-19
burgh. One set of graphs shows the data for all day (see Figure 6); the remaining graphs show the20
data for the morning rush hours from 7 am to 10 am. In this latter case we included those records21
where the bus arrival time was within this specified interval. Finally, we only analyze bus dwell22
times ≤ 100 seconds and discard any outliers for better presentation, since these outliers are likely23
not regular stops (likely layovers, breakdowns, etc.). Information about the number of records for24
each route 71A and 71C trip in the inbound direction is given in Table 1. Included is the total25
number of records and percentages of used and removed records for both all day and 7 – 10 am.26
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TABLE 1 The total number of records for routes 71A and 71C inbound and percentages of
used and removed records for all day and morning peak.

All day 7 – 10 am

# total % used % removed % used % removed

71A 995,709 98.71 1.29 21.80 0.29

71C 1,024,518 98.75 1.25 20.73 0.27

DATA ANALYSIS1
In the subsections below we analyze several aspects of the dwell time information provided by2
PAAC. The first set of analyses focuses on seasonal variations in dwell times: the purpose of this3
analysis is to understand whether statistical properties of dwell times are similar or significantly4
different from year to year for a given season. Next, we present cumulative density functions5
(CDFs) of dwell times for stops within the connected vehicle test-bed; we draw some conclusions6
with respect to reliability of dwell times based on CDFs stability. Lastly, we present trends in dwell7
times over the course of the day. This information is useful especially to understand time of day8
trends in transit ridership.9

Longitudinal analysis of dwell times10
Bus dwell times are often affected by seasonal variations. In cold weather climates, ridership11
patterns look different during the summer and winter. In cities with large student populations,12
ridership changes drastically during the school year. The question is, whether or not the statistical13
properties of dwell times remain the same for a given month year to year. For the purpose of this14
analysis we considered February 2013 and 2014 peak-hour route 71C inbound data. Even though15
our main focus is on understanding the dwell time distributions in our connected vehicle test-bed,16
it is useful to look at these distributions for all the stops in the route and Figure 2 summarizes17
the descriptive statistics of dwell times for each bus stop. It contains two subplots; each subplot18
presents standard box plot for the dwell times for each bus stop; small red squares represent average19
dwell times, whereas red circles represent median values for dwell times. The values within the20
box represent values within inter-quartile range, and blue diamond markers represent outliers (data21
that are not within the range of 5 – 95% are considered outliers). Several observations can be made22
from these plots. First, for bus stops in the connected vehicle corridor (from Negley Ave at #370 to23
Centre Ave at Craig St), the distribution of dwell times for the years 2013 and 2014 look similar.24
Kolmogorov-Smirnov (KS) tests were performed to check for any statistical differences in these25
distributions and Table 3 summarizes these results; test results suggest that at 95% confidence26
interval, these distributions are in fact similar. Second, the dwell times are very low for stops in27
Uptown. Since Uptown has a smaller population and few employers, it makes sense that dwell28
times would be lower as not many people board the bus there in the morning. Similar analysis is29
conducted for two other seasons (Summer and Fall) and the results suggest that statistical properties30
of dwell times stay similar for most stops year to year and for a given season. Given the similarities31
in statistical trends, it is reasonable to join the data for the same season (or month) across years.32
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TABLE 2 Results of Kolmogorov-Smirnov tests for route 71C in inbound direction, 7:00 –
10:00

February July October

Stop 2013 vs. 2014 2012 vs. 2013 2012 vs. 2013

max crit max crit max crit

Negley Ave at #370 0.080 0.481 0.094 0.555 0.032 0.480

Negley Ave at Centre Ave 0.092 0.267 0.053 0.272 0.009 0.257

Centre Ave at Graham St 0.071 0.351 0.054 0.430 0.037 0.377

Centre Ave at Aiken Ave 0.046 0.284 0.033 0.284 0.061 0.262

Centre Ave opp Shadyside hos. 0.123 0.481 0.028 0.453 0.004 0.453

Centre Ave at Cypress St 0.016 0.430 0.083 0.430 0.175 0.430

Centre Ave at Morewood Ave 0.091 0.297 0.023 0.340 0.073 0.297

Centre Ave at Millvale Ave 0.006 0.321 0.000 0.340 0.031 0.321

Centre Ave opp Neville St 0.096 0.377 0.043 0.453 0.069 0.351

Centre Ave at Melwood Ave 0.095 0.363 0.058 0.410 0.106 0.363

Centre Ave at Craig St Ns 0.072 0.321 0.051 0.340 0.023 0.312

The next sub-analysis highlights the likelihood that a bus will dwell at a given bus stop.1
Figure 3 summarizes these results. It contains two subplots; each subplot contains comparative bar2
graph of total observed records per stop (red) and a subset of those records with non-zero dwell3
times (light green). Probability of a bus stopping at a bus stop is the ratio of number of records4
with non-zero dwell times and the total number of observed records. Subplots a and b present the5
results for February 2013 and February 2014 respectively. As one might notice, there is a higher6
probability that the bus might stop in the connected vehicle corridor, Oakland, or Downtown and7
that probability a bus stops in Uptown is low. What this really means is that a bus need not stop at8
every stop, and the locations where it stops more frequently also have higher activity of passengers9
boarding and alighting the bus. Therefore one can argue the deleterious affects that a given bus has10
at a given bus stop needs to be taken into consideration before giving it an undue priority.11

Cumulative density functions of dwell times12
Next, we take a closer look at the trends in dwell time distributions for the intersections in the13
connected vehicle test-bed. The corridor starts at Negley Ave at #370, located just north of the14
intersection of Negley Ave with Baum Boulevard, and ends at Centre Ave at Craig Street, prior to15
turning left on Craig Street. A bus passes through 10 intersections on this portion of the corridor,16
and there are 11 possible bus stops (one stop, Centre Ave opposite Shadyside Hospital, is mid-17
block). AM peak hour data from three months (each representative of a season) is considered for18
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TABLE 3 Results of Kolmogorov-Smirnov tests for routes 71A and 71C in inbound direction,
7:00 – 10:00. Both years are joined for each route.

February July October

Stop 71A vs. 71C 71A vs. 71C 71A vs. 71C

max crit max crit max crit

Negley Ave at #370 0.010 0.453 0.085 0.514 0.040 0.453

Negley Ave at Centre Ave 0.072 0.241 0.069 0.237 0.022 0.227

Centre Ave at Graham St 0.006 0.330 0.064 0.363 0.034 0.330

Centre Ave at Aiken Ave 0.061 0.248 0.031 0.248 0.008 0.233

Centre Ave opp Shadyside hos. 0.026 0.410 0.063 0.393 0.028 0.377

Centre Ave at Cypress St 0.053 0.377 0.079 0.363 0.053 0.340

Centre Ave at Morewood Ave 0.045 0.267 0.003 0.297 0.025 0.262

Centre Ave at Millvale Ave 0.016 0.278 0.056 0.304 0.004 0.278

Centre Ave opp Neville St 0.084 0.312 0.136 0.363 0.089 0.321

Centre Ave at Melwood Ave 0.069 0.321 0.110 0.330 0.043 0.297

Centre Ave at Craig St Ns 0.075 0.278 0.016 0.272 0.089 0.267

the analysis. February, July and October were chosen as representative months for winter, summer1
and fall respectively. The 71A and 71C buses share exactly the same route on this section of the2
corridor and the remainder of the route toward Downtown. Since these two buses are essentially3
interchangeable during this section of their routes, it makes sense to join these two data sets as long4
as the dwell time distributions of the 71A are statistically similar to those of the 71C for each bus5
stop in the corridor. Again, Kolmogorov-Smirnov (KS) tests were performed at 95% confidence6
interval to check for any statistical differences in these distributions; As summarized in Table 3, a7
total of 66 KS tests were performed (given that there are a total of eleven stops and three different8
months). Test results suggest that these distributions are in fact similar. Therefore, these two data9
sets were combined for the purposes of subsequent analysis.10

Figure 4 presents cumulative density functions (CDFs) of dwell time distributions for three11
different months (each representative of a season). It contains three subplots, one for each month.12
The distributions with curves furthest to the left have smaller variance in dwell time distributions13
and hence are more reliable. The following inferences can be drawn from these plots. First, for14
all three seasons dwell time distributions have the largest variance at Negley Ave at Centre Ave15
(CDF in red), followed by Centre Ave at Aiken Ave (CDF in blue) and Centre Ave at Morewood16
Ave (CDF in cyan). The combination of college student apartments, a large grocery store, and17
one of the main cancer hospitals in the region results in many transit passengers at these three18
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intersections. Second, dwell time distributions have slightly larger variation during the school year1
(February and October) as opposed to summer (July). Third, as one might expect, the bus stops2
with larger variations in dwell times also have a high probability of stopping for a given bus (please3
refer to Figure 3). This information is useful for transit system planners for assess reliability of4
dwell times at various stops.5

Figure 5 presents cumulative density functions (CDFs) of dwell time distributions for three6
different bus stops for the AM peak in fifteen minute intervals. It contains three plots: subplot7
(a) presents distribution of dwell times for Negley Ave at Centre Ave; subplots (b) and (c) present8
similar results but for Centre Ave at Aiken Ave and Centre Ave opposite Shadyside Hospital stops9
respectively. Each plot in turn contains three subplots, one for each month. Again as mentioned10
earlier, the lowest variance in dwell time is reflected by the curves furthest to the left. The purpose11
of presenting these plots is not to make an inference about which fifteen minute window one needs12
to pay more attention to but to illustrate the variance in dwell times. Given these distributions of13
dwell times, an ordinary linear regression-based predictive model might not be the best choice.14

Trends in dwell times over a day15
Finally, we take a closer look at the trends in dwell time distributions during the course of the day.16
The same three bus stops were considered in this analysis, using February (2013 & 2014) dwell17
time distribution data for bus routes 71A and 71C. Typically, bus service starts at 5:30 AM and18
ends around midnight, so data were binned into 15 minute intervals for this duration of time. Fig-19
ure 6 summarizes the descriptive statistics of dwell times for each fifteen minute time window. It20
contains three subplots; each subplot presents standard box plot for the dwell times for each fifteen21
minute window; small red squares represent average dwell times, whereas red circles represent22
median values for dwell times. The values within the box represent inter quartile range, and blue23
diamond markers represent outliers (data that is not within the range of 5 – 95% is considered an24
outlier). Subplots a, b and c present the results for the bus stops at Negley Ave at Centre Ave,25
Centre Ave at Aiken Ave, and Centre Ave opposite Shadyside Hospital respectively. The following26
inferences can be drawn from these plots. First, the bus stop at Negley Ave at Center Ave has, in27
general, high average and median dwell times throughout the day. Trends during the AM peak can28
be attributed to college students commuting to classes. Higher dwell times observed in other time29
periods can be attributed to people boarding the bus after finishing grocery shopping at the large30
grocery store present at the corner of this intersection. Second, the bus stop at Centre Ave at Aiken31
Ave has high average and median dwell times during the AM peak (again this can be attributed to32
students commuting to Oakland). Third, the bus stop at Centre Ave opposite Shadyside Hospital33
has lower average and median dwell times than the other two bus stops. Slightly higher average34
dwell times between 15:00–16:00 may be explained by a shift change at the hospital across the35
street.36

Note on choice of statistical models37
As mentioned earlier, reliable prediction of bus dwell times plays an instrumental role in mul-38
timodal traffic signal control. Historically, bus dwell times are modeled as a function of load,39
number of boarding, and alighting of the passengers. More specifically, previous research efforts40
have focused on understanding factors that affect dwell times in order to analyze existing transit41
operational strategies. Therefore, most efforts used fixed effects regression models to understand42
these relationships. While such type of modeling is helpful to understand the average trends, it43
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might not be very effective for use in real-time operations for the following reasons: First, dwell1
times are typically positive numbers; ordinary linear regression may not be the best choice unless2
these times are first transformed in a way that removes this restriction. Second, ordinary linear re-3
gression methods solely focus on understanding how the expectations of an outcome (also known4
as dependent) variable Y depends on one or more predictors (also known as independent variables,5
regressors or covariates) X. In other words, these models mainly concern themselves with explor-6
ing the nature of relationship between Y and X (e.g., linear or quadratic) and how well regressors7
can explain the variance in Y. Furthermore, here Y is modeled as a random variable whereas X are8
treated as fixed variables i.e., these variables are assumed to be measured without measurement9
error. However, this assumption does not typically hold in the context of real-time signal control.10
For example, the number of boarding and alighting of passenger information will be erroneous11
under the scenarios of high level crowding on-board or when the sensors are misaligned. So any12
regression model that treats X as fixed variables will likely predict highly erroneous dwell times.13
In that sense, any predictive dwell time distribution model should treat independent variables as14
random or stochastic regressors. Therefore, special attention needs to be paid while choosing an15
appropriate dwell time model for real-time operations.16

APPLICATIONS17
As mentioned earlier, the analysis of bus dwell times presented in this paper is part of a larger effort18
aimed at incorporating knowledge of buses into real-time adaptive signal control strategy such as19
Surtrac. However, reliable bus dwell time information has much broader applicability.20

Bus dwell time data is immensely useful for transit system planners and schedulers. Transit21
planners have the responsibility for determining where major improvements are needed, where the22
buses should go, and how much service should be provided. In that regard, a service planner23
wants to determine which routes in the system have the poorest reliability (or in other words, the24
most variability in on-time performance) at the stops. This information is a useful supplement to25
passenger demand analysis when designing express bus routes.26

On the other hand, a Transit scheduler is interested in generating reliable bus schedules.27
In transit scheduling it is not so much the travel time that matters, but the reliability of the travel28
time. The objective is to build schedules that can actually be followed. Otherwise, the bus drivers29
cannot make the stops at the scheduled times. Riders too cannot get to their destinations at the30
times listed in the schedule and there is a possibility that they might miss their transfers. Hence,31
the published schedule has no value. More often than not, dense urban networks have a deleterious32
affect on transit travel times. In that sense, reliable dwell time prediction can play an instrumental33
role not only in better managing traffic but also giving priority to buses (when required) to improve34
reliability of transit schedules.35

Finally, a better understanding of dwell time information can enable the development of36
more sophisticated Transit Signal Priority (TSP) systems. An understanding of probability of37
stopping information at various bus stops will enable more targeted and cost-effective TSP system38
deployments. Even further, more accurate characterization of bus dwell times, together with real-39
time communication of mode and schedule information, will promote the development of TSP40
systems that are capable of conditioning bus priority on whether buses are ahead of or behind41
schedule.42



Isukapati, Rudová, Barlow, Smith 11

CONCLUSIONS1
In this paper, we present some of our findings on statistical properties of bus dwell times based on2
Pittsburgh Port Authority’s AVL transit data spanning from September 2012 - August 2014. For3
the purpose of this analysis, we considered inbound AM peak hour (7:00 – 10:00 AM) data for a4
bus route that goes through our connected vehicle testbed. The following inferences are drawn5
based on our analysis: first, the statistical properties of dwell times are similar (for most stops)6
across years for a given season and hence it is fine to join the data for the same season (or month)7
across years. Second, the probability of a non-zero dwell time varies from stop to stop in a given8
route suggesting that buses need not be given the same priority at different signalized intersections.9
Third, cumulative density functions (CDFs) of dwell time distributions do provide insights into10
reliability of dwell times for a given stop; this information is especially useful in real-time control11
decisions; Fourth, fifteen minute interval dwell time CDFs of peak hour demonstrate the highly12
stochastic nature of dwell times. Fifth, we presented trends in dwell times over a day and how they13
are influenced by factors like student housing, market district etc. Finally, based on these trends,14
we argued that a useful predictive dwell time distribution model must treat independent variables15
as random or stochastic regressors. In future work we intend to explore the efficacy of Bayesian16
random effect modeling techniques for bus dwell time prediction and field test the efficacy of those17
models in our connected vehicle testbed.18
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FIGURE 2 Dwell times (less than 100 s), February 2013 (a) vs. February 2014 (b), route 71C
inbound, 7:00 – 10:00 AM.
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(b) February 2014 #records per stop #non-zero records per stop

FIGURE 3 Number of records and number of non-zero records (for dwell times less than
100 s), February 2013 (a) vs. February 2014 (b), route 71C inbound, 7:00 – 10:00 AM.
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FIGURE 4 Cumulative distribution function for dwell times (less than 100 s) for the corri-
dor, routes 71A+71C inbound, 7:00 – 10:00 am, February 2013+2014 (a), July 2013+2014 (b),
October 2012+2013 (c).
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(a) Negley Ave at Centre Ave
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(b) Centre Ave at Aiken Ave
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(c) Centre Ave opp Shadyside hospital

FIGURE 5 Cumulative density function for dwell times (less than 100 s), routes 71A+71C in-
bound, 7:00 – 10:00 am, left column: February 2013+2014, middle column: July 2013+2014,
right column: October 2012+2013, (a) top row: bus stop Negley Ave at Centre Ave, (b) middle
row: bus stop Centre Ave at Aiken Ave, (c) bottom row: bus stop Centre Ave opp Shadyside
hospital.
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(a) Negley Ave at Centre Ave
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(b) Centre Ave at Aiken Ave
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(c) Centre Ave opp Shadyside hospital

FIGURE 6 Dwell times (less than 100 s), February 2013+2014, routes 71A+71C inbound.


