Bus Dwell Time Prediction in Real Time

FI MU:

Hana Rudová, David Štípský, Vinh Quang Dang

Carnegie Mellon University, Pittsburgh, Intelligent Coordination and Logistics Laboratory: Stephen Smith et al.

Pittsburgh Smart City Vision

Current data study from Pittsburgh, USA

- Automated vehicle location (AVL) data
- Automated passenger counting (APC) data
- September 2012 August 2014 (September December 2014)
- The total number of records for routes 71A and 71C inbound
 - removed data: bus dwell time greater than 100 seconds

	All day			7 – 10 am	
	# total	% used	% removed	% used	% removed
71A	995,709	98.71	1.29	21.80	0.29
71C	1,024,518	98.75	1.25	20.73	0.27

Dwell times for route 71C, inbound, 7–10 am

Number of records and number of non-zero records for route 71C, inbound, 7–10 am

Current Sutrac connected vehicle testbed: corridor

Cumulative distribution function for dwell times for routes 71A+71C, inbound, 7–10 am

Dwell times for February 2013+2014 routes 71A+71C, inbound

Cumulative distribution function for dwell times for Center Ave at Aiken Ave stop, February 2013+2014 routes 71A+71C, inbound, 7–10 am

Important data about each bus stopping

- Direction of trip along route
- Bus model (number of seats, bus capacity)
- Day/Month/Year of run
- Stop sequential number (stops may differ over time)
- Stop ID
- Arrival Hour, Min, Second
- Departure Hour, Min, Second
- Observed number of passengers boarding
- Observed number of passengers alighting
- Number of passengers on bus
- Scheduled time if a time point

Analysis in real time

Historical data + data for previous bus

- Bus stop
- Month, (day,) time of day
- Dwell time
- Number of passengers on bus (crowding)
- Observed number of passengers boarding for previous bus
- Observed number of passengers alighting for previous bus

Related work

Offline prediction model

- regression models
 - linear regression based on the numbers of boarding and alighting passengers
- probabilistic models
- decision trees
- time series models

Prediction models in real time

- Kalman filters based on passenger arrival rate and headway
- prediction model for alighting/boarding passengers
 prediction model for bus dwell time based on that
- crowding effects