IA168 — Problem set 3

Problem 1 [7 points]

Consider this strategic-form game G:

	A_2	B_2	C_2
A_1	(x,x)	(26, -1)	(-20, -1)
B_1	(-1, 26)	(13, 13)	(-20, 26)
C_1	(-1, -20)	(26, -20)	(2x - 10, 2x - 10)

a) For x = 10, state (as explicitly as possible) the number of SPEs in the 10-stage game G_{10-rep} .

b) Find all $x \in \mathbb{R}$, $0 \le x \le 10$, for which the maximal outcome for player 1 in an SPE is as large as possible. Formally: find all $x \in [0, 10]$, for which $\sup\{u_1(s) \mid s \in SPE(G_{10\text{-}rep})\}$ is maximal. Explain your solution.

Problem 2 [5 points]

Consider this strategic-form game G:

$$\begin{array}{c|ccc} & A_2 & B_2 \\ \hline A_1 & (2,1) & (7,-1) \\ B_1 & (-2,6) & (x,y) \end{array}$$

Consider also strategy profile s':

$$s'_i(h) = \begin{cases} B_i & \text{if } h \in \{(B_1, B_2)\}\\ A_i & \text{otherwise} \end{cases}$$

Find all the pairs $(x, y) \in \mathbb{R}^2$ for which the minimal discount required for s' to be an SPE is equal to $\frac{3}{5}$. Formally: find all the pairs $(x, y) \in \mathbb{R}^2$ such that $\inf\{\delta \in (0, 1) \mid s' \text{ is SPE in } G_\delta\} = \frac{3}{5}$.

Problem 3 [8 points]

Consider " 3^{rd} price auction" as a game of incomplete information. The payoff of every player is 0, if their bid was not (strictly) highest, and their type minus the 3^{rd} highest bid, if they were the highest bidder. The bid is a nonnegative real number.

- a) Prove or disprove the existence of a weakly dominant strategy for player 1.
- b) Prove or disprove the existence of ex-post Nash equilibrium.

Now consider the "3rd price auction" as a Bayesian game, where the type of every player is uniformly distributed on interval $[0, v_{max}]$.

c) Prove that strategy profile s given by $s_i(t_i) = \frac{n-1}{n-2}t_i$ is a Bayesian Nash equilibrium.