PA153: Stylometric analysis of texts using machine learning techniques

Jan Rygl rygl@fi.muni.cz Couter Country of Jeformation Managel Unive

NLP Centre, Faculty of Informatics, Masaryk University

Dec 7, 2016

Stylometry is the application of the study of linguistic style.

Study of linguistic style:

- Find out text features.
- Define <u>author</u>'s writeprint.

Applications:

- Define the <u>author</u> (person, nationality, age group, ...).
- Filter out text features not usuable by selected application.

Examples of application:

• Authorship recognition

- Legal documents (verify the author of last will)
- False reviews (cluster accounts by real authors)
- Public security (find authors of anonymous illegal documents and threats)
- School essays authorship verification (co-authorship)
- Supportive authentication, biometrics (e-learning)
- Age detection (pedophile recognition on children web sites).
- author mother language prediction (public security).
- Mental disease symptons detection (health prevention)
- HR applications (find out personal traits from text)
- Automatic translation recognition.

Stylometry analysis techniques

- ideological and thematic analysis historical documents. literature
- **2** documentary and factual evidence inquisition in the Middle Ages, libraries
- Ianguage and stylistic analysis
 - - (3) manual (legal, public security and literary applications)
 - **3** semi-automatic (same as above)
 - **3** automatic (false reviews and generally all online stylometry applications)

Stylometry Verification

Definition

|--|

Stylometry

- decide if two documents were written by the same author category (1v1)
- decide if a document was written by the signed author category (1vN)

Examples

- The Shakespeare authorship question
- The verification of wills

The Shakespeare authorship question

Mendenhall, T. C. 1887. The Characteristic Curves of Composition. Science Vol 9: 237–49.

- The first algorithmic analysis
- Calculating and comparing histograms of word lengths

Oxford, Bacon Derby, Marlowe

http://en.wikipedia.org/wiki/File:ShakespeareCandidates1.jpg

Stylometry

Stylometry Attribution

Definition

- find out an author category of a document
- candidate authors' categories can be known (e.g. age groups, healthy/unhealthy person)
- problems solving unknown candidate authors's categories are hard (e.g. online authorship, all clustering tasks)

Examples

Anonymous e-mails

Stylometry

Authorship Attribution

Judiciary

- The police falsify testimonies Morton, A. Q. Word Detective Proves the Bard wasn't Bacon. Observer, 1976.
- Evidence in courts of law in Britain, U.S., Australia
- Expert analysis of courtroom discourse, e.g. testing "patterns of deceit" hypotheses

Stylometry

NLP Centre stylometry research

Authorship Recognition Tool

- Ministry of the Interior of CR within the project VF20102014003
- Best security research award by Minister of the Interior

Small projects (bachelor and diploma theses, papers)

• detection of automatic translation, gender detection, ...

TextMiner

- multilingual stylometry tool + many other features not related to stylometry
- authorship, mother language, age, gender, social group detection

Computional stylometry

Updated definition

techniques that allow us to find out information about the authors of texts on the basis of an automatic linguistic analysis

Stylometry process steps

- 1 data acquisition obtain and preprocess data
- **2** feature extraction methods get features from texts
- **3 machine learning** train and tune classifiers
- interpretation of results make machine learning reasoning readable by human

Data acquisition – collecting

Free data

- For big languages only
- Enron e-mail corpus
- Blog corpus (Koppel, M, Effects of Age and Gender on Blogging)

Manually annotated corpora

- ÚČNK school essays
- I FI MUNI error corpus

Web crawling

Data acquisition – preprocessing

Tokenization, morphology annotation and desambiguation

morphological analysis

je	byt	k5eAaImIp3nS	
spor	spor	k1gInSc1	
mezi	mezi	k7c7	
Severem	sever	k1gInSc7	
a	a	k8xC	
Jihem	jih	k1gInSc7	
<g></g>			
		kIx.	
<s desamb="1"></s>			
Jde	jit	k5eAaImIp3nS	

Selection of feature extraction methods

Categories

- Morphological
- Syntactic
- Vocabulary
- Other

Analyse problem and select only suitable features. Combine with automatic feature selection techniques (entropy).

Tuning of feature extraction methods

Tuning process

Divide data into three independet sets:

- Tuning set (generate stopwords, part-of-speech n-grams, ...)
- Training set (train a classifier)
- Test set (evaluate a classifier)

Word length statistics

- Count and normalize frequencies of selected word lengths (eg. 1–15 characters)
- Modification: word-length frequencies are influenced by adjacent frequencies in histogram, e.g.: 1: 30%, 2: 70%, 3: 0% is more similar to 1: 70%, 2: 30%, 3: 0% than 1: 0%, 2: 60%, 3: 40%

Sentence length statistics

- Count and normalize frequencies of
 - word per sentence length
 - character per sentence length

Stopwords

- Count normalized frequency for each word from stopword list
- Stopword \sim general word, semantic meaning is not important, e.g. prepositions, conjunctions, \ldots
- stopwords ten, by, člověk, že are the most frequent in selected five texts of Karel Čapek

Wordclass (bigrams) statistics

- Count and normalize frequencies of wordclasses (wordclass bigrams)
- verb is followed by noun with the same frequency in selected five texts of Karel Čapek

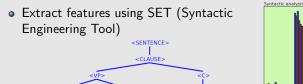
Morphological tags statistics

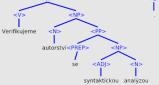
- Count and normalize frequencies of selected morphological tags
- the most consistent frequency has the genus for family and archaic freq in selected five texts of Karel Čapek

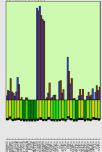
Word repetition

- Analyse which words or wordclasses are frequently repeated through the sentence
- nouns, verbs and pronous are the most repetetive in selected five texts of Karel Čapek

Syntactic Analysis







 syntactic trees have similar depth in selected five texts of Karel Čapek

Other stylometric features

- typography (number of dots, spaces, emoticons, ...)
- errors
- vocabulary richness

Features examples

Implementation

```
features = (u'kA', u'kY', u'kI', u'k?', u'k0',
   u'k1', u'k2', u'k3', u'k4', u'k5', u'k6',
   u'k7', u'k8', u'k9')
def document_to_features(self, document):
    """Transform document to tuple of float features.
   @return: tuple of n float feature values, n=|get_features|"""
    features = np.zeros(self.features_count)
    sentences = self.get_structure(document, mode=u'tag')
   for sentence in sentences:
        for tag in sentence:
            if tag and tag[0] == u'k':
                key = self.tag_to_index.get(tag[:2])
                if key: features[key] += 1.
   total = np.sum(features)
    if total > 0: return features / total
    else: return features
```


Tools

- use **frameworks** over your own implementation (ML is HW consuming and needs to be optimal)
- programming language doesn't matter, but high-level languages can be better (readability is important and performance is not affected – ML frameworks use usually C libraries)
- for Python, good choice is Scikit-learn (http://scikit-learn.org)

Machine learning tuning

- try different machine learning techniques (Support Vector Machines, Random Forests, Neural Networks)
- use grid search/random search/other heuristic searches to find optimal parameters (use cross-validation on train data)
- but start with the fast and easy to configure ones (Naive Bayes, Decision Trees)
- feature selection (more is not better)
- make experiments **replicable** (use random seed), repeat experiments with different seed to check their performance
- always implement a **baseline** algorithm (random answer, constant answer)

Machine learning tricks

Replace feature values by ranking of feature values

Book:

long coherent text

Blog:

medium-length text

E-mail:

short noisy text

- Different "document conditions" are considered
- Attribution: replace similarity by ranking of the author against other authors
- Verification: select random similar documents from corpus and replace similarity by ranking of the document against these selected documents

Interpretation of results

Machine learning readable

Explanation of ML reasoning can be important. We can

- not to interpret data at all (we can't enforce any consequences)
- use one classifier per feature category and use feature categories results as a partially human readable solution
- 3 use ML techniques which can be interpreted:
 - Linear classifiers each feature f has weight w(f) and document value val(f), $\sum_{f \in F} w(f) * val(f) \ge threshold$
 - Extensions of black box classifiers, for random forests https://github.com/janrygl/treeinterpreter
- g use another statistical module not connected to ML at all

Performance (Czech texts)

Balanced accuracy: Current (CS) \rightarrow Desired (EN)

Verification:

- books, essays: 95%
 ightarrow 99%
- $\bullet\,$ blogs, articles: 70 $\%\,\rightarrow\,90\,\%$
- Attribution (depends on the number of candidates, comparison on blogs):
 - $\bullet\,$ up to 4 candidates: 80 $\% \rightarrow$ 95 $\%\,$
 - $\bullet\,$ up to 100 candidates: 40 $\% \rightarrow 60\,\%$

Clustering:

• the evaluation metric depends on the scenario (50–60 %)

I want to try it myself

How to start

- Select a problem
- Collect data (gender detection data are easy to find crawler dating service)
- Preprocess texts (remove HTML, tokenize)
- Write a few feature extraction methods
- Use a ML framework to classify data

I want to try it really quick

Quick start

Style & Identity Recognizer
https://github.com/janrygl/sir.

- In development, but functional.
- Contains data from dating services.
- Contains feature extractors.
- Uses free RFTagger for morphology tagging.

Development at FI

TextMiner

- more languages,
- more feature extractors,
- more machine learning experiments,
- better visualization,
- and much more

⁷ Thank you for your attention

