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Abstract

Cyanobacteria are phototrophic microorganisms of global importance and have recently attracted increasing

attention due to their capability to convert sunlight and atmospheric CO2 directly into organic compounds, including

carbon-based biofuels. The utilization of cyanobacteria as a biological chassis to generate third-generation biofuels

would greatly benefit from an increased understanding of cyanobacterial metabolism and its interplay with other

cellular processes. In this respect, metabolic modelling has been proposed as a way to overcome the traditional trial

and error methodology that is often employed to introduce novel pathways. In particular, flux balance analysis and

related methods have proved to be powerful tools to investigate the organization of large-scale metabolic
networks—with the prospect of predicting modifications that are likely to increase the yield of a desired product

and thereby to streamline the experimental progress and avoid futile avenues. This contribution seeks to describe

the utilization of metabolic modelling as a research tool to understand the metabolism and phototrophic growth of

cyanobacteria. The focus of the contribution is on a mathematical description of the metabolic network

of Synechocystis sp. PCC 6803 and its analysis using constraint-based methods. A particular challenge is to

integrate the description of the metabolic network with other cellular processes, such as the circadian clock,

the photosynthetic light reactions, carbon concentration mechanism, and transcriptional regulation—aiming at

a predictive model of a cyanobacterium in silico.

Key words: Ecosystems biology, flux balance analysis (FBA), network reconstruction, photosynthesis, quantitative modelling,

systems biology.

Introduction

Cyanobacteria are phototrophic microorganisms and the

only known prokaryotes capable of oxygenic photosynthe-

sis. Having evolved possibly as early as 3.5 billion years ago
(Des Marais, 2000), cyanobacteria are of global importance

for almost all geochemical cycles and had profound impact

on life on Earth. Today, cyanobacteria are still responsible

for a significant fraction of global primary productivity and

remain major players in global oxygen supply, carbon

sequestration, and nitrogen fixation.

From a metabolic perspective, cyanobacteria are highly

versatile organisms and occupy almost every environment
where light is available. Renewed attention on the organiza-

tion of cyanobacterial metabolism is driven by their

capability to convert sunlight and atmospheric CO2 directly

into carbon-based compounds, therefore providing an op-

portune biological chassis to generate third-generation bio-

fuels (Atsumi et al., 2009; Ducat et al., 2011; Hess, 2011;
Quintana et al., 2011). Indeed, biofuels derived from

cyanobacteria offer several potential advantages, as com-

pared with fuels derived from land-based plants or other

renewable sources. Cultivation of cyanobacteria does not

require large amounts of arable land and is therefore not in

direct competition with agricultural food production. Rather,

cyanobacteria can be grown in large quantities relying only

on water, including salt water, some minerals, CO2, and
sunlight. Several cyanobacteria also possess the capability to

fix atmospheric nitrogen, with the potential to reduce costs of

fertilizer that may otherwise significantly affect the economic
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and energetic feasibility of biofuel production from algae and

other organisms.

Most successful efforts to modify cyanobacterial metabo-

lism currently rely on a trial-and-error methodology to

introduce novel pathways and to increase the yield of

desired products (Atsumi et al., 2009; Bandyopadhyay

et al., 2010; Liu et al., 2011). In this respect, one of the

promises of Systems Biology is that computational model-
ling will allow the prediction of targeted modifications of

metabolism, with the potential to streamline the experimen-

tal progress and to avoid futile avenues. While the question

of whether Systems Biology can live up to its expectations is

still open, large-scale models of cellular metabolism are

indeed increasingly predictive and allow anticipation of

beneficial modifications within the metabolic networks of

many organisms. In particular, flux balance analysis (FBA),
and related methods, have proven to be powerful tools to

understand the organization of large-scale metabolic net-

works (Orth et al., 2010; Sweetlove and Ratcliffe, 2011).

This contribution seeks to provide an overview on

existing modelling strategies of the metabolic network of

phototrophic cyanobacteria. In the first section, a brief

introduction to metabolic modelling is given and a hierarchy

of descriptions is introduced that is suitable to represent
metabolic networks and pathways. Subsequently, a stoichio-

metric model of the unicellular cyanobacterium Synechocystis

sp. PCC 6803 is described, including applications of FBA,

and several caveats and pitfalls in the process of reconstruct-

ing metabolic networks are discussed. The final section

provides an outlook on the integration of different cellular

processes within a common modelling framework, towards

a cyanobacterial cell in silico.

Computational models of metabolism

Computational modelling is increasingly recognized as an
expedient research tool to understand the organization of

biological systems. Nonetheless, the methods and practices

of mathematical modelling are highly diverse and no single

methodology alone is able to cover the diverse temporal and

spatial scales observed in biological systems. Therefore, the

future of modelling resides in the utilization of a combina-

tion of methods, each suited to describe a particular aspect

of biological reality—giving rise to the challenge to combine
these diverse conceptual and computational pictures into

a coherent whole.

Common to almost all methods of modelling is that they

seek to translate a given biological process into a formal

language. According to the view put forward here, this

translation of biological reality into the mathematical realm

serves two distinct purposes (Steuer and Junker, 2009;

Steuer, 2011): first, the translation of an assumed functional
interaction into a mathematical representation allows

researchers to communicate knowledge in a way that is not

possible by mere verbal description. Paradigmatic examples

are already provided by simple enzyme kinetics for which

the formulation of models allows communication of com-

plex patterns of interactions with only a few parameters. By

describing assumed molecular mechanisms, such as compet-

itive inhibition, using a mathematical representation allows

other researchers to contrast their own results in a precise

and well-defined way. Secondly, once the interactions

underlying a biological process are cast into a mathematical

form, mathematical theory and computational methods

provide powerful tools to predict the emergent outcome of
any particular set of interactions—again significantly sur-

passing the scope of human intuitive reasoning. A paradig-

matic example is the emergence of oscillatory behaviour in

biochemical reaction networks. Once translated into an

appropriate mathematical representation, the answer to the

question of whether a given reaction mechanism allows for

sustained oscillations is little more than a technical formal-

ity. Mathematical modelling therefore allows the study of
the consequences and outcomes of assumed interactions

using computational or analytical techniques. As will be

emphasized below, both of these aspects stand on their own

and are equally important to understand the functioning of

biological systems. Importantly, the use of a mathematical

language, in the sense outlined above, does not pre-suppose

or require trueness of the mathematical description.

While most techniques of modelling apply in a similar
way to a variety of cellular processes, the focus of this

review is foremost a description of models of cyanobacterial

metabolism. In many aspects, metabolic networks of pro-

karyotic organisms are specifically suited for computational

modelling. This advantage can be attributed to three

characteristics that distinguish most prokaryotic metabolic

networks from other networks of cellular interactions

(Steuer, 2011): first, the function of many biochemical
pathways resides in the mass transfer and synthesis of

metabolic compounds. This fact can be exploited to resolve

the topological organization of metabolic networks, for

example by isotopic labelling techniques. In contrast,

a similar technique that is able to trace functioning path-

ways does not exist for cellular information processing

networks. Likewise, biochemical reaction networks are

subject to constraints with respect to physicochemical and
thermodynamic feasibility. Correspondingly, the topology

of central metabolism is reasonably well understood, at

least for many prokaryotic organisms. Secondly, the modes

of action of the building blocks of metabolic networks,

enzymes that catalyse biochemical reactions, have been

studied for more than a century. Most enzymes are

reasonably well described by conventional chemical kinetics

and their action can often be replicated in vitro. Therefore,
the local dynamics of enzymatic reactions are reasonably

well understood. Thirdly, and probably most important, the

metabolic network of prokaryotic organisms can usually be

assigned a well-defined functionality, namely the synthesis

of cellular building blocks to support cellular growth and

the provision of ATP and other ‘currency metabolites’ for

cellular maintenance (Ibarra et al., 2002; Lewis et al., 2010).

These rather clear-cut objectives of metabolic pathways
form the basis of the success of the various optimization

techniques applied to large-scale metabolic networks.
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Although there are several caveats with respect to the

arguments outlined above, a known topology, reasonably

well understood modes of local action, and a clear-cut

functionality offer a good starting point for the construc-

tion of models of cellular metabolism.

A hierarchy of computational description

In practice, metabolic models take a variety of forms and

no single computational methodology is able to describe all

possible aspects of metabolic functioning (Steuer and
Junker, 2009). Rather, a hierarchy of mathematical de-

scription or frameworks exists, each with particular

strengths and weaknesses. An overview is given in Fig. 1.

Currently, there is a dichotomy between small-scale

models, usually involving a high level of detail with respect

to the interacting compounds on the one hand and large-

scale models of cellular networks on the other hand.

Located on the right side within the continuum shown in
Fig. 1 are detailed kinetic models of cellular pathways.

Detailed kinetic models are usually implemented as a set of

ordinary differential equations for all biochemical com-

pounds within a pathway. Typically, the construction of

such models makes use of aggregated biochemical rate laws,

such as Michaelis–Menten kinetics, to describe biochemical

interconversions of compounds. Multiple repositories and

simulation tools exist that allow on- and offline analysis of
kinetic models (Olivier and Snoep, 2004; Hoops et al., 2006;

Machné et al., 2006; van Gend et al, 2007; Li et al., 2010).

However, the availability of detailed kinetic models of

cellular pathways, in particular for cyanobacteria or other

phototrophic organisms, is still extremely limited. One

reason for this scarcity is due to the fact that detailed

kinetic models put extensive demands on data availability.

Their construction usually requires explicit knowledge of all

involved rate constants and kinetic parameters. For cyano-

bacteria, detailed kinetic models are mostly available for

selected subsystems, such as the cyanobacterial circadian

clock (Miyoshi et al., 2007; Rust et al., 2007; Cervený

and Nedbal, 2009; Brettschneider et al., 2010), photosystem
II (Jablonsky and Lazar, 2008), carbon-concentrating

mechanisms (Badger et al., 1985; Fridlyand et al., 1996),

as well as for selected metabolic pathways, such as the

Calvin–Benson cycle (Jablonsky et al., 2011). Kinetic

models often also rely on kinetic parameters and data

from plants and other related organisms. Small quasi-

autonomous subsystems, such as the circadian clock, are

particularly suited for kinetic modelling as they typically
involve only few interacting partners that operate in

a manner sufficiently isolated from other cellular networks

and therefore allow a data-driven construction of detailed

kinetic models.

Given the difficulties associated with the construction of

detailed kinetic models, most current efforts towards

modelling cellular metabolism are located on the left side

within the continuum shown in Fig. 1. Topological methods
are understood here as methods that represent cellular

metabolism as a, usually bipartite, graph. Such graph-based

descriptions of metabolism, while popular in many areas of

interdisciplinary sciences (Barabási and Oltvai, 2004),

usually do not incorporate genuine biochemical quantities,

such as reaction stoichiometries, in the description of the

network—a shortcoming that significantly limits their

potential to resolve genuine biological questions (Steuer

Fig. 1. A hierarchy of computational representations. Current approaches to metabolic modelling range from graph-based methods to

detailed kinetic models of cellular pathways. Methods that aim at large-scale description are typically less quantitative. Of particular

interest are also intermediate methods that seek to bridge the gap from detailed kinetic to large-scale models of cellular metabolism.

Adapted and redrawn from Steuer R and Junker BH. 2009. Computational models of metabolism: stability and regulation in metabolic

networks. In: Advances in chemical physics. This material is reproduced with permission of John Wiley & Sons, Inc.
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and Zamora Lopez, 2008). A better choice for the de-

scription of biochemical networks are usually stoichiometric

models. Stoichiometric models explicitly take the physico-
chemical nature of biochemical reaction networks into

account, but their analysis does not yet require kinetic

parameters or detailed knowledge of the properties of the

involved enzymes. Prominent applications of stoichiometric

modelling are the concept of elementary flux modes

(EFMs), as well as FBA. In particular, FBA has become an

important tool to analyse the properties of large-scale

metabolic networks. FBA is entirely based on constraints
imposed by mass conservation and is able to incorporate

thermodynamic (Beard et al., 2004; Kümmel et al., 2006;

Henry et al., 2007; Hoppe et al., 2007) and other constraints

(Zhuang et al., 2011).

Of particular interest are also intermediate methods that

seek to bridge the gap from stoichiometric to explicit kinetic

models of cellular pathways. Intermediate methods may, for

example, take the form of hybrid models, coupling a small-
scale kinetic model to a large-scale stoichiometric model of

metabolism (Mahadevan et al., 2002; Luo et al., 2006), or

aim to derive dynamic properties of large reaction networks

without requiring detailed knowledge of kinetic parameters.

The latter approach typically makes use of Monte Carlo
sampling of the parameter space to obtain a probabilistic

understanding of the dynamic properties of the respective

system (Wang et al, 2004; Steuer et al., 2006; Tran et al.,

2008; Steuer, 2011). It is expected that such methods will be

of importance for the further development of models of

phototrophic metabolism. In particular, several characteris-

tic properties of cyanobacterial metabolism differ from their

counterparts in conventional heterotrophic bacteria. These
differences include the utlilization of light as a resource,

which necessitates the consideration of the fast and in-

trinsically dynamic light reactions as part of the metabolic

network. Likewise, several dominant metabolic processes,

such as the costs of uptake and cycling of inorganic carbon

(Tchernov et al., 2001, 2003), as well as the inhibition of

Rubisco by molecular oxygen, are highly dependent on

concentrations and their gradients—and therefore difficult
to capture within a framework predominantly based on

stoichiometric relationships.

Fig. 2. Gene–protein–reaction associations for a selected subset of genes of the unicellular cyanobacterium Synechocystis sp. PCC

6803. Enzymes may be composed of several subunits and single genes may encode multifunctional enzymes.
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A stoichiometric reconstruction of
Synechocystis sp. PCC 6803

Large-scale stoichiometric modelling of metabolic networks

relies entirely on a high-quality reconstruction of the

underlying set of reactions. The aim of such a metabolic

reconstruction is to give a comprehensive account of all

biochemical conversions taking place within a living cell or
organism, including transport and non-enzymatic reactions.

The reconstruction process itself increasingly follows stan-

dard procedures and is described in detail in the literature

(Feist et al., 2009; Thiele and Palsson, 2010a). Here, the

focus is on a recently published reconstruction of the

cyanobacterium Synechocystis sp. PCC 6803 (Knoop et al.,

2010). The reconstruction process typically comprises four

steps. The starting point is the annotated genome, as
obtained from the CyanoBase Web site (Nakamura et al.,

1998, 1999; Nakao et al., 2010), together with pathway

repositories such as the Kyoto Encyclopedia of Genes and

Genomes (KEGG; http://www.kegg.com/; Kanehisa et al.,

2006) or MetaCyc (www.metacyc.org; Caspi et al., 2010).

These resources are combined to provide an initial draft

network that consists of gene–protein–reaction associations

for each annotated gene, in addition to a number of non-
enzymatic (spontaneous) reactions and transport processes.

A small-scale example is shown in Fig. 2, and the

corresponding stoichiometric matrix is shown in Fig. 3.

Based on the draft reconstruction, an iterative process of

gap finding and network curation begins. In particular, the

draft network allows verification of whether all known

metabolic intermediates of the respective organism can be

synthesized using the set of reactions assigned to the

organism. Usually, this is not the case and additional

reactions have to be included in the model. For example,

for the reconstruction of Synechocystis sp. PCC 6803

(Knoop et al., 2010), the draft network did not support the

synthesis of the amino acids glycine, serine, cysteine,

methionine, asparagine, and histidine. To complete the
network and to account for missing steps, different strate-

gies may be followed. To this end, an increasing number of

algorithms is available that aim to identify missing steps

within metabolic networks computationally and offer auto-

mated schemes to provide suggestions for missing enzymes

(Kumar et al., 2007). These algorithms are usually based on

shortest-path or minimal extension criteria to complete the

metabolic network and to establish a defined metabolic
functionality. However, it needs to be emphasized that such

automated schemes do not always lead to meaningful

results, owing to the fact that nature itself often does not

follow a logic of minimal extensions but may choose

seemingly capricious and non-optimal solutions for meta-

bolic interconversion routes. Therefore, in particular for

prokaryotic networks of smaller size, manual curation

remains the most important step in metabolic network
reconstruction. The knowledge accumulated in the bio-

chemical literature on selected pathways often provides

a crucial resource to re-annotate enzymes and to provide

a correct picture of biochemical interconversions. For

Synechocystis sp. PCC 6803, an example of the necessity of

incorporating literature knowledge is given by the detailed

Fig. 3. The stoichiometric matrix corresponding to the gene–reaction associations given in Fig. 2. Columns correspond to reactions, and

rows to metabolites.
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elucidation of the photorespiratory pathways (Eisenhut

et al., 2008) that were, at the time of reconstruction, not

part of any pathway database. It is noted that tests for

completeness and subsequent gap filling also must take into

account various non-enzymatic reactions, including possible

degradation reactions.

From network to model

Once the reconstruction can account for all relevant

synthesis routes of metabolic intermediates, the network is

converted into a mathematical model. This step involves the

inclusion of several pseudo-reactions that account for

cellular maintenance and growth, as well as the conversion

of the set of reactions into a computer-readable format.
Cellular maintenance is usually accounted for by adding an

additional ATP drain. However, utilization of NADPH,

independent of the synthesis reactions, and dilution of

metabolites by growth may also be considered. Of particu-

lar importance is the biomass objective function (BOF) that

represents an overall pseudo-reaction to describe cellular

growth in terms of the required metabolic precursors. It is

assumed that for growth and replication a specified set of
metabolic precursors needs to be synthesized in fixed

stoichiometric ratios. The BOF therefore describes a cellular

demand that the remaining synthesis reactions have to

satisfy in order to achieve cellular growth. It is noted that

the BOF may change depending on experimental condi-

tions. For cyanobacteria, different BOFs are usually

assigned to heterotrophic, mixotrophic and phototrophic

conditions, reflecting differences in cellular composition

(Shastri and Morgan, 2005). It is noted that a mathematical

model differs from a mere list of reactions in its scope to

assign a particular functionality to any set of reactions, such

as the capability to synthesize certain metabolic intermedi-
ates.

Finally, given a mathematical respresentation of the

network, preferably using a defined exchange format such

as SBML (Systems Biology Markup Language; Hucka

et al., 2003), the model can be investigated using standard

methods for stoichiometric analysis. To this end, an in-

creasing number of software packages are available to

facilitate large-scale network analysis (Becker et al., 2007;
Klamt et al., 2007; Hoppe et al., 2011; Schellenberger et al.,

2011). The entire process is highly iterative, and is

summarized in Fig. 4. It is noted that at this stage, the

model itself is not expected to be a fully verified and error-

free representation of the respective metabolic network.

Rather, its purpose is to provide a starting point to allow

systematic functional verification, to identify uncertain and

possibly misannotated enzymatic steps, and therefore to
guide further experimentation.

It should be emphasized that the standardized reconstruc-

tion process, followed by stoichiometric analysis, was

mainly developed to describe heterotrophic growth of

Fig. 4. The process of network reconstruction typically comprises four steps. Starting with a draft metabolic network (Step 1), the

network is contrasted and extended with data from the literature (Step 2) and transformed into a mathematical model (Step 3). The

resulting model is subject to computational analysis and further tested against available phenotypic data (Step 4). The process is iterative

and proceeds with Steps 2 to extend the reconstruction and to reconcile inconsistent information.
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various microorganisms. For example, within a recent effort

to generate automatically 130 genome-scale metabolic

models representing a taxonomically diverse set of bacteria

(Henry et al., 2010), only a single cyanobacterium was

included. A conspicuous lack of phototrophic metabolic

reconstructions was also noted in a recent overview on

applications of genome-scale reconstructions (Oberhardt

et al., 2009). Indeed, several aspects of phototrophic
metabolism can, as yet, only be inadequately represented

by stoichiometric models. For example, light is typically

represented as a single metabolic compound (photon) that

participates in stoichiometric reactions along with other

metabolites. Only recently, a first attempt at a novel light

modelling approach that allows resolution of wavelength

and photon flux has been proposed (Chang et al., 2011).

Problems in network reconstruction

In practice, a considerable number of further difficulties

complicate the process of network reconstruction outlined
above. Even for well-annotated organisms, such as Syne-

chocystis sp. PCC 6803, errors in gene annotation are not

uncommon. Likewise, integration of multiple reaction re-

positories and literature research is considerably hampered

by different and often inconsistent naming schemes of

metabolic intermediates (Radrich et al., 2007). For example,

within KEGG, the metabolite 2-oxoisovalerate (COM-

POUND: C00141) is listed with no less than nine syn-
oyms (3-methyl-2-oxobutanoic acid, 3-methyl-2-oxobutyric

acid, 3-methyl-2-oxobutanoate, 2-oxo-3-methylbutanoate,

2-oxoisovalerate, 2-oxoisopentanoate, a-ketovaline, 2-

ketovaline, and 2-keto-3-methylbutyric acid), each of which

may also be used within the literature and may therefore

confuse results when researching the corresponding bib-

liome. Adding to the complexity of metabolite annotation,

metabolites usually also co-exist in different protonation
states depending on the intracellular milieu—a fact that

must be taken into account when reactions from different

sources are combined. Such inconsistent annotation may

lead to erroneous gaps within the network, as pathways

may no longer be connected. While most of these issues are

straightforwardly resolved using manual inspection and

expert knowledge, the large size of many metabolic net-

works often requires automated solutions. To this end,
researchers working on metabolic network reconstructions

increasingly recommend the utilization of a controlled

vocabulary that allows consistent naming of metabolites to

facilitate cross-database comparison. Such a controlled

vocabulary usually refers to databases and web repositories,

such as ChEBI (Chemical Entities of Biological Interest),

a freely available dictionary of metabolic compounds

(de Matos et al., 2010). As a further advantage, consistent
and computer-readable naming allows software tools to

recognize the annotated compound and therefore allows

automated quality checks on the reconstructed networks to

be performed. Even if sourced from curated pathway

databases, reactions may not always be balanced with

respect to elements and charge, resulting in metabolic cycles

that can generate metabolic compounds without input. For

example, Yoshikawa et al. (2011) reported that they failed

to simulate a previously published model of Synechocystis

sp. PCC 6803 (Montagud et al., 2010) because the

reconstruction contained inadequate reaction loops. It is

therefore strongly recommended to perform automated

charge and elemental balancing at the end of the
reconstruction process, as, for example, facilitated by

COBRA 2 (Schellenberger et al., 2011) or the freely

available toolbox SuBliMinaL (Swainston et al., 2011).

It should be mentioned that during network reconstruc-

tion not all identified missing steps correspond to erroneous

gaps within the respective metabolic network. Cyanobac-

teria are known for highly streamlined genomes, in partic-

ular the genus Prochlorococcus (Partensky and Garczarek
et al., 2010). For example, it was recently shown that

Prochlorococcus, whose genomes lack catalase and therefore

should be highly susceptible to damage from hydrogen

peroxide, are protected by an extant HOOH-consuming

microbial community in the surface mixed layer of the

oligotrophic ocean (Morris et al., 2011). Likewise, recently

a globally distributed marine cyanobacterium, UCYN-A,

was described that lacks the oxygen-producing photosystem
II complex. Instead, UCYN-A exhibits a strongly restricted

photofermentative metabolism and is probably dependent

on other organisms for essential compounds (Tripp et al.,

2010). In such cases, unsupervised automated reconstruc-

tion may yield erroneous solutions that account for

metabolic pathways that are not present in the respective

organism.

Network size and quality criteria

One of the most persistent problems in current network

reconstructions is that clear-cut criteria whose properties
constitute a good reconstruction are still missing. While

stoichiometric consistency and other formal aspects can be

tested rather straightforwardly, the reconstruction process

itself still allows for miscellaneous choices of criteria for

inclusion or exclusion of specific reactions. This shortcom-

ing is particularly relevant for enzymes with unclear

specificity. In this case, a single enzyme might be anno-

tated for a large number of possible interconversions,
whereas in practice the enzyme is often for a smaller, but

unknown, subset of interconversions. Common cases also

include generic annotations in which enzymes, for exam-

ple, require a ‘reduced acceptor’ or ‘hydrogen donor’ (both

KEGG Compound C00030). Since current flux balance

software can usually only deal with specific metabolites,

not classes of metabolites, such generic terms may lead to

a combinatorial inflation of the number of possible
reactions. A computational representation of enzymes

acting on polydisperse substrates, such as many storage

compounds, also remains a challenging task (Kartal et al.,

2011). Likewise, cofactor requirements of most reactions

are often unknown. For example, within the
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reconstruction of Synechocystis sp. PCC 6803, many

reactions are included as NAD/NADH- and NADP/

NADPH-dependent variants, as the actual specificities of

those reactions are unknown.

In general, a large number of current reconstructions opt

for the inclusion of as many reactions as possible, even at

the expense of overestimating the number of actual

interconversions for most enzymes. On the other hand,
several recent studies also deliberately only focus on

a selected subset of reactions, usually central carbon

metabolism and adjacent pathways. It was observed pre-

viously (Sweetlove and Ratcliffe, 2011) that both

approaches often give rise to an almost identical number of

active reactions; that is, the number of reactions that carry

non-zero metabolic flux under any condition is usually

similar. While both approaches have their merits, it must be
emphasized that the size of a reconstruction is only rarely

an indicator of quality and usually does not increase the

predictive power of a model. Indeed large size, in particular

for poorly characterized organisms, often indicates indis-

criminate inclusion of vaguely annotated enzymes.

A way to overcome some of these problems again resides

in consistent annotation. In this respect, a first step is to

assign a level of confidence with each included reaction,
such that other researchers can clearly identify on which

evidence any particular reaction was included within the

network. Such consistent annotation allows the discern-

ment of whether a particular reaction was included on the

basis of sound biochemical evidence, or whether, for

example, it was included to restore a certain metabolic

functionality whose absence would otherwise preclude

further analysis. Likewise, there is increasing agreement
that a complete reconstruction of any single organism and

its validation is beyond the means of a single research

group. Therefore, increasing emphasis is put on commu-

nity efforts, such as network reconstruction jamborees

that aim at a consensus reconstruction to reconcile and

refine knowledge about the respective organism (Herrgård

et al., 2008; Thiele and Palsson, 2010b). Such reconstruc-

tion jamborees were already successfully undertaken for
several common organisms, including Saccharomyces

cerevisiae, Salmonella typhimurium, and Homo sapiens,

but, as yet, not for higher plants or cyanobacteria. Finally,

successful reconstructions should be made available on

dedicated exchange platforms, such as biomodels.org

(Li et al., 2010) or MemoSys (Pabinger et al., 2011),

to facilitate further improvement and utilization of the

reconstruction.

Flux balance analysis

Once a faithful reconstruction of the metabolic network is
available, the corresponding model is ready to be evaluated

using constraint-based analysis and other computational

methods. A method of choice is FBA, a computational

approach that has emerged as a numerically feasible

and highly predictive approach to study the properties of

large-scale metabolic networks. Crucial to its success, FBA

is based on only a few reasonable principles and assump-

tions, most of which are likely to hold for prokaryotic

metabolic networks under many physiological conditions.

To apply FBA, metabolites are subdivided into a set of

compounds whose concentrations are assumed to be

stationary (internal metabolites) and a set of compounds

that may vary over time or are external to the network
(external metabolites). Examples of the latter include

external nutrients or certain cofactors whose concentrations

are assumed to be constant. FBA then makes use of the

fact that the set of stationary internal metabolites puts

constraints on the stationary flux distributions within

the network. In particular, any unchanged metabolite

concentration over a given period of time implies that the

sum of fluxes producing this metabolite equals the sum of
fluxes consuming this metabolite. On the network

level, this mass balance constraint reduces the admissible

flux space, such that only certain combinations of flux

values are feasible. It is noted that the mass balance

constraint does not necessarily imply that the system is

at steady state. An identical reasoning holds, for example,

for oscillating networks—provided that the metabolite

concentration is unchanged after a defined period of time,
such as a full diurnal cycle. In this case, the flux values must

be understood as an integrated flux over the respective

period.

Usually, the mass balance constraint itself does not give

rise to a specific flux distribution. Within FBA it is therefore

assumed that cells have evolved such that their metabolic

flux distribution satisfies one or more optimality criteria.

For single-celled organisms, such as cyanobacteria, the most
common optimality criterion is maximal biomass yield.

That is, the metabolic fluxes are assumed to be distributed

such that they allow a maximal synthesis yield of all

metabolic precursors required for cellular growth. The

respective stoichiometric ratios of precursors are provided

by the BOF as part of the reconstruction process. It is noted

that the optimization process does not consider growth rate,

even though the results are usually stated in units of inverse
time. In particular, an alternative flux solution that is

energetically less favourable but would allow for faster

interconversion rates is not selected by FBA (Schuster et al.,

2008). An illustration of FBA as a two-step process of

constraint and optimization is provided in Fig. 5. A simple

example is given in Fig. 6.

Besides the BOF, other cellular objectives can also be

explored. In particular, a straightforward optimization of
the BOF does not necessarily give rise to a unique flux

solution. In this case, additional secondary objectives may

be included, such as the minimization of total flux—usually

understood as a proxy for the minimization of enzyme

synthesis costs required to sustain a particular solution

(Holzhütter, 2004). Since its initial formulation, a plethora

of refinements and additions have been proposed for FBA.

In particular, great strides have been made to include
a variety of physicochemical constraints, such as thermody-

namic feasibility.
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Fig. 5. The principles of flux balance analysis (FBA) as a two-stage constraint optimization: initially, all flux values are constraint by

individual upper and lower bounds. Then, assuming stationary conditions, the mass balance constraint is applied, resulting in

relationships between intracellular fluxes: the feasible flux cone. A particular solution can be identified by applying optimization criteria,

such as the optimization of biomass yield (BOF). The optimal solution is not necessarily unique.

Fig. 6. The principles of FBA: a simple example. The starting point is a reaction network (upper left panel) encoded as a stoichiometric

matrix (upper right panel). Given a certain maximal utilization that satisfies the mass balance constraint and results in an optimal yield of

biomass formation, as predicted by the biomass objective function, BOF (lower left panel), the problem can be cast into a linear

optimization problem and is solved using standard methods of linear programming. A solution for the simple example is provided in the

lower right panel. In general, the solution is not unique.

Models of cyanobacteria | 2267
 at M

asaryk university on O
ctober 11, 2016

http://jxb.oxfordjournals.org/
D

ow
nloaded from

 

http://jxb.oxfordjournals.org/


Properties of phototrophic metabolism

While large-scale models of phototrophic and cyanobacte-

rial metabolism are still scarce compared with those of

other organisms, a number of theoretical studies of

cyanobacterial metabolism have become available over the

past years. Preceded by several experimental studies on

cyanobacterial metabolism (Yang et al., 2002; Cogne et al.,

2003), the first computational analysis based on FBA was

performed by Shastri and Morgan (2005), who studied

a stoichiometric model of Synechocystis sp. PCC 6803

under various growth conditions. The model was later

extended by Hong and Lee (2007) and augmented by gene–

reaction associations. Subsequently, Fu (2009) presented

a genome-scale reconstruction of Synechocystis sp. PCC

6803, involving, however, only minimal manual curation.

A manually curated model focused on the central metab-

olism and phototrophic growth was presented by Knoop

et al. (2010). Later, two additional models were published

(Montagud et al., 2010; Yoshikawa et al., 2011), the latter

also conducting a comparison of their own model with the

results of ‘Montagud et al. (2010) and Knoop et al. (2010).

Interestingly, all models differ with respect to several key

pathways. An example is the alleged glyoxylate shunt that

is present in all previous reconstructions, except in the

reconstruction of Knoop et al. (2010). The presence of

such a shunt currently awaits experimental verification.

Recent non-stationary flux analysis does not support the

presence of the shunt (Young et al., 2011) and there is, to

the authors’ knowledge, no convincing experimental evi-

dence of its existence in cyanobacteria. However, the

recent discovery of missing enzymes in the citric acid cycle

(Zhang and Bryant, 2011) exemplifies that even core

metabolic pathways may not be completely described yet.

It is noted that none of the models, with the exception of

that of Knoop et al. (2010), fulfils current standards of

model annotation as requested by MIRIAM (Minimum

information requested in the annotation of biochemical

models; Le Novère et al., 2005). The lack of such unifying

nomenclature makes systematic comparisons unnecessarily

difficult.

Similar to genome annotation, large-scale reconstructions

of cellular metabolism require continuous revision, exten-

sion, and updating. The model originally presented by

Knoop et al. (2010) currently includes 608 genes, corre-

sponding to 633 metabolic reactions and 451 metabolites.

The focus of the model is a high quality description of

cyanobacterial central metabolism, rather than to account

for a maximal number of, mostly unverified, reactions.

External parameters include maximal photon influx, maxi-

mal carbon uptake, as well as possible constraints on the

supply of sulphur, nitrate, and inorganic phosphate. Based

on a given set of external parameters, the maximal growth

yield as well as a, not necessarily unique, flux distribution

can be estimated.

Figure 7 shows an estimated flux map for phototrophic

growth using a maximal light input of 7.7 mmol photons

g DW�1 h�1. The growth yield was maximized with respect

to light input using the COBRA toolbox (Schellenberger

et al., 2011); other nutrients were not limiting. In addition,

cellular maintenance was accounted for by a basal ATPase

activity of 0.26 mmol g DW�1 h�1. The flux solution shown

in Fig. 7 corresponds to an average doubling time of ;12 h

in constant light. Figure 7 also provides an estimated

solution for storage-dependent night metabolism. However,

the choice of an appropriate objective function under this
condition is unclear, as Synechocystis sp. PCC 6803 does not

exhibit an extensive increase of biomass overnight. This

reflects an intrinsic problem of FBA, especially relevant for

temporally dynamic systems. Cyanobacterial metabolism is

subject not only to external (diurnal) light variation but also

to extensive transcriptional remodelling of metabolism via

a circadian clock. It is an open and exciting question for

modelling of cyanobacteria, how such temporal dynamics
can be integrated. In Fig. 7, as a proxy for night metabolism,

it is therefore assumed that the metabolism is dominated by

glycogen utilization to match cellular maintenance require-

ments, again implemented as a basal ATP activity. In

addition, a small turnover of cellular components is assumed

that is proportional to the BOF. The solutions obtained by

FBA can be contrasted with measurements of phototrophic

flux distributions (Young et al., 2011).

Photorespiration revisited

Importantly, FBA can result in experimentally testable

predictions about the functional role of certain reactions.

For example, the model of Knoop et al. (2010), and
likewise the flux distribution shown in Fig. 7, predicts

a non-zero rate for the Rubisco oxygenase (EC 4.1.1.39),

a seemingly wasteful side reaction of the Calvin–Benson

cycle. This non-zero activity is due to the fact that two

enzymes necessary to synthesize the amino acid serine

from 3-phosphoglycerate via 3-phosphohydroxypyruvate

(EC 2.6.1.52 and EC 3.1.3.3, respectively) are not anno-

tated in the genome of Synechocystis sp. PCC 6803.
Lacking the conventional synthesis steps, photorespiration

provides an alternative pathway to synthesize the amino

acids glycine and serine. In particular, using the recon-

struction and conditions as defined above, photorespira-

tion leads to a higher yield of serine and glycine per

photon than all annotated alternative pathways that could

likewise compensate for the absence of the phosphoserine

pathway (Knoop et al., 2010).
These findings illustrate several facts about FBA and its

utility in the analysis of cellular metabolism: The recon-

struction is based on current gene annotation and therefore

does not include the phosphoserine pathway. Nonetheless,

the respective enzymes may be present in the organism,

albeit, as yet, not recognized. Consequences of possible

alternative pathways can be tested by adding the respective

reactions to the reconstruction – resulting in verifiable
predictions about the possible functional role of putative

alternative pathways.
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Extensions of FBA

While the model of Knoop et al. (2010) and other models

have already offered varying degrees of novel insight into

the organization of phototrophic metabolism, all studies

were as yet limited to fairly standard applications of FBA.
However, it must be conceded that the metabolic lifestyle of

cyanobacteria grossly differs from the lifestyle of most of

those prokaryotic organisms that made applications of FBA

popular. Unlike most laboratory or industrial heterotrophic

bacteria, cyanobacteria follow a diurnal rhythm that

involves drastic changes and re-organizations within its
metabolic network. While differences between phototrophic

and heterotrophic growth have been frequently studied, the

transition from storage-based night metabolism to photo-

trophic day metabolism exhibits far greater subtlety than

Fig. 7. A map of the central metabolic pathways of Synechocystis sp. PCC 6803. The map provides estimated flux values using an

updated reconstruction of the cyanobacterium (Knoop et al., 2010). The boxes give flux values (in 10�2 mmol g DW�1 h�1) for day

conditions (light boxes) and night conditions (dark boxes). Day metabolism is characterized by flux through the Calvin–Benson cycle and

an incomplete TCA cycle. Night metabolism is characterized by glycogen consumption and cyclic flux throught the TCA cycle, mediated

by two recently identified enzymes (Zhang and Bryant, 2011). For reversible reactions, positive flux values indicate downward flux. Fluxes

marked with an asterisk are not unique.
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can currently be captured by conventional FBA. One can

envisage a complex temporal coordination of metabolism,

such that the biomass function itself is time dependent.

Indeed, studies of the cyanobacterial transcriptome (Stöckel

et al., 2008) and proteome (Stöckel et al., 2011) suggest

a highly coordinated transcriptional programme that is not

compatible with current representation of cellular growth

by a static BOF. Following the work of Asato (2003, 2006),
distinct sequential macromolecular synthesis periods can be

defined that are aligned with the diurnal cycle, as well as the

cell division cycle (Yang et al., 2010).

Outlook: towards integrative models

Cellular metabolism does not operate isolated but is

embedded within a network of highly interconnected

cellular processes that influence, and are influenced by, the

metabolic state of a cell. One of the great challenges of

computational modelling is therefore to integrate these

diverse processes into a coherent computational framework

and to describe cellular interactions on the level of the

organism—towards a cyanobacterium in silico.
Processes that directly interact with, or mutually in-

fluence, cyanobacterial metabolism include carbon-concen-

trating mechanisms, the photosynthetic light reactions, the

circadian clock, cellular signal transduction, phototaxis,

transcriptional regulation, and chromosome organization,

as well as the properties of the environment. For several of

these processes, computational models already exist, albeit

incorporating different levels of detail and representing
different levels of reliability. Furthermore, as outlined in

the first section, specific processes often require a specific

mathematical representation, making the integration of

these diverse computational techniques also a considerable

technical challenge.

Of primary importance to models of cyanobacterial

metabolism is the integration with the photosynthetic light

reactions. Photosynthesis itself is reasonably well under-
stood, and several kinetic models have been proposed that

describe various aspects of the photosynthetic apparatus in

considerable detail. These models are typically based on

biophysical principles and aim to incorporate the supramo-

lecular organization and internal states of protein com-

plexes. Detailed models of photosynthesis, such as the

model of Jablonsky and Lazar (2008), typically involve

a large number of state variables, making integration of
such models with metabolism a demanding task. Due to this

difficulty, most available kinetic models of the Calvin cycle

only employ highly simplified light reactions, such as the

direct regeneration of ATP and NADPH by light (Poolman

et al., 2000). Nonetheless, efforts to couple both processes

already exist (Laisk et al., 2006; Safránek et al., 2011). It

should be noted that one of the conclusions drawn from the

model of Laisk et al. (2008), a detailed kinetic model that
includes light reactions, electron–proton transport, enzy-

matic reactions, and regulatory functions of C3 photosyn-

thesis, is that the model is nonetheless insufficient to

reproduce the dark–light induction of photosynthesis.

Of similar importance for global regulation of metabo-

lism is the cyanobacterial circadian clock. The cyanobacte-

rial clock consists of a post-translational oscillator

(PTO), based on interactions of only three proteins (KaiA,

KaiB, and KaiC), coupled to a transcriptional/translational

feedback loop (TTFL). As a unique property of the clock,
the PTO can be reconstituted in vitro by mixing purified

proteins and ATP (Nakajima et al., 2005), and therefore

represents a highly attractive guinea pig for the develop-

ment of detailed computational models. Indeed, a large

number of kinetic models were developed over the past

years, mostly focusing on intermolecuar dynamics of in-

teraction among Kai proteins, entrainment, robustness, and

temperature compensation of the clock. In contrast, details
of the interaction between the clock, metabolism, and gene

expression are largely unknown. Not surprisingly, the clock

can be entrained by intracellular levels of ATP (Rust et al.,

2011) and, vice versa, the clock seems to exert global

control over cellular processes, including global gene

expression and the cell cycle (Yang et al., 2010; Johnson

et al., 2011). The clock therefore may represent a hinge that

allows integration and coordination of different cellular
processes.

What should an integrative cyanobacterial model look

like? In general, two different approaches are conceivable.

On the one hand, a top-down approach can be employed,

starting from a black-box view of cellular growth in

a photobioreactor that involves only major exchange fluxes.

Such models are commonly employed in ecology and

biotechnology, and are often based on extensions of
Monod’s classic growth equations (Monod, 1949). Top-

down models of cyanobacterial growth are usually highly

predictive with respect to environmental interactions and do

not require detailed knowledge of intracellular states or

dynamics. A lucid review on the hurdles and challenges of

top-down modelling of phototrophc microorganisms was

recently given by Bernard (2011). On the other hand,

a modular bottom-up strategy may be employed (Snoep
et al., 2006). Here, individual computational models of

cellular processes, such as models for the light reactions and

the circadian clock, are combined into a coherent whole.

The modular approach offers the advantage that individual

expert groups can work on, and improve, detailed models of

cellular subprocesses, while simultaneously testing the

consequence on phototrophic growth by incorporating the

respective model into a cellular context. Only such in-
tegration will allow an understanding of the multiple

feedbacks that arise from interaction of the various

subprocesses and define the physiological behaviour of

cyanobacteria in their environment. A first example of such

an integrative model was recently proposed by Hellweger

(2010). Therein a conceptual model of Synechococcus

elongatus PCC 7942 was developed that includes the

photosynthetic light reactions, the post-translational oscilla-
tor, a minimal metabolism, and a coarse-grained gene

expression machinery. The integrated model was used to
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investigate the fitness effect of the circadian clock in

cyanobacteria in silico, again highlighting that complex

physiological traits, such as an enhanced fitness of an

organism with a resonating clock, cannot be understood in

terms of individual molecular subprocesses alone.

It should be emphasized that top-down and bottom-up

approaches are not mutually exclusive but should be

considered complementary, and can be merged into in-
termediate coarse-grained representations of cyanobacterial

cells. Such coarse-grained representations would allow the

gradual replacement of a Monod-type growth rate function.

In this sense, both strategies outlined above have strong

potential to contribute towards the long-term goal of in

silico models of cyanobacterial cells and communities in

complex environments. Such a step towards a computational

ecosystems biology will be instrumental in advancing our
understanding of environmental adaptations, complex mi-

crobial communities, global carbon and nitrogen cycles, as

well as having the potential to facilitate and guide bio-

technological applications. Clearly, model integration goes

beyond the capabilities of any single research group and will

require increased collaboration and exchange between the

different areas of research that together define our knowl-

edge of cyanobacterial physiology.
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