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This paper introduces a novel approach for building heterogeneous ensembles based on genetic

programming (GP). Ensemble learning is a paradigm that aims at combining individual clas-

si¯er's outputs to improve their performance. Commonly, classi¯ers outputs are combined by a
weighted sum or a voting strategy. However, linear fusion functions may not e®ectively exploit

individual models' redundancy and diversity. In this research, a GP-based approach to learn

fusion functions that combine classi¯ers outputs is proposed. Heterogeneous ensembles are

aimed in this study, these models use individual classi¯ers which are based on di®erent prin-
ciples (e.g. decision trees and similarity-based techniques). A detailed empirical assessment is

carried out to validate the e®ectiveness of the proposed approach. Results show that the pro-

posed method is successful at building very e®ective classi¯cation models, outperforming
alternative ensemble methodologies. The proposed ensemble technique is also applied to fuse

homogeneous models' outputs with results also showing its e®ectiveness. Therefore, an in-depth

analysis from di®erent perspectives of the proposed strategy to build ensembles is presented

with a strong experimental support.

Keywords : Pattern classi¯cation; heterogeneous ensembles; genetic programming.

1. Introduction

Ensemble learning has been a widely investigated paradigm within computational

intelligence and machine learning.6,26 Ensembles ability has been demonstrated when

applied to di®erent machine learning challenges such as pattern classi¯cation,6
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feature selection,21 and data clustering22 among others. In pattern classi¯cation, an

ensemble consists on combining several classi¯ers in order to overcome individual

drawbacks, such as low accuracy and high sensitivity to noisy data. Ensembles follow

the idea of interaction among several prediction models to take advantage of indi-

vidual performances and to avoid error propagation. However, combining several

classi¯ers outputs does not guarantee that the best individual classi¯er is out-

performed; although the probability of not selecting the worst individual classi¯er

increases.

A rough ensembles classi¯cation divides them in to homogeneous and heteroge-

neous. Homogeneous ensembles combine several instances of the same predictor

under di®erent parameters con¯gurations or using di®erent instances/features.4,11 In

contrast, heterogeneous ensembles merge the outputs of individual learners from

di®erent nature to build a composed classi¯cation model.23,27 Both kinds of ensem-

bles are normally built following a weighting scheme or a voting strategy which

combine classi¯ers outputs to merge individual decision models. These combination

strategies lead to linearly constrained models that possibly are not the best option

for ensemble building.

Three main aspects are considered when building ensembles: the selection of

training data for individual predictors, the process to obtain ensemble members, and

the mechanism to combine individual classi¯ers.26 This research focuses on exploring

evolutionary computation as the mechanism to combine individual learners. In

particular, Genetic Programming (GP) is used to learn a function that combines the

predictions of individual classi¯ers. The underlying hypothesis is that voting or

weighted-sum combination strategies may not fully exploit the redundancy and

complementarity of individual classi¯ers. Learning a fusion strategy via GP leads to

possibly nonlinear combination mechanisms that could better exploit the outputs of

multiple predictors. Thus, complex decision spaces can be targeted while exploiting

implicit individual model's characteristics such as diversity.3 The proposed technique

focuses on heterogeneous ensembles, as it can automatically deal with di®erent scales

of classi¯ers' outputs. Nevertheless it can also be applied for combining predictions

of homogeneous models. Experimental results in 40 classi¯cation problems show

the validity of the proposed method for building heterogeneous and homogeneous

ensembles. In fact, ensembles generated with the proposed mechanism outperform

traditional fusion techniques.

The proposed approach was ¯rst introduced by Escalante et al.,7 where important

improvements were achieved by applying GP for ensembles construction on an ob-

ject recognition data set. This study extends previous research by performing an

extensive and comprehensive experimental assessment of the proposed method in a

suite of benchmark pattern classi¯cation problems. Additionally, an in-depth anal-

ysis of the solutions generated by the proposed method and its performance under

di®erent settings (including homogeneous ensembles and cross-domain ensemble

learning) is reported.
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This paper is organized as follows. In Sec. 2, related work on ensemble learning

with evolutionary algorithms is reported. Next, in Sec. 3 the approach for learning

a fusion mechanism for ensemble generation is presented. In Sec. 4, experimental

results that validate the e±cacy of the proposed method are reported and ana-

lyzed. Finally, in Sec. 5, conclusions derived from this work and future work are

drawn.

2. Related Work

Evolutionary and other bio-inspired algorithmic techniques have been applied to

classi¯cation in general, among them GP has been successfully used at di®erent

stages including pre-processing and post-processing tasks that aim at improving

prediction model performance.10 GP is the most recent evolutionary technique with

one main characteristic: to allow complex representation structures, such as trees.16

Although building a prediction model from a data set is the main aim in classi¯ca-

tion, this research focuses on the post-processing stage: to assemble several classi¯er

models via GP in order to improve individual learners performances. Due to the

nondeterministic nature of GP, complex solutions can be evolved while taking

advantage of GP's representation °exibility which allows combining operators and

functions from nonlinear domains.

Both, homogeneous and heterogeneous ensembles, have been built by applying

evolutionary and other bio-inspired techniques.5,15,18,19,25 Finding the best feature-

classi¯er combinations to build an ensemble is approached by Park and Cho using a

standard Genetic Algorithm (GA) in order to determine an optimal prediction model

for lymphoma cancer classi¯cation of DNA sequences. The idea was to stochastically

search for feature–classi¯er pairs that provide the best performance to build an

ensemble through linear combination.19

A di±cult pharmaceutical problem was tackled by Langdon et al., in which de-

cision trees and neural networks are combined as base learners in order to improve

individual performances.15 Results show that similar performance to a neural net-

work is achieved by combining poor individual learners through GP. This research

shows the advantages of implicit GP's °exibility in terms of solutions representation

and the combination mechanism of individual predictors.

Other evolutionary techniques have also been applied to build ensembles. Yang

and Qin used Particle Swarm Optimization (PSO) algorithm to build ensembles

following a weighting scheme.25 Positive results were achieved while tackling several

real problems. It was observed that removing the weakest learner leads to a better

overall performance. Three multiple-classi¯ers systems using PSO were presented by

Macas et al.18 Also, linear combination strategies were targeted and results showed

accuracy improvement for the proposed approaches when compared to other heur-

istics. On a wider scope, PSO has been applied to the ensemble model selection

problem.9 Heterogeneous classi¯ers with optimized parameters are identi¯ed and

selected for generating an ensemble.

Learning to Assemble Classi¯ers via GP
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A multi-objective approach using GP to evolve ensembles for classi¯cation of

unbalanced data was presented by Bhowan et al.2 The proposed approach is com-

pared to a canonical GP classi¯cation system and two other standard classi¯ers. On

an initial stage the competing objectives are each model's accuracy on majority and

minority classes. On a second stage, a diversity measure is introduced as a third

objective. Results showed an improved performance of the multi-objective approach

when dealing with highly unbalanced data. An extension to this work applied multi-

objective GP as a ¯rst step to then re-apply GP to solutions associated to the Pareto

front.1 Selective pressure is controlled by limiting the trees' depth in order to pro-

mote the grouping of cooperative learners. Therefore, accurate, diverse and small

ensembles are evolved.

Diversity among ensemble members has been considered as a factor that directly

a®ects model's accuracy but a scienti¯c explanation has not been determined.13

Kuncheva and Whitaker studied this relationship through 10 diversity measures

among binary classi¯ers.14 After an exhaustive experimental assessment, results

show that both concepts are related depending on speci¯c circumstances. Therefore,

a strict link between diversity and ensemble's accuracy does not always exist. Bian

and Wang carried out a study on diversity in homogeneous and heterogeneous

ensembles.3 The same diversity measures were assessed on 15 data sets, results led to

group similar diversity measures however conclusive remarks were not raised.

Oliveira et al. used a multi-objective GA to investigate the accuracy/diversity

dilemma on heterogeneous ensembles.5 These two concepts were set as objectives and

were evaluated together and separately. Results showed an improved performance

when considering both metrics. Although three di®erent classi¯ers (K-Nearest

Neighbor (KNN), decision tree, Support Vector Machine (SVM)) were used as base

predictors, a total of 30 built the ensemble, 10 per type were included. Yet, nor-

malization problem among predictors is an issue not explicitly dealt with.

In this research, several classi¯ers of di®erent nature are fused through a sto-

chastic technique and complex, yet e®ective, models (possibly nonlinear ones) are

created. In the proposed approach, the diversity challenge is targeted in an implicit

way through the evolutionary process and supported by an exhaustive empirical

assessment. Schemes guided by weighting or majority voting strategies can be

represented by the solutions in the genetic program. Another distinctive feature of

the proposed ensemble mechanism is that the normalization problem is automati-

cally approached. The evolutionary mechanism works out a prediction model from

the combination of individual learners independently of their scale.

Most existing methods for building ensembles use summing, weighting sums or

voting strategies. The proposed technique to combine classi¯ers outputs could out-

perform those techniques by building better ensembles that explicitly learned the

fusion function of individual predictors. Moreover, once a fusion strategy has been

learned, it could be applied in combination with most reviewed works for building

ensembles. The proposed approach can be considered an instance of stacked

N. Acosta-Mendoza et al.
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generalization as introduced by Wolpert, where a modeling problem is serially

approached in two levels: outputs of individual classi¯ers are feed to another clas-

si¯er that determines the labels for objects.24 However, Wolpert's stacked generali-

zation is a generic framework under which many models fall, in fact, any ensemble

can be considered an instance of stacked generalization.

3. Evolving Ensembles Through GP

GP16 is an evolutionary technique which algorithmic structure follows the repro-

ductive cycle of other evolutionary algorithms such as GA: an initial population is

created randomly or by a pre-de¯ned criterion, after that individuals are selected,

recombined, mutated and then placed back into the solutions pool. GP uses di®erent

solutions representation which is normally more complex than other evolutionary

techniques. For ensembles building, the advantages of working with a nondeter-

ministic search technique are: possibility to explore di±cult search spaces created by

the combination of individual prediction models through arithmetic operators, au-

tomatic weighting mechanism by including constants a®ecting individual models,

implicit ability to deal with normalization problems, among others. The rest of this

section describes in detail the proposed GP approach to build ensembles; a general

diagram of the proposed mechanism is shown in Fig. 1.

3.1. Problem de¯nition

Consider a data set D ¼ ðxi; yiÞf1;...;Ng with N pairs of instances (xi) and labels (yi)

associated to a supervised classi¯cation problem. Assume that xi 2 Rd and

yi 2 f�1; 1g, is a binary classi¯cation problem with numeric attributes; and consider

Fig. 1. GP ensemble: General scheme.

Learning to Assemble Classi¯ers via GP
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gkðxiÞ 2 ½�1; 1� as the classi¯er output gk for instance xi. gk represents the predictor's

con¯dence value for xi class. Every gk term can be modeled as a function

gk : R
d ! ½�1; 1�, where the predicted class for xi, de¯ned by ŷi, is obtained as

follows: ŷi ¼ signðgkðxiÞÞ.
A fusion function fðg1ðxiÞ; . . . ; gLðxiÞÞ is de¯ned for combining L classi¯ers out-

puts gf1;...;LgðxiÞ for instance xi:

fðg1ðxiÞ; . . . ; gLðxiÞÞ ¼
1

L

XL

k¼1

wk � gkðxiÞ; ð1Þ

where wk is the k classi¯er's associated weight. For example, in Adaboost11wk is

iteratively obtained and is related to gk performance considered as a weak learner. In

random forest (RF)4 and other ensembles, wk is a constant equal to one.
4 In majority

voting strategies,20wk ¼ 1 and gkðxiÞ is replaced by signðgkðxiÞÞ.
Analogously, a fusion function for multi-class problems can be de¯ned as follows:

fmðh1ðxiÞ; . . . ;hLðxiÞÞ ¼
1

L

XL

k¼1

wk � hkðxiÞ; ð2Þ

where hkðxiÞ is the output of the kth individual multi-class classi¯er. Assuming a

multi-class classi¯cation problem with Q-classes: C1; . . . ;CQ, a vector indicating

classi¯er con¯dence per class, hkðxiÞ ¼ hh1
kðxiÞ; . . . ;hQ

k ðxiÞi, is provided by each

individual learner k, see Fig. 2. In heterogeneous ensembles, every estimate hj
kðxiÞ, is

obtained by predictors of di®erent nature, for example, h1
kðxiÞ determines class 1

con¯dence for xi instance according to a KNN classi¯er (kth classi¯er); h 1
jðxiÞ de¯nes

class 1 con¯dence for the same instance according to RF (jth classi¯er), etc. On the

other hand, in homogeneous ensembles con¯dence vectors come from the same

Fig. 2. Individual sample and data °ow to combine classi¯ers outputs considering a 3-class/4-instances

problem and 3-classi¯ers. On the left, a matrix per classi¯er (k), where i; j entry indicates classi¯er con¯-
dence for instance i with correct class j (i.e. hj

kðxiÞ). The last column per matrix shows the actual instances

prediction (argmax across rows) using the corresponding matrix. GP's solution sample combines multiple

models outputs and returns a fusion function (f �
m) which produces an output matrix (color online).
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classi¯er but each prediction model has been trained over di®erent data set partitions

or has been con¯gured with di®erent parameters.

A general one-versus-rest methodology is applied using every classi¯er to obtain

multi-class con¯dence vectors, see Fig. 2. In one-versus-rest classi¯cation, a binary

classi¯er is trained per class where the jth–classi¯er uses as positive the training

examples from class j and as negative the rest. In this case, hj
kðxiÞ is the kth binary

classi¯er con¯dence for instance xi on label Cj.

The main objective of this research is to determine f �
m, the fusion function that

maximizes the classi¯cation performance on unseen data. A genetic program is thus

applied to search the functions space which is determined by a pre-de¯ned set of

arithmetic operators, constants and classi¯ers outputs.

3.2. Genetic program speci¯cations

GP di®ers from other evolutionary techniques on its solutions representation. Nor-

mally, GP uses trees as data structures, in this research prediction models outputs

are represented by leaf nodes. Additionally, constant values, to simulate weighting

factors, are also represented by leaf nodes. Nonleaf or internal nodes are a set of

arithmetic operators þ;�;�;� and singlularity operators,2 ffiffi;p log10. These operators

were chosen for being commonly used in GP and because they allow representing

nonlinear models. Although, it is not possible to guarantee that the chosen operators

are necessary and su±cient; it is at least guaranteed that traditional ensembles

would be built (by considering addition and product). Figure 2 shows a tree example

of an individual which encodes a fusion function that dictates how classi¯ers outputs

are combined in an ensemble.

A centralized population has been used considering as the stopping condition a

maximum number of generations. Standard mutation and crossover have been

applied.16 Mutation randomly exchanges a node by a randomly created sub-tree.

Crossover randomly exchanges sub-tree structures belonging to selected parents.

Roulette-wheel is used as the selection mechanism and the whole population is

replaced by the o®spring every generation.

The whole GP procedure is described next: a set of classi¯ers outputs (ðh1ðxiÞ; . . . ;
hLðxiÞÞ) are the GP inputs for a training data set D. An instance in D is classi¯ed via

10-fold cross-validation for every learner. These results are the GP inputs which

means that for every instance and classi¯er there is an associated value obtained for

that instance belonging to the test partition. In this way, over¯tting is avoided as

much as possible. The GP evolves and returns the fusion function (f �
m) that achieves

the best ¯tness during the optimization process. Then, f �
m is evaluated on unseen test

data, see Figs. 1 and 2.

The ¯tness value of every solution fm is calculated by evaluating its corresponding

function's performance: (1) the predicted class per instance xi is determined as

follows: ŷi ¼ arg maxQfmðh1ðxiÞ; . . . ;hLðxiÞÞ, which is the class index with maxi-

mum con¯dence; (2) fm predictive performance is assessed through standard

Learning to Assemble Classi¯ers via GP
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measures to determine its ¯tness. Two performance metrics are assessed as objectives

for optimization: accuracy and f1-measure. Accuracy relates to the percentage of

instances correctly classi¯ed by the evolved ensemble. While f1-measure is the har-

monic average between precision ( TP
TPþFP) and recall ( TP

TPþFN ) per class. The average

across classes is reported (also called, macro-average), this way of estimating the

f1-measure is known to be particularly useful when tackling unbalanced data sets.

4. Experiments and Results

In this section, results of extensive experimentation are reported in order to show the

e®ectiveness and usefulness of the proposed method. Experiments include an eval-

uation of the proposed ensemble generation mechanism based on GP in benchmark

data; a comparison between the proposed method and baseline ensembles; a per-

formance assessment of the proposed method for generating homogeneous ensembles;

and an analysis of the generalization capabilities of the learned fusion functions.

4.1. Experimental settings

The following classi¯ers were considered for building ensembles via GP: RF, SVM,

klogistic, linear-kridge, nonlinear kridge, 1NN, 3NN, na€{ve Bayes, gkridge, and

neural network. These classi¯ers were taken from the CLOP toolbox comprising a

variety of methodologies that have been widely used to build ensembles.7,9

The proposed technique has been assessed through 40 data sets from the UCI

repository plus the SCEFa data set. The latter is associated to an object recognition

problem and has been previously evaluated on building heterogeneous ensembles.9

In every experimental sample, data sets are divided in to training and testing

partitions. Training partitions are used to learn a fusion function and testing par-

titions are used to assess the built ensemble. In particular, the SCEF data set was

partitioned as follows: 3615 testing and 2629 training instances. Random parti-

tioning was applied to the rest of databases considering 70% for training and 30% for

testing. Table 1 shows data sets characteristics.

Three GP con¯gurations have been de¯ned for the experimental assessment:

Genetic Programming Ensemble (GPE) applies the full operators set, Genetic Pro-

gramming Ensemble by addition (GPE-a) applies only the addition operator simu-

lating the standard approach to learn weights and select ensemble members18,19,25;

and Average Voting Ensemble (AVE) builds ensembles by a voting strategy, i.e. the

fusion function from Eq. (2) with wk ¼ 1. Moreover, every con¯guration is also tested

when using only the top-5 models with better performance on training data; aiming

to determine the accuracy e®ect of classi¯ers assembled via GP.

The processing hardware platform to carry out the experiments was a 64-bit

Intel(R) Core(TM) i7-3820@3.60GHz, 64GB memory. At high level, Matlab 2013a

and GPLab v3 toolbox were used.

ahttp://mklab.iti.gr/project/scef.

N. Acosta-Mendoza et al.
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4.2. SCEF experimental results

This section analyzes results obtained by the proposed ensemble generation mech-

anism for SCEF. This data set is considered as representative because it is among the

largest ones in terms of instances and attributes. Preliminary results on the SCEF

data set were carried out considering a population size of 50 individual and a stop-

ping condition of 100 generations, 10 experimental samples were executed.7

Table 2 shows individual classi¯ers performance in terms of accuracy and

f1-measure. RF signi¯cantly outperforms other classi¯ers. It is expected that the

proposed approach improves RF's performance.

In Table 3, performance metrics average and standard deviation after 10 runs

obtained by the three GP ensemble variants are presented. The proposed ensemble

variants outperform signi¯cantly the raw-fusion function (AVE) in terms of both

measures with di®erences between 40% and 50%. GP-ensembles even outperformed

AVE when using the top-5 models. This shows the limitations of the raw fusion

function for heterogeneous ensembles.

Table 2. Results (%) obtained by individual classi¯ers in terms of accuracy/f1 measure over SCEF

data set.

RF SVM Klogistic Kridge-l Kridge-n 1NN 3NN N.Bayes Gkridge Neural N

Acc. 90.70 55.10 70.60 13.64 74.70 69.30 69.10 26.50 20.60 55.80

f1 79.30 49.90 62.80 2.400 63.10 60.10 57.40 21.60 3.421 37.70

Table 1. Experimental data sets characteristics.

Data set Instances Attributes Classes Data set Instances Attributes Classes

SCEF 6244 737 10

Australian 690 14 2 Phoneme 5404 5 2

Balance 625 4 3 Pima 768 8 2
Banana 5300 2 2 Ring 7400 20 2

Bands 539 19 2 Saheart 462 9 2

Breast 286 9 2 Satimage 6435 36 7
Bupa 345 6 2 Segment 2310 19 7

Car 1728 6 4 Sonar 208 60 2

Chess 3196 36 2 Spambase 4597 55 2

Contraceptive 1473 9 3 Spectfheart 267 44 2
Crx 125 15 2 Splice 3190 60 3

Flare-Solar 1066 9 2 Tae 151 5 3

German 1000 20 2 Texture 5500 40 11

Haberman 306 3 2 Thyroid 7200 21 3
Heart 270 13 2 Tic-tac-toe 958 9 2

Hepatitis 155 19 2 Titanic 2201 3 2

Housevotes 435 16 2 Twonorm 7400 20 2
Iris 150 4 3 Vehicle 846 18 4

Led7digit 500 7 10 Vowel 990 13 11

Mammographic 961 5 2 Wine 178 13 3

Monks 432 6 2 Wisconsin 683 9 2

Learning to Assemble Classi¯ers via GP
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All GP ensembles outperformed the best individual classi¯er. The improvement

for both performance metrics was small for all methods but for GPE. Improvements

of more than 1:5% and 6% were obtained by GPE with respect to the best individual

classi¯er, in terms of accuracy and f1, respectively. GPE was able to ¯nd very

e®ective fusion functions for heterogeneous classi¯ers, even when most models per-

formance was low. Moreover, a 6% improvement in f1 is signi¯cant when persists

across classes, because it focuses on the average performance over classes.

The best results were obtained by the GPE ensemble, i.e. using all operators and

classi¯ers. Using more operators in the GP might allow to obtain better fusion

functions. Moreover, the GP has more selection options because it used all classi¯ers,

which explains the improvement over GPE-Top 5.

The best result in Table 3 improved by more than 10% previously reported

accuracy for the same data set (81.49%).9 Escalante et al. did not optimize the

decision threshold thus the ROC curve area (AUC) is also reported.9 Comparing the

best individual AUC (98.44) with the best result reported in Ref. 9 (94.05), an

improvement of more than 4% is still achieved. These results, to the best of our

knowledge, are the best ones so far reported for the SCEF data set.

4.3. Benchmarking results

This section reports the assessment of the proposed ensemble mechanism considering

40 data sets from the UCI repository (see Table 1). The objective of this experi-

mental evaluation is to analyze the behavior of the proposed technique on bench-

mark data presenting a wide variety in terms of number of: instances, features and

classes. Considering previous experimental results,7 a population size of 100 indivi-

duals evolving up to 100 generations as standard settings are de¯ned.

Figures 3 and 4 show performance di®erences, in terms of accuracy and f1-mea-

sure, respectively, for every ensemble method with respect to the best individual

classi¯er per data set (i.e. ensemble performance minus best-classi¯er performance).

Values above zero indicate signi¯cant improvements over the best individual model.

These results are the average over 10 runs per data set. From these ¯gures, it is

observed that best results were obtained by the GPE ensemble. Speci¯cally, GPE

best performances were achieved for \Wisconsin", \Twonorm", \Housevotes", and

\Spambase". Using a raw fusion ensemble (AVE) showed to be the worst approach

in all cases; and applying a GP ensemble (GPE-a) based on additions had a similar

performance when compared against the best individual classi¯er in most cases.

Table 3. Results (%) obtained by di®erent strategies over SCEF data set when optimizing accuracy
(top) and f1 (bottom). AVE: raw fusion; GPE-a: GP uses only sums; GPE: proposed GP.

AVE AVE-Top5 GPE-a GPE-a-Top5 GPE GPE-Top5

Acc. 31.50 81.40 90.80(0.001) 91.10(0.002) 92.30(0.002) 91.20(0.001)
f1. 27.2 71.90 80.40(0.001) 80.40(0.001) 85.30(0.003) 80.55(0.003)

N. Acosta-Mendoza et al.
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In order to validate the experimental assessment reported in this paper, a sta-

tistical analysis is carried out. Results in Figs. 3 and 4 were statistically analyzed

using t-test over 10 runs per data set. t-test results show that the proposed technique

GPE signi¯cantly improves AVE in all data sets. Also, GPE outperforms GPE-a in

31 out of 40 data sets. There is no statistical di®erence for accuracy between GPE

and GPE-a for iris, led7digit, texture, vowel and wine data sets. On the other hand,

f1-measure for GPE and GPE-a is not signi¯cantly di®erent for car, °are-solar, iris,

segment, tae, vowel and wine data sets.
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Fig. 4. f1-measure di®erences the best individual classi¯er and the ensembles (color online).
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Fig. 3. Accuracy di®erences between the best individual classi¯er and the ensembles (color online).
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Table 4 presents average and standard deviation results for all experimental

data sets obtained by ensemble methods. The best average results are obtained

by GPE together with the lowest standard deviation being the most robust

approach. Next to each performance metric, statistical tests using t-test are in-

cluded in parenthesis. For example, accuracy for GPE-a indicates (0,1,�) which

means: statistical similarity to the best individual learner, statistical signi¯cant

di®erence as regards AVE and statistical signi¯cant deterioration with respect

to GPE.

4.4. Comparing to other ensemble methodologies

This section carries out a comparison among ensembles evolved by the proposed

mechanism and alternative techniques. The following ensembles were considered:

RF4: a bagging method using decision trees; adaboost11 a boosting method using

SVMs; logitboost17 a boosting method using regression trees. These ensemble

methods have proved to be very e®ective in many applications and even in academic

challenges.4,9,11,12 Table 5 shows average and standard deviation performances of

these methods over all data sets.

In addition, a statistical test (t-test) is performed over the results shown in

Table 5 to obtain a comparison of GPE, GPE-a and AVE regarding RF, Adaboost

and Logitboost. The results of this statistical test show that GPE and GPE-a are

better options than RF, Adaboost and Logitboost, while AVE is the worst option.

These statistical results and the values in Table 5 show that the proposed method

signi¯cantly outperforms the three baseline ensembles. These alternative ensemble

methods performed poorly, achieving similar results than AVE. In fact, GPE

obtained more than twice the performance of the baseline classi¯ers. One should note

that outputs of each alternative ensemble could be considered as another classi¯er in

the proposed fusion mechanism. In fact, RF outputs are considered in the proposed

ensemble mechanism.

Table 4. Average and standard deviation performances for B-Classi¯er: best classi¯er;
AVE: raw fusion; GPE-a: GP using only sums; GPE: proposed GP.

B-Classi¯er AVE GPE-a GPE

Acc. 61:01ð25:18Þð1;0;�Þ 40:23ð27:91Þð�;�;�Þ 62:68ð24:45Þð0;1;�Þ 85.75(12.21)ð1;1;1Þ
f1. 63:50ð26:32Þð1;0;�Þ 31:06ð29:00Þð�;�;�Þ 62:91ð26:71Þð0;1;�Þ 84.49(14.94)ð1;1;1Þ

Table 5. Average and standard deviation performances for RF: random forest; AVE: raw fusion;

GPE-a: GP using only sums; GPE: proposed GP.

RF Adaboost Logitboost AVE GPE-a GPE

Acc. 40.95(36.17) 41.69(32.82) 37.64(28.04) 40.23(27.91) 62.68(24.45) 85.75(12.21)

f1. 38.64(35.59) 40.30(31.70) 32.67(25.95) 31.06(29.00) 62.91(26.71) 84.49(14.94)

N. Acosta-Mendoza et al.
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4.5. Fusion functions generalization

In this section, the generalization performance of the learned functions is evaluated.

For this experiment, a fusion function learned through GP for each data set is

selected and assessed in the other 39 data sets. Hence, a total of 40 fusion functions

(each learned for a di®erent data set) were used to combine classi¯ers outputs to test

in all data sets. Figure 5 shows the results matrix, where i; j entry indicates the fusion

function's classi¯cation performance learned for data set i and evaluated in data set

j; where red zones indicate high performance and blue zones are associated with low

performance.

From Fig. 5 it can be seen that better performance was obtained by functions

learned and evaluated in the same data set, see diagonal elements, this is a some-

what expected result. However, it is interesting that there are clearly distinguishable

column-wise and row-wise red/blue zones. Row-wise red (respectively blue) zones

indicate fusion functions with high (respectively low) generalization capabilities.

Column-wise red (respectively blue) zones indicate easy (respectively di±cult) data

sets for which most (respectively a few) fusion functions were e®ective. There are

more red-zones than blue ones, thus assessed fusion functions are somewhat gen-

eralizable and can be applied to other data sets di®erent to the one they were

learned for. However, it is desirable to use a fusion function learned for each speci¯c

data set.

Table 6 presents a summary of the main results from this experiment. It can be

seen that when using the same data set for learning the function and evaluation (row

2), very competitive performance can be obtained. However, if the best fusion

function for each data set is selected the performance would be very close to 100%

(row 4). This means that for some data sets, better results were obtained with

functions learned from di®erent data sets. The average performance across all

data sets is low (row 3), however, the learned functions still have interesting
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Fig. 5. Functions classi¯cation performance (rows) learned for di®erent data sets and evaluated in all

data sets (columns). Results correspond to accuracy (left plot) and f1 measure (right plot) (color online).
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generalization properties. For example, row 5 in Table 6 shows the average number

of data sets in which fusion functions outperformed the best individual classi¯er (row

1). Clearly, each function was helpful in more than 17 and 15 data sets, when

optimizing accuracy and f1 measure, respectively.

4.6. In-depth solutions analysis

In this section, di®erent aspects of the evolved fusion functions are analyzed. The aim

is to gain an insight into the type of functions that can be learned with the proposed

approach.

Figure 6 shows the average frequency (10 runs, 40 UCI data sets) of classi¯er

selection in ensembles generated with the GPE approach. It is clear from this ¯gure

that the most used classi¯er is the most accurate one: RF (see Table 2). This is

somewhat an expected result, however, it is interesting that the second and third

more frequently selected classi¯ers were GKridge and Klogistic, respectively. The

latter classi¯ers are not among the best ones in terms of individual performance, see

Table 2. These results con¯rm ¯ndings in ensemble theory that suggest not only

Table 6. Evaluation summary of performance generalization from
fusion functions.

ID Measure Accuracy f-Measure

1 Perf. Best classi¯er 59.70 62.12
2 Perf. when using the ad hoc weight 87.35 86.87

3 Avg. performance over all data sets 48.81 43.51

4 Maximum performance 97.08 97.47

5 Avg. number of improved data sets 17.22 15.22
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accuracy of individual ensembles is important, but also models diversity (i.e. their

ability to make uncorrelated errors).6,13,14,26

Table 7 shows the average number of terminal and nonterminal nodes (10 runs, 40

UCI data sets) in the fusion functions generated by the proposed method. Recall

terminal nodes are associated to classi¯ers' outputs, while nonterminal nodes cor-

respond to arithmetic operators. From Table 7 it can be seen that there is not a

Table 7. Average number of terminal and nonterminal nodes for fusion functions
learned with GPE, each result is the average of 10 independent runs.

Optimizing Accuracy Optimizing f1

#Nonterminal #Terminals #Nonterminal #Terminals

Australian 10 12 16 21

Balance 16 22 15 19

Banana 15 18 11 15
Bands 13 16 15 21

Breast 13 17 18 25

Bupa 8 10 15 20

Car 8 14 11 16
Chess 11 14 8 12

Contraceptive 21 28 17 21

Crx 13 17 12 15

Flare-solar 13 14 21 31
German 13 15 13 16

Haberman 10 13 12 17

Heart 8 11 7 9
Hepatitis 6 8 14 18

Housevotes 10 14 9 12

Iris 3 4 3 2

Led7digit 12 13 20 28
Mammographic 11 15 17 23

Monks 2 2 3 2

Phoneme 18 21 14 21

Pima 8 12 14 21
Ring 13 16 12 16

Saheart 17 24 19 24

Satimage 18 20 9 10

Segment 8 12 17 20
Sonar 8 10 10 13

Spambase 13 18 10 13

Spectfheart 10 14 19 24
Splice 11 12 9 12

Tae 14 18 17 23

Texture 4 4 7 7

Thyroid 8 13 8 13
Tic-tac-toe 10 13 10 12

Titanic 8 11 7 9

Twonorm 12 15 10 14

Vehicle 15 16 22 24
Vowel 7 10 7 8

Wine 4 5 2 3

Wisconsin 7 8 8 11

Learning to Assemble Classi¯ers via GP
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conclusive trend regarding the number of nodes. Nevertheless, it can be noticed that

for some data sets very small trees (fusion functions) are obtained, e.g. \Monks

(�(NN, Bayes))" and \Wine" ((þð ffip
(RF), KL))) while for other data sets, large

trees are evolved, e.g. \Satimage".b This variety of results reveals GP's adaptive

property for generating ad hoc fusion functions for speci¯c data sets.

4.7. Homogeneous ensembles

An experimental assessment to evaluate the suitability of the proposed mechanism to

build homogeneous ensembles is also performed. The aim is to make an initial

evaluation of the proposed approach when applied to ensemble models from indi-

vidual classi¯ers of the same nature. The \Ring" data set is considered for this

experiment as it is the largest one. For building homogeneous ensembles the pro-

posed approach is applied as described in Sec. 3 following experimental constraints of

Sec. 4.1, without changes. The only di®erence is that con¯dence values h1ðxiÞ; . . . ;
hLðxiÞ are obtained from the same classi¯cation model, but trained on di®erent

subsets of the same data set as the source for diversity to build homogeneous

ensembles in this study. Speci¯cally, half of training instances and features were

randomly selected to train each classi¯cation model, where a total of L ¼ 10 models

were considered for this experiment. Empirical results for homogeneous ensembles

are summarized in Table 8. For di®erent ensemble building strategies, average and

b �ðKR;�ð�ð2ð�ð0:5;�ðKN;�ð2ð�ð0:8;RF ÞÞ;�ð�ð0:6;�ð0:5;2ðNNÞÞÞ;�ðKR;KRÞÞÞÞÞÞ;RF Þ;
þðRF ;RF ÞÞÞ.

Table 8. Average and standard deviation performances for homogeneous ensembles over \Ring"
data set; AVE: raw fusion; GPE-a: GP using only sums; GPE: proposed GP.

AVE AVE-Top5 GPE-a GPE-a-Top5 GPE GPE-Top5

KNN
Acc. 10.54(2e-15) 14.46(4e-15) 36.92(4.23) 39.39 (5.16) 86.52(2.94) 84.72(2.99)

f1. 18.67(4e-15) 23.4(4e-15) 44.21(5.91) 41.71 (11.75) 86.43(2.26) 83.30(2.15)

KRIDGE

Acc. 24.37(0) 24.64(4e-15) 46.02(1.03) 46.02(1.31) 77.17(0.86) 77.01(2.05)
f1. 28.89(8e-15) 29.65(0) 44.65(2.35) 45.88(5.31) 74.75(2.31) 71.68(1.19)

NAIVE

Acc. 29.59(4e-15) 28.29(0) 52.77(1.48) 47.58(1.07) 83.39(1.24) 80.85(1.03)
f1. 21.19(0) 22.85(4e-15) 45.11(2.56) 46.65(7.39) 76.15(2.71) 74.73(3.53)

NEURAL

Acc. 20.99(4e-15) 24.14(4e-15) 48.27(1.39) 48.81(1.71) 79.00(0.17) 75.66(0.22)

f1. 21.13(0) 23.02(4e-15) 48.87(2.11) 50.86(0.64) 77.74(0.28) 76.05(0.31)
RF

Acc. 4.28(0) 5.50(0) 51.12 (1.28) 51.61 (1.35) 95.30(0.35) 94.67(0.22)

f1. 2.57(0) 3.87(0) 40.26 (14.86) 37.86 (20.07) 95.20(0.20) 93.78(0.62)

KLOGISTIC
Acc. 24.05(4e-15) 25.09(0) 47.74(1.11) 47.68(1.07) 77.47(1.90) 77.30(1.84)

f1. 26.57(0) 28.07(0) 46.04(3.19) 46.65(7.39) 75.68(1.91) 72.64(0.62)

N. Acosta-Mendoza et al.
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standard deviation performances in terms of accuracy and f1 measure, are reported

after 10 independent runs.

Homogeneous ensembles generated with GPE outperformed the best individual

classi¯er (GKridge: 48.74 accuracy, 65.53 f1) and the other ensemble variants,

similar behavior was observed by heterogeneous ensembles. Considering results from

this case study, it is possible to conclude that the proposed approach is also useful to

generate highly e®ective homogeneous ensembles. However, comparing the best

homogeneous ensemble performance for the ring data set to the best heterogeneous

ensemble built by GPE (95.95 accuracy, 96.15 f1); the heterogeneous approach

signi¯cantly improves the others. A partial conclusion indicates that heterogeneous

ensembles seem to outperform homogeneous ones; although an extensive study is

required to backup these results.

5. Conclusion

In this research, a GP approach to learn fusion functions for building heterogeneous

ensembles has been presented. The proposed approach consists in combining clas-

si¯ers' outputs through GP. Approaching ensemble construction through an evolu-

tionary technique allows for more complex fusion functions spaces to arise. GP

solutions representation includes arithmetic operators to relate individual learners

thus nonlinear fusion functions can be evolved in an ensemble. Empirical results on

both, benchmark data and a challenging object-recognition data set were reported.

The extensive empirical assessment exposed the proposed approach e®ectiveness.

GP-based ensembles consistently outperformed the best individual models, a raw-

ensemble of heterogeneous classi¯ers, several con¯gurations to optimize ensemble

models and traditional ensembles.

An analysis of evolved solutions, in terms of individual classi¯ers frequency to

form an ensemble, not only con¯rmed the expected high membership of the best

individual classi¯er but also showed at second and third ranking positions two weak

learners. This con¯rms, to a certain level, diversity importance among ensemble

members that make uncorrelated errors. Another empirical assessment applied an

ensemble solution from a speci¯c data set to the rest of benchmark data sets. Ten-

dencies showed high performances which imply generalization properties of evolved

fusion functions. Also, homogeneous ensembles were built by the proposed approach

demonstrating °exibility.

Several research directions were identi¯ed: including the suitability of the pro-

posed approach to learn fusion functions for other tasks, including multi-modal

information retrieval8 and ensemble feature selection.21
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