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Reminder - scalar product

scalar (dot, inner) product of two vectors:
x,w ∈ Rd : w · x = 〈w, x〉 =
wtx =

∑d
i=1 wixi ∈ R

cos θ = 〈w,x〉
‖w‖ ‖x‖

〈w, x〉 = 0 ⇐⇒ w ⊥ x

projection of x on w is

Projw x =
〈x,w〉
‖w‖

w
‖w‖

=
〈x,w〉
‖w‖2

w

θ

x

w

Projwx

Vlad PA196: Pattern Recognition



Introduction
Linearly separable binary problems

Fisher discriminant analysis
Linear regression

General problem
Margins
Generalizations

Outline

1 Introduction
General problem
Margins
Generalizations

2 Linearly separable binary problems
General approach
The perceptron

3 Fisher discriminant analysis

4 Linear regression
Minimum squared-error procedures
The Widow-Hoff procedure
Ho-Kashyap procedures

Vlad PA196: Pattern Recognition



Introduction
Linearly separable binary problems

Fisher discriminant analysis
Linear regression

General problem
Margins
Generalizations

General problem

we consider the binary classification problem (K = 2)
without loss of generality, we let the labels of the classes be
±1
we are given a set
X ×Y = {(xi , yi)|i = 1, . . . , n} ⊂ Rd × {−1,+1}
the goal is to find the parameters of the classifier such that the
number of misclassified points is minimized
let the discriminant function have the form

h(x) = wtx + w0 = 〈w, x〉+ w0 = w0 +
d∑

i=1

wixi

note that x can be replaced with φ(x)! (we’ll discuss this later)
the classifier is

sign(h(x)) = sign(〈w, x〉+ w0)
Vlad PA196: Pattern Recognition
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an error: if sign(〈w, xi〉+ w0) , yi ; in other words: if
yi(〈w, xi〉+ w0) < 0⇔ yih(xi) < 0

the risk of misclassification (error) is

R(h) = Pr[Y , sign(h(X))]

where (X ,Y) is a random pair of observations

the empirical risk is the estimation of the risk on a given set of
points:

R̂n(h) =
1
n

n∑
i=1

1{yi,sign(h(xi))} =
1
n

n∑
i=1

1yih(xi)<0

you need n ≥ d + 1 points for learning the classifier
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x

h(x) = 0w

x1

x2

x3

w0 /||
w||

r

H

xp

R 1

R 2

ThelineardecisionboundaryH,whereh(x) =wtx+w0 = 0, separatesthe
featurespace into two half-spacesR 1 (whereh(x) > 0)andR 2 (whereh(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classi cation. Copyright
c 2001 by JohnWiley& Sons, Inc.

fi
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Margins

Functional Margin

The functional margin of a point xi with respect to a hyperplane w
is defined to be

γi = yi(〈w, xi〉+ w0) = yih(xi)

Geometric Margin

The geometric margin of a point xi with respect to a hyperplane w
is defined to be

γi = yi

(〈
w
‖w‖

, xi

〉
+

w0

‖w‖

)
= yi

h(xi)

‖w‖

→ Geometric margin is the normalized functional margin.
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Margin of a point
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Margin of a set (of points)

The maximum margin among all (hyper)planes is the margin of a
set of points. The corresponding hyperplane is called maximum
margin hyperplane.
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Generalization to multi-class problems

a multi-class problem can be
decomposed in a series of
two-class problems: 1-vs-all or
1-vs-1

or, one can use K (no. of classes)
discriminant fn. hi(x) and build
classifiers of the form: assign x to
class i if hi(x) > hj(x) for all i , j

this defines K(K − 1)/2
hyperplanes Hij : hi(x) − hj(x) = 0

in practice, there are usually less
hyperplanes that form the decision
surface

g1

g2

g3

H13

H23

H12R1

R2
R3
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Generalized linear discriminants

Consider a function ψ : Rd → Rd̂ . The discriminant function

g(x) = 〈a, ψ(x)〉 =
d̂∑

i=1

aiψi(x)

is a linear function in a (but not in x).
Example: let x = x ∈ R and let ψ(x) = [1, x, x2]t ∈ R3.
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Remarks:

a problem which is not linearly separable in Rd may become
linearly separable in Rd̂

ψ =?

finding the coefficients in Rd̂ requires much more training
points!

the decision surface, when projected back into Rd (by ψ−1) is
non-linear

Vlad PA196: Pattern Recognition
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a convenient (but trivial) transformation: "normalization" of the
notation

take ψ(x) = y[1, x]t . This allows us to write

γ = yh(x) = y(〈w, x〉+ w0) = 〈a, z〉

where a = [w0,w]t and z = y[1, x]t

the problem becomes: find a such that

〈a, z〉 > 0

i.e. all the margins are positive

the decision surface Ĥ in Rd+1, defined by 〈a, z〉 = 0,
corresponds to a hyperplane passing through the origin of the
z−space
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consider we are given the set {(xi , yi)} with yi = ±1

with the previous "normalized" notation, the set is linearly
separable if

〈a, zi〉 > 0, ∀i = 1, . . . , n

the solution a is constrained by each point zi

aaa

under current conditions, the solution is not unique!

solutions on the boundary of the solution space may be too
sensitive→ you can use the condition 〈a, zi〉 ≥ ξ > 0
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General approach

let J(a) be a criterion function that measures the "suitability"
of a candidate solution a

by convention, the solution to the classification problem is
obtained as

a∗ = arg min
a

J(a)

usually, J is chosen to be continuous (at least in a
neighborhood of the solution) and differentiable

Vlad PA196: Pattern Recognition
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Gradient descent

ak+1 = ak − ηk∇J(ak )

the negative gradient, −∇J(a) is locally
the steepest descent towards a (local)
minimum

ηk is a line search parameter or learning
rate

start with some a0 and iterate until
|ηk∇J(ak )| < θ

x0

x1

x2

x3

x4

*

*
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Using Taylor’s 2nd order approximation:

J(a) u J(ak ) + ∇J(a − ak ) +
1
2
(a − ak )

tH(a − ak ),

where H is the Hessian matrix H =
[
∂2J
∂ai∂aj

]
ij
, one can find the

optimal learning rate as

ηk =
‖∇J‖2

(∇J)tH(∇J)
.

Note: if J is quadratic, then ηk is a constant.
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Newton’s method

ak+1 = ak − H−1(∇J)

works well for quadratic objective functions

problems if the Hessian is singular

no need to invert H: solve the system Hs = −∇J and update
the solution ak+1 = ak + s
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The perceptron

criterion: find a∗ (or, equivalently, w∗ and w∗0) that minimize

J(a) = −
∑
i∈I

γi = −
∑
i∈I

〈a, zi〉

where I is the set of indices of misclassified points

note: since γi < 0 for all misclassified points, J(a) ≥ 0,
reaching 0 when all points are correctly classified

it is easy to see that

∇aJ(a) = −
∑
i∈I

zi

Vlad PA196: Pattern Recognition
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using gradient descent we get the updating iterations of the
form

ak+1 = ak + ηk zi

the perceptron in guaranteed to converge in a finite number of
iterations, if the training set is separable - Novikoff’s thm

from Novikoff’s thm. the number of mistakes the perceptron
makes is upper bounded by(

2R
γ

)2

where R is the radius of the sphere containing the data points,
i.e. R = maxi ‖xi‖
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Perceptron algorithm (batch perceptron)

Input: A separable training set X ×Y and a stop criterion θ
Output: ak such that γi > 0,∀i and k is the number of mistakes

1: a0 ← 0, k ← 0, η0 ← some initial value
2: repeat
3: for i = 1 to n do
4: if γi = 〈ak , zi〉 < 0 then
5: ak+1 ← ak + ηk zi

6: k ← k + 1
7: end if
8: end for
9: until |ηk

∑
i∈Ik zi | < θ
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What about ηk ? There are different "schedules" for modifying it...

conditions: ηk ≥ 0, limm→∞
∑m

k=1 ηk = ∞ and

lim
m→∞

∑m
k=1 η

2
k(∑m

k=1 ηk

)2
= 0

ηk = constant > 0

ηk ∝
1
k
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let a be the solution of the perceptron algorithm
it is easy to see that a =

∑n
i=1 αizi where

αi =

0, if point i was always correctly classified

> 0,∝ the number of times point i was misclassified

αi can be seen as the importance (or contribution) of zi to the
classification rule
the discriminant function can be rewritten as

h(x) = 〈a, z〉

=

〈 n∑
i=1

αizi , z
〉

=
n∑

i=1

αi〈zi , z〉

this is the dual form of the perceptron algorithm
Vlad PA196: Pattern Recognition
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Dual formulation of the perceptron algorithm

Input: A training set X ×Y
Output: α = [α1, . . . , αn]

1: α← 0
2: repeat
3: for i = 1 to n do
4: if γi =

(∑n
j=1 αj〈zj , zi〉

)
≤ 0 then

5: αi ← αi + 1
6: end if
7: end for
8: until no mistakes
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Dual representation - remarks

in dual representation, the only way data is involved in the
algorithm/formula is through the dot products 〈zi , zj〉

this property is valid for a large class of methods

the dot products for the data can be computed offline, and
stored in a Gram matrix G = [〈zi , zj〉]ij

similarly, to predict the class of a new point x, just (some of)
the products 〈z, zi〉 are needed
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Relaxation procedures

Another objective function:

Jr(a) =
1
2

∑
i∈I

(〈a, zi〉 − ξ)
2

‖zi‖
2

it is smooth and has a continuous gradient function
the term ξ is introduced to avoid the solution on the boundary
of the solution space
‖z‖2 is a normalization term to avoid Jr being dominated by
the largest vectors
1/2 is merely to make the gradient nicer...

∇Jr =
∑
i∈I

〈a, zi〉 − ξ

‖zi‖
2

zi
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Algorithms:

batch relaxation with margin: update step:

ak+1 = ak + ηk

∑
i∈Ik

ξ − 〈ak , zi〉

‖zi‖
2

zi

single-sample relaxation with margin: update step (for each
misclassified sample zi):

ak+1 = ak + ηk
ξ − 〈ak , zi〉

‖zi‖
2

zi

if ηk < 1: underrelaxation; if ηk > 1: overrelaxation
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Fisher criterion

Objective

Find the hyperplane (w,w0) on which the projected data is
maximally separated.
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the lenght of the projection of a vector z
onto w is 〈w,z〉

‖w‖

projection of the difference vector
between the means of the two classes
(taking ‖w‖ = 1):

|〈w, (µ+1 − µ−1)〉|

maximize the difference, relative to the
projected pool variance (scatter):

1
n+1 + n−1

(s2
+1 + s2

−1)

s2
· =

∑
i(〈w, xi〉 − 〈w, µ·〉)2 where the sum

is over the elements in either class

Objective: maximize

J(w) =
|〈w, µ+1〉 − 〈w, µ−1〉|

2

s2
+1 + s2

−1
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projection of the difference vector
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|〈w, (µ+1 − µ−1)〉|
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n+1 + n−1

(s2
+1 + s2
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s2
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s2
+1 + s2
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Fisher criterion

w∗ = arg max
w

J(w) = arg max
w

wtSbw
wtSww

where

Sb = (µ+1 − µ−1)(µ+1 − µ−1)
t ← between-class scatter matrix

Sw =
∑

i∈I+1
(xi − µ+1)(xi − µ+1)

t +
∑

i∈I−1
(xi − µ−1)(xi − µ−1)

t

← within-class scatter matrix

Sw is proportional to sample covariance matrix for the pooled
data
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Jw is also known as Rayleigh quotient

the solution has the form

w∗ ∝ S−1
w (µ+1 − µ−1)

and it defines the direction of Fisher’s linear discriminant

the classification of d−dimensional points is transformed into
a classification of one-dimensional points
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no assumption on the underlying distributions was made in
finding w∗

the complete form of the linear discriminant is

〈w, x〉+ w0 = 0

to find w0 one can, for example:
assume p(x| ± 1) to be Gaussians: this leads to the previously
seen formulas for w0 (see Ch. 2)
try to find a value optimal for the training set
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Linear regression problem

Find a = ([w0,w]t) such that

bi = 〈a, zi〉, i = 1, 2, . . . , n

for some fixed positive constants bi . In matrix notation, solve the
linear system

Za = b

for a.

Z is a n × (d + 1)−dimensional matrix (design matrix), a is a
(d + 1)−elements vector.
b is a n−elements vector (response vector)
usually n > d + 1, so the system is overdetermined→ no
exact solution
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define the error vector

e = Za − b

minimum squared error criterion:

minimize Js(a) = ‖e‖2 =
n∑

i=1

(〈a, zi〉 − bi)
2

at the minimum, the gradient ∇Js = 2Zt(Za − b) is zero
⇒ a = (ZtZ)−1Ztb = Z†b, where Z† is the pseudoinverse of Z

the solution depends on b and different choices lead to
various properties of the solution
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Relation to Fisher’s linear discriminant

by properly choosing the class coding, one can show that
MSE approach is equivalent to FDA

bi =
n

n+1
for the class "+1" (with n+1 elements) and bj =

n
n−1

for the class "-1" (with n−1 elements)

the MSE criterion for a = [w0,w] leads to

w ∝ nS−1
w (µ+1 − µ−1)

which is the direction of FDA

additionally, it gives a value for the threshold: w0 = −µtw (µ is
the grand mean vector)

the decision rule becomes: if wt(x − µ) > 0 classify x as
belonging to the first class
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Relation with Bayesian classifier

let the Bayesian discriminant be

h0(x) = P(g1|x) − P(g2|x)

the samples are assumed to be drawn independently and
identically distributed from the underlying distribution

p(x) = p(x|g1)P(g1) + p(x|g2)P(g2)

MSE becomes

ε2 =

∫
(〈a, z〉 − h0(x))

2 p(x) dx
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→ the solution to MSE problem, a, generates an
approximation of the Bayesian discriminant

p(x) =?

main problem of MSE: places more emphasis on points with
high p(x) instead of point near to the discrimination surface

→ the "best" approximation of Bayes decision does not
necessarily minimize the probability of error
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Numerical considerations on the LS problem

Using the pseudo-inverse is not the best technique, from a
numerical stability perspective:

computing ZtZ and Ztb may lead to information loss due to
approximations in floating-point computations

the conditioning of the system is worsen:
cond(ZtZ) = [cond(Z)]2

Normally, a matrix factorization is used for improved numerical
stability: QR, SVD,...
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QR factorization

The n ×m (with m > n) matrix Z can be factorized as

Z = QR

where

Q is an orthogonal matrix: QtQ = I⇔ Q−1 = Qt

R is an upper triangular matrix

With this, the solution a to our problem is the solution of the
triangular system (solved by backsubstitution):

Ra = Qtb
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A statistical perspective

A linear model (linear regression) problem:

E[b] = Za, under the assumption Cov(b) = σ2I

It can be shown that the best linear unbiased estimator is

â = (ZtZ)−1Ztb = R−1Qtb

for a decomposition Z = QR. Then: b̂ = QQtb. (Gauss-Markov
thm.: LS estimator has the lowest variance among all unbiased
linear estimators.) Also,

Var(â) = (ZtZ)−1σ2 = (RtR)−1σ2

where σ2 = ‖b − b̂‖2/(n − d − 1).
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the MSE criterion, Js(a) =
∑n

i=1(〈a, zi〉 − bi)
2 can also be

minimized by gradient descent method

since
∇Js = 2Zt(Za − b)

the update rule becomes

a1 = some value

ak+1 = ak + ηk Zt(Zak − b)

if ηk = η1/k , the procedure convergest to a limiting value for a
satistifying

Zt(Za − b) = 0

this algorithm yields a solution even if ZtZ is singular or badly
conditioned
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The Widrow-Hoff (or LMS) algorithm implements sequential
gradient descent. (In signal processing: least mean squares filter -
adaptive filtering...)
Input: A training set (X, y)
Output: a - approximate MSE solution

1: initialize a,b, η1, θ and k ← 0
2: repeat
3: k ← (k + 1)n
4: a← a + ηk (bk − 〈a, zk 〉)zk

5: ηk ← η1/k
6: until |ηk (bk − 〈a, zk 〉)zk | < θ
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[DHS - Fig.5.17]

x1

x2

separating hyperplane

LMS solution
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consider b = Za be the margins (instead of fixed labels)

idea: adjust both the coefficients a and the margins b such
that b > 0 (each margin should be positive)

formally: find a and b > 0 such that

Js(a,b) = ‖Za − b‖2

becomes 0

use a modified gradient descent, with gradient taken w.r.t. a
and b
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