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@ scalar (dot, inner) product of two vectors:
X,WeR?: w-x=(w,Xx)=
wix =39 wix; eR

_ wx)
© CoSO = i
o (W, x)=0 & wLlXx

@ projection of x on w is

. X,w) w (X, W)
Projy, X = —_—=
WX T i T wie
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General problem

@ we consider the binary classification problem (K = 2)

@ without loss of generality, we let the labels of the classes be
+1

@ we are given a set
XxY ={x,y)li=1,....,n} cRI x (-1, +1}

o the goal is to find the parameters of the classifier such that the
number of misclassified points is minimized

@ let the discriminant function have the form

d
h(x) = WX + wo = (W, ) + Wo = Wo + > Wix;
i=1
@ note that x can be replaced with ¢(x)! (we’ll discuss this later)
o the classifier is

al-
sign(h(x)) = sign({w, x) + wp) IBA
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@ an error: if sign({w, X;) + wp) # y;; in other words: if
yi((w, X)) + wp) < 0 © yih(x;) <0
o the risk of misclassification (error) is

R(h) = Pr[Y # sign(h(X))]

where (X, Y) is a random pair of observations

o the empirical risk is the estimation of the risk on a given set of
points:

. 1<
Rn(h) = E Z; 1{y,¢3|gn(h(x, Z yih(x;)<
=
@ you need n > d + 1 points for learning the classifier w
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Thelinear decision boundary H, where h(x) = wix+w, = 0, separates the
feature space into two half-spacesR ; (where h(x) > 0) and R , (where h(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattem Classification. Copyright
C 2001 by John Wiley & Sons, Inc.
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Margins

Functional Margin

The functional margin of a point x; with respect to a hyperplane w
is defined to be

yi = yi((w, X;) + wp) = yih(x))

Geometric Margin
The geometric margin of a point x; with respect to a hyperplane w

is defined to be
w Wo h(x;)
Xi)+ —| =y
y’(<||w|| > ||w||) Y wl

— Geometric margin is the normalized functional margin.
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Margin of a point
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The maximum margin among all (hyper)planes is the margin of a
set of points. The corresponding hyperplane is called maximum
margin hyperplane.

~
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@ a multi-class problem can be
decomposed in a series of
two-class problems: 1-vs-all or
1-vs-1

@ or, one can use K (no. of classes)
discriminant fn. h;(x) and build
classifiers of the form: assign x to
class i if hi(x) > h;j(x) for all i # j

o this defines K(K —1)/2
hyperplanes Hj : hi(x) — hj(x) =0

@ in practice, there are usually less
hyperplanes that form the decision
surface
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Consider a function ¢ : RY — RY. The discriminant function

d
9(x) = (a,y(x)) = Z aii(x)
i—1

is a linear function in a (but not in x).
Example: let x = x € R and let y/(x) = [1, x, x?]' € R3.

| |
IBA
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Remarks:
@ a problem which is not linearly separable in RY may become
linearly separable in RY
oy =7
o finding the coefficients in RY requires much more training
points!

o the decision surface, when projected back into RY (by ) is
non-linear
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a convenient (but trivial) transformation: "normalization" of the
notation

take y(x) = y[1,x]". This allows us to write
y = yh(x) = y((W, X) + wo) = (a,2)

where a = [wp, w]' and z = y[1,x]'
the problem becomes: find a such that

(a,z) >0

i.e. all the margins are positive

the decision surface H in R, defined by (a,z) =0,
corresponds to a hyperplane passing through the origin of the
z—space
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@ consider we are given the set {(x;, yi)} with y; = +1

@ with the previous "normalized" notation, the set is linearly
separable if
(a,z;)>0, Vi=1,...,n

@ the solution a is constrained by each point z;

a a a

@ under current conditions, the solution is not unique!

@ solutions on the boundary of the solution space may be too
sensitive — you can use the condition (a,z;) > ¢ > 0
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General approach

@ let J(a) be a criterion function that measures the "suitability”
of a candidate solution a

@ by convention, the solution to the classification problem is
obtained as
a’ =arg main J(a)

@ usually, J is chosen to be continuous (at least in a
neighborhood of the solution) and differentiable
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Gradient descent

ak1 = ax —nkVd(ak)

@ the negative gradient, —VJ(a) is locally
the steepest descent towards a (local)
minimum

@ 1)k is a line search parameter or learning
rate

o start with some ag and iterate until
Ik VJ(ak)l < 6
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Using Taylor’'s 2nd order approximation:

J(a) = J(ak) + VJ(a —ax) + %(a —ak)'H(a - ak),

where H is the Hessian matrix H = [aa b3

] one can find the

optimal learning rate as

IVJII?

= W)

Note: if J is quadratic, then 7y is a constant.
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Newton’s method

Ak+1 = Ak — H' (VJ)

@ works well for quadratic objective functions
@ problems if the Hessian is singular

@ no need to invert H: solve the system Hs = —VJ and update
the solution a1 = ax + s
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The perceptron

o criterion: find @* (or, equivalently, w* and w) that minimize
J(a) = - Z)’i = - Z(a, zj)
iel iel
where I is the set of indices of misclassified points

@ note: since y; < 0 for all misclassified points, J(a) > 0,
reaching 0 when all points are correctly classified

@ it is easy to see that

VaJ(a) = - Z Zj

i€l
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@ using gradient descent we get the updating iterations of the
form
A1 = Ak + 1kZ|

@ the perceptron in guaranteed to converge in a finite number of
iterations, if the training set is separable - Novikoff’s thm

@ from Novikoff’s thm. the number of mistakes the perceptron
makes is upper bounded by

S
Y
where R is the radius of the sphere containing the data points,

i.e. R = max;||xil|
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Perceptron algorithm (batch perceptron)

Input: A separable training set X x Y and a stop criterion 6
Output: ak such that y; > 0, Vi and k is the number of mistakes
1: ag « 0, k « 0, no « some initial value
2: repeat
3: fori=1tondo
4 if yi = (ak,z;) < 0then
S A1 < Ak + Nk Z;
6: k—k-+1
7 end if
8: end for
9: until [k Xjep, 2il < 0
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What about nx? There are different "schedules" for modifying it...
@ conditions: nx > 0, liMm_e0 Y.pq 7k = o and
m 2
lim 2"2—177"2 -0
m—oo
(ZT:1 TIk)

@ 7n¢ = constant > 0

1
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@ let a be the solution of the perceptron algorithm
o itis easy to see thata = ). , ajz; where

0, if point i was always correctly classified
> 0, « the number of times point i was misclassified

@ «; can be seen as the importance (or contribution) of z; to the
classification rule
@ the discriminant function can be rewritten as

h(x) = (a,2)
= <Z iz, Z>
i—1
= Z @(Zj, Z)
i=

o this is the dual form of the perceptron algorithm
Viad PA196: Pattern Recognition
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Dual formulation of the perceptron algorithm

Input: A training set X x Y
Output: a = [a1,..., )]
1: a0
2: repeat
3. fori=1tondo
4 if y; = (X]_; 2j(z}.2)) < 0 then
5: aj — aj+ 1
6: end if
7:  end for
8: until no mistakes
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Dual representation - remarks

@ in dual representation, the only way data is involved in the
algorithm/formula is through the dot products (z;, z;)

@ this property is valid for a large class of methods

@ the dot products for the data can be computed offline, and
stored in a Gram matrix G = [(z;,2))];j

o similarly, to predict the class of a new point x, just (some of)
the products (z, z;) are needed
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Relaxation procedures

Another objective function:

1 ¢ (@z) -¢)°

J@==- ) ——
@=3 Zﬂ zil[2

@ it is smooth and has a continuous gradient function

o the term ¢ is introduced to avoid the solution on the boundary
of the solution space

@ ||z|? is a normalization term to avoid J, being dominated by
the largest vectors

@ 1/2is merely to make the gradient nicer...

Z (a,zj) - §
zE al-
jel IBA
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Algorithms:
@ batch relaxation with margin: update step:
- <ak’ Z>
Bt = At Y SR Z0,

112
£ izl

@ single-sample relaxation with margin: update step (for each
misclassified sample z;):

f_ <akezi>z'

Ak = Ak + 1k i
l1zill?

o if nx < 1: underrelaxation; if nx > 1: overrelaxation

Viad PA196: Pattern Recognition
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Fisher criterion

Objective

Find the hyperplane (w, wp) on which the projected data is
maximally separated.
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the lenght of the projection of a vector z

o (w,2z)
onto w is Wi

projection of the difference vector
between the means of the two classes
(taking |lw|| = 1):

KW, (g1 = p—1))]

maximize the difference, relative to the
projected pool variance (scatter):

1

2 2
ST+ 8-
N4 +n—1( i !

s2 = ¥,((w, ;) — (w, ..))? where the sum
is over the elements in either class
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the lenght of the projection of a vector z

o (w,2z)
onto w is Wi

projection of the difference vector
between the means of the two classes
(taking |lw|| = 1):

KW, (g1 = p—1))]

maximize the difference, relative to the
projected pool variance (scatter):

1

2 2
ST+ 8-
N4 +n—1( i !

s2 = ¥,((w, ;) — (w, ..))? where the sum
is over the elements in either class

Objective: maximize

J(w)

W, ) = (W )P
- 2 2
s2, + 82,

My

al_
IBA
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Fisher criterion

t

w'Sp,w

W’ = arg max J(w) = arg max ——>—
w w wiS,w

where

@ Sp = (st —p1)(us1 — 1)t < between-class scatter matrix

© Sy = et (Xi = 1) (Xi = pr1)" + Ve, (Xi = 1) (Xi = puv)!
« within-class scatter matrix

@ S, is proportional to sample covariance matrix for the pooled
data
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@ Jy is also known as Rayleigh quotient
@ the solution has the form

W oc S (et — )

and it defines the direction of Fisher’s linear discriminant

o the classification of d—dimensional points is transformed into
a classification of one-dimensional points
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@ no assumption on the underlying distributions was made in
finding w*
@ the complete form of the linear discriminant is

(W, X)+wp =0

@ to find wp one can, for example:

o assume p(x| = 1) to be Gaussians: this leads to the previously
seen formulas for wy (see Ch. 2)
o try to find a value optimal for the training set
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Linear regression problem
Find a = ([wo, w]!) such that

bi=<(a,z), i=1,2,...,n

for some fixed positive constants b;. In matrix notation, solve the

linear system
Za=>b

for a. )

@ Zis anx(d+ 1)-dimensional matrix (design matrix), a is a
(d + 1)—elements vector.

@ b is a n—elements vector (response vector)

@ usually n > d + 1, so the system is overdetermined — no i
exact solution IBA
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@ define the error vector
e—Za-b

@ minimum squared error criterion:

minimize Js(a) = lel® = " ((a.z) - b;)?

i=1

@ at the minimum, the gradient VJs = 2Z!(Za - b) is zero
= a = (Z!2)7'Z'b = Z'b, where Z is the pseudoinverse of Z

o the solution depends on b and different choices lead to
various properties of the solution
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Relation to Fisher’s linear discriminant

(*]

(*]

by properly choosing the class coding, one can show that
MSE approach is equivalent to FDA

b = n_L for the class "+1" (with n..1 elements) and b = -
for the class "-1" (with n_; elements)

the MSE criterion for a = [wp, w] leads to

woe nS (i1 = pit)

which is the direction of FDA

additionally, it gives a value for the threshold: wy = —u'w (u is
the grand mean vector)

the decision rule becomes: if w!(x — ) > 0 classify x as
belonging to the first class
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Relation with Bayesian classifier

Minimum squared-error procedures
The Widow-Hoff procedure
Ho-Kashyap procedures

@ let the Bayesian discriminant be

ho(x) = P(g11x) — P(galx)

o the samples are assumed to be drawn independently and
identically distributed from the underlying distribution

p(x) = p(xlg1)P(g1) + p(xlg2) P(g2)

@ MSE becomes

e = f((a, z) — ho(x))? p(x) dx
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— the solution to MSE problem, a, generates an
approximation of the Bayesian discriminant

@ p(x) =7

@ main problem of MSE: places more emphasis on points with

high p(x) instead of point near to the discrimination surface

— the "best" approximation of Bayes decision does not
necessarily minimize the probability of error
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Using the pseudo-inverse is not the best technique, from a
numerical stability perspective:

@ computing Z!Z and Z'b may lead to information loss due to
approximations in floating-point computations

@ the conditioning of the system is worsen:
cond(Z'Z) = [cond(Z)]?
Normally, a matrix factorization is used for improved numerical
stability: QR, SVD,...
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QR factorization

The nx m (with m > n) matrix Z can be factorized as
Z=QR

where
@ Qis an orthogonal matrix: QI Q=1 Q™" = Q!
@ R is an upper triangular matrix

With this, the solution a to our problem is the solution of the
triangular system (solved by backsubstitution):

Ra = Q'b

Viad PA196: Pattern Recognition



Introduction

Linearly separable binary problems
Fisher discriminant analysis

Linear regression

A statistical perspective

Minimum squared-error procedures
The Widow-Hoff procedure
Ho-Kashyap procedures

A linear model (linear regression) problem:
E[b] = Za, under the assumption Cov(b) = o2/
It can be shown that the best linear unbiased estimator is
a=(2'2)'Z'b=R'Q'b

for a decomposition Z = QR. Then: b = QQ'b. (Gauss-Markov
thm.: LS estimator has the lowest variance among all unbiased
linear estimators.) Also,

Var(a) = (2'2)'¢0? = (R'R) o2

where 02 = ||b - b|)?/(n—d - 1).

Viad PA196: Pattern Recognition



Introduction

Linearly separable binary problems
Fisher discriminant analysis

Linear regression

Outline

Minimum squared-error procedures
The Widow-Hoff procedure
Ho-Kashyap procedures

e Linear regression

@ The Widow-Hoff procedure

Vlad

PA196: Pattern Recognition



Introduction

Linearly separable binary problems
Fisher discriminant analysis

Linear regression

Minimum squared-error procedures
The Widow-Hoff procedure
Ho-Kashyap procedures

the MSE criterion, Js(a) = 3.1, ({a,z;) — bj)? can also be
minimized by gradient descent method

since
VJs = 2Z'(Za - b)

the update rule becomes

a; — some value
Ax+1 = Ak + nth(Zak -b)
if nx = n1/k, the procedure convergest to a limiting value for a

satistifying
Z!(Za-b) =0

this algorithm yields a solution even if Z!Z is singular or badly
conditioned

Viad PA196: Pattern Recognition
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The Widrow-Hoff (or LMS) algorithm implements sequential
gradient descent. (In signal processing: least mean squares filter -
adaptive filtering...)

Input: A training set (X,y)

Output: a - approximate MSE solution

1: initialize a,b,ny, 6 and k < 0
2: repeat

33 ke (k+1)n

4. a < a+ bk —(a zk))z
5. nk < m/k

6: until Ink(bk —{a, Zk>)Zk| <46
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[DHS - Fig.5.17]

X,
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@ consider b = Za be the margins (instead of fixed labels)
o idea: adjust both the coefficients a and the margins b such

that b > 0 (each margin should be positive)
formally: find a and b > 0 such that

Js(a,b) = |[Za - b|?

becomes 0

use a modified gradient descent, with gradient taken w.r.t. a
and b
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