
Design Class Diagrams

PB007 Software Engineering I

Bruno Rossi

28. 11. 2016

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 1 / 16



Design Class Diagrams

A Class Diagram gives a static view of the classes, their attributes,
operations and relationships.

Analysis Class Diagram

business model of the domain - object types and relationships

the effort is to maintain clarity and simplicity without clogging with
implementation details.

Design Class Diagram

the analysis model classes and the implementation details of the
classes.

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 2 / 16



Design Classes

A design class provides a level of abstraction such that it can be easily
implemented.
can come from:

Business domain - including details at the analysis level
(decomposition into more classes, complement implementation
details).

domain technical classes - classes required by the technology used
(classes for working with GUI, DB, ...)

Implementation details include:

Attributes and their types/visibility.

Visibility, arguments, return types from methods.

Methods added to the analysis operations, such as constructors
(destructors), getter/setter methods, implementation methods.

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 3 / 16



Design Classes - Example

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 4 / 16



Advanced Analysis Associations

More advanced association types for implementation details:
aggregation or composition.

Are generally defined with a name, navigability and multiplicity.

Decomposition of bidirectional associations.

Type of associations 1:1, 1:M, M:1.

Decomposition of associations M:N.

Decomposition of association classes.

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 5 / 16



Aggregation

Aggregation is a type whole-part relationship.

The whole may or may not exist without its parts

Parts can exist independently from the whole

The whole is in a sense incomplete if some parts are missing.

Part may theoretically be shared by several units.

Aggregation is transitive and asymmetric (without cycles).

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 6 / 16



Composition

Composition is a stronger form of aggregation

At a specific time parts can only belong to one group (they cannot
stand alone).

The whole is responsible for the creation and deletion of the parts.

If the whole is deleted, it must either delete all its parts, or shift
responsibility for them to another object.

The composition is asymmetric and transitive (without cycles).

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 7 / 16



Revision of 1:1 associations

Analysis:

Design:

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 8 / 16



Revision of M:1 associations

Analysis:

Design:

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 9 / 16



Revision of 1:M associations

Analysis:

Design:

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 10 / 16



Decomposition of M:N associations

Analysis:

Design:

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 11 / 16



Decomposition of association classes

Analysis:

Design:

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 12 / 16



Decomposition of bi-directional associations

Analysis:

Design:

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 13 / 16



Interfaces

Interfaces are special classes that define a set of public services, attributes
and relationships, but do not implement them. They are used to define the
contract that classes provide.

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 14 / 16



Tasks

Extend the analysis model into the design model by using class
diagrams.

Specify visibility and type of all attributes.

Add methods that originated from the decomposition of analysis
operations, implementation and support methods (constructors,
getter / setter methods, ...), determine their visibility, arguments and
return types.

Please specify further the analysis associations (with naming,
multiplicity, navigability, aggregation / composition, decomposition
of association classes and M: N associations )

Fill relations of dependencies among classes.

If necessary, add other implementation classes or interfaces

Upload the PDF report into folder (Week 09).
Deadline: Saturday, 3.12.16 23:59

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 15 / 16



Customization of PDF Reports

Software Engineering I (PB007) Design Class Diagrams 28. 11. 2016 16 / 16


