A Brief Intro to Verilog
Brought to you by: Sat Garcia

" JE
Meet your 141(L) TA

m Sat Garcia

sat@cs.ucsd.edu
2nd Year Ph.D. Student

Office Hours: (Tentative)
m Place: EBU3b B225 (basement)
= Monday: 3-4pm
» Wednesday: 11am-Noon

m Please come to my office hours. | get lonely there
by myself!

" S
What is Verilog?

m Verilog is:
A hardware design language (HDL)
Tool for specifying hardware circuits
Syntactically, a lot like C or Java
An alternative to VHDL (and more widely used)
What you'll be using in 141L
HELLA COOL!*

*If you are totally into hardware design Ianguaéﬁs

Verilog in the Design Process

Behavioral — Test
Algorithm | - Results
—

Manual 1

=== Simulate

Register —> RTesltt
U] esults

Transfer Level

Logic Synthesis 1
—n SimulatefW

Gate Level
- Results

B

Auto Place + Route 1

gl

Adapted from Arvind & Asanovic’s MIT 6.375 lecture 4

" J
Ways To Use Verilog

m Structural Level

Lower level
= Has all the details in it (which gates to use, etc)

Is always synthesizable

m Functional Level
Higher Level

» Easier to write
Gate level, RTL level, high-level behavioral
Not always synthesizable

m We'll be sticking with functional mostly

" I
Data Types in Verilog

m Basic type: bit vector
Values: 0, 1, X (don't care), Z (high
impedence)

m Bit vectors expressed in multiple ways:
binary: 4'b11_10 (_ is just for readability)
hex: 16'h034f
decimal: 32'd270
other formats but these are the most useful

" J
Data types (continued)

m Connect things together with: wire
Single wire:
= wire my_wire;
“Array” of wires
m wire[7:0] my_wire;
= Why not wire[0:7]?

m For procedural assignments, we'll use reg

Again, can either have a single reg or an array
m reg[3:0] accum; // 4 bit “req”
reg is not necessarily a hardware register

"
A simple example (comb. circuit)

m Let's design a 1 bit full adder

a b

l L module FA(a, b, cin,
cin s, cout);
D — assigns=a’b”’c;
cout | FA assign cout = (a & b) | (a & cin) | (b & cin);
<« endmodule
LS *** Note: red means new concept, blue and

are just pretty colors :-p
. Ok, but what if we want more than 1 bit FA?

Adapted from Arvind & Asanovic’s MIT 6.375 lecture 8

" S
A 4-bit Full Adder

m \We can use 1 bit FA
to build a 4 bit full
adder

module 4bitFA(input [3:0] A, B, input cin,
output [3:0] S, output cout);
wire c0, c1, c2;
FA fa0(A[0],B[0],cin,S[0],c0); // implicit binding
FA fa1(.a(A[1]), .b(B[1]), .cin(c0), .s(S[1]), .cout(c1)); // explicit binding
FA fa2(A[2],B[2],c1,S[2],c2);
FA fa3(A[3],B[3],c2,S[3],cout);
endmodule

Adapted from Arvind & Asanovic’s MIT 6.375 lecture 9

Testing the adder

‘timescale 1ns/1ns // Add this to the top of your file to set time scale

module testbench();
reg [3:0] A, B;
reg CO;
wire [3:0] S;
wire C4;
4bitFA uut (.B(B), .A(A), .cin(CO0), .S(S), .cout(C4)); / instantiate adder

initial // initial blocks run only at the beginning of simulation (only use in testbenches)
begin

$monitor($time,"A=%b,B=%b, c_in=%b, c_out=%b, sum = %b\n",A,B,C0,C4,S);
end
initial
begin

A =4'd0; B = 4'd0; CO = 1'b0;

#50 A = 4'd3; B = 4'd4; // wait 50 ns before next assignment

#50 A = 4'b0001; B = 4'b0010; // don’t use #n outside of testbenches
end

endmodule
10

Verilog RTL Operators

Arithmetic [+ - * / % ** Reduction N b~
Logical ' oss || Shift >> << >>> <<
Relational |> < >= <= Concatenation |{ }

Equality N Conditional 2:

Bitwise

m Avoid using %, **, and / because you'll run
into problems when trying to synthesis

Adapted from Arvind & Asanovic’s MIT 6.375 lecture 11

"
A simple D flip flop (seq. circuit)

m For sequential circuits, use always blocks

m Always blocks (and assign) are executed in
parallel!

module DFF(input clk, d,
output g, g_bar);
reg q, q_bar;
always @ (posedge clk) // triggered on the rising edge of the clock
begin
q <=d; /I non-blocking assignment (LHS not updated until later)
q_bar <= ~d;
/* q_bar <= ~q will not function correctly! */
end
endmodule

Adapted from Arvind & Asanovic’s MIT 6.375 lecture 12

“ J
Always blocks in comb. circuits

m Can use continual assignment AND always
blocks for combinational circuits

m Our 1-bit adder using always block

module FA(a, b, cin,
s, cout);
reg s, cout; // when using always block, LHS must be reg type
always @ (a or b orcin) // for comb circuits, sensitive to ALL inputs
begin

s = a” b *cin; // use blocking assignment here (LHS immediately)
cout=(a&b)|(a&cin)| (b &cin);
end
endmodule

13

" Jd
Quick Note on blocking vs. non-
blocking

m Order of blocking statements matter

These are not the same
c=a+b; d=c+e;
d=c+e; c=a+b;

m Order of non-blocking statements doesn’t
These are the same

c<=a+b; d<=c+e;
d<=c+e; c<=a+b;

m Use non-blocking with sequential, blocking with
combintational

14

" S
Tips for maintaining
synthesizability

Only leaf modules should have functionality

All other modules are strictly structural, i.e., they only wire together
sub-modules

Use only positive-edge triggered flip-flops for state

Do not assign to the same variable from more than one
always block

Separate combinational logic from sequential logic

Avoid loops like the plague
Use for and while loops only for test benches

Adapted from Arvind & Asanovic’s MIT 6.375 lecture 15

"
Another Example (4 input MUX)

[| We can use case module mux4(input a, b, c, d,

P input [1:0] sel,
statements within outout out);

an always block reg out;

always @(*)
begin
case (sel)
2’d0 : out = a;
2’d1 : out = b;
2’d2 : out =c;
2’d3 : out =d;
default : out = 1’bx;
endcase
end

endmodule

Adapted from Arvind & Asanovic’s MIT 6.375 lecture 16

" J
Finite State Machines (FSMs)

m Useful for designing many different types of
circuits
m 3 basic components:
Combinational logic (next state)
Sequential logic (store state)
Output logic
m Different encodings for state:

Binary (min FF’s), Gray, One hot (good for FPGA),
One cold, etc

17

A simple FSM in Verilog

module simple_fsm(clk, start, start = 0
output restart);

reg [1:0] state, next_state;
parameter SO = 2’b00, S1 = 2'b01, S2 = 2'b10; // binary encode

always @ (*)
begin : next_state_logic
case (state)
S0: begin
if (start) next_state = S1;
else next_state = SO;

?nd . Can. /I continued from left
S1: beg!n next_state = S2; end always (posedge clk)
82.' begin begin: state_assignment

if (restart) next_state = SO; state <= next_state:

else next_state = S2; end

end
default: next_state = SO; endmodule
endcase

end // continued to the right 18

"
Tips on FSMs

m Don’t forget to handle the default case

m Use two different always blocks for next state
and state assignment

Can do it in one big block but not as clear

m Outputs can be a mix of combin. and seq.
Moore Machine: Output only depends on state
Mealy Machine: Output depends on state and inputs

19

Next step: design your own HW

m Now that you have the basics...
Check out MIT’s 6.375 course webpage

= Thanks to Asanovic & Arvind for slides
m Lectures 2 and 3 on Verilog
m http://csqg.csail.mit.edu/6.375/handouts.html

Try making some simple circuits

Beware when Googling for “verilog tutorial”
= A lot of code out there isn’t synthesizable

20

10

