
1

A Brief Intro to Verilog
 Brought to you by: Sat Garcia

2

Meet your 141(L) TA

 Sat Garcia
sat@cs.ucsd.edu
2nd Year Ph.D. Student
Office Hours: (Tentative)

 Place: EBU3b B225 (basement)
 Monday: 3-4pm
 Wednesday: 11am-Noon
 Please come to my office hours. I get lonely there

by myself!

2

3

What is Verilog?

 Verilog is:
A hardware design language (HDL)
Tool for specifying hardware circuits
Syntactically, a lot like C or Java
An alternative to VHDL (and more widely used)
What you'll be using in 141L
HELLA COOL!*

* If you are totally into hardware design languages

4

Verilog in the Design Process

Behavioral
Algorithm

Register
Transfer Level

Gate Level

Manual

Logic Synthesis

Auto Place + Route

Test
Results

Simulate

Test
Results

Simulate

Test
Results

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

3

5

Ways To Use Verilog
 Structural Level

 Lower level
 Has all the details in it (which gates to use, etc)

 Is always synthesizable

 Functional Level
 Higher Level

 Easier to write
 Gate level, RTL level, high-level behavioral
 Not always synthesizable

 We’ll be sticking with functional mostly

6

Data Types in Verilog

 Basic type: bit vector
Values: 0, 1, X (don't care), Z (high

impedence)
 Bit vectors expressed in multiple ways:

binary: 4'b11_10 (_ is just for readability)
hex: 16'h034f
decimal: 32'd270
other formats but these are the most useful

4

7

Data types (continued)
 Connect things together with: wire

Single wire:
 wire my_wire;

“Array” of wires
 wire[7:0] my_wire;
 Why not wire[0:7]?

 For procedural assignments, we'll use reg
Again, can either have a single reg or an array

 reg[3:0] accum; // 4 bit “reg”

reg is not necessarily a hardware register

8

A simple example (comb. circuit)

 Let's design a 1 bit full adder

FA

ba

s

cin

cout

module FA(input a, b, cin,
output s, cout);

assign s = a ^ b ^ c;
assign cout = (a & b) | (a & cin) | (b & cin);

endmodule

 Ok, but what if we want more than 1 bit FA?

*** Note: red means new concept, blue and
green are just pretty colors :-p

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

5

9

A 4-bit Full Adder

 We can use 1 bit FA
to build a 4 bit full
adder

module 4bitFA(input [3:0] A, B, input cin,
output [3:0] S, output cout);

wire c0, c1, c2;
FA fa0(A[0],B[0],cin,S[0],c0); // implicit binding
FA fa1(.a(A[1]), .b(B[1]), .cin(c0), .s(S[1]), .cout(c1)); // explicit binding
FA fa2(A[2],B[2],c1,S[2],c2);
FA fa3(A[3],B[3],c2,S[3],cout);

endmodule

FA FA FA FA

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

10

Testing the adder
`timescale 1ns/1ns // Add this to the top of your file to set time scale

module testbench();
 reg [3:0] A, B;
 reg C0;
 wire [3:0] S;
 wire C4;
 4bitFA uut (.B(B), .A(A), .cin(C0), .S(S), .cout(C4)); // instantiate adder

 initial // initial blocks run only at the beginning of simulation (only use in testbenches)
 begin
 $monitor($time,"A=%b,B=%b, c_in=%b, c_out=%b, sum = %b\n",A,B,C0,C4,S);
 end
 initial
 begin
 A = 4'd0; B = 4'd0; C0 = 1'b0;
 #50 A = 4'd3; B = 4'd4; // wait 50 ns before next assignment
 #50 A = 4'b0001; B = 4'b0010; // don’t use #n outside of testbenches
 end
endmodule

6

11

Verilog RTL Operators

 Avoid using %, **, and / because you'll run
into problems when trying to synthesis

~ & | ^ ^~Bitwise

== != ===
!===Equality
> < >= <=Relational
! && ||Logical
+ - * / % **Arithmetic

& ~& | ~| ^
^~Reduction
>> << >>> <<<Shift
{ }Concatenation
?:Conditional

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

12

A simple D flip flop (seq. circuit)

 For sequential circuits, use always blocks
 Always blocks (and assign) are executed in

parallel!
module DFF(input clk, d,

output q, q_bar);
reg q, q_bar;
always @ (posedge clk) // triggered on the rising edge of the clock
begin

q <= d; // non-blocking assignment (LHS not updated until later)
q_bar <= ~d;
/* q_bar <= ~q will not function correctly! */

end
endmodule

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

7

13

Always blocks in comb. circuits

 Can use continual assignment AND always
blocks for combinational circuits

 Our 1-bit adder using always block
module FA(input a, b, cin,

output s, cout);
reg s, cout; // when using always block, LHS must be reg type
always @ (a or b or cin) // for comb circuits, sensitive to ALL inputs
begin

s = a ^ b ^ cin; // use blocking assignment here (LHS immediately)
cout = (a & b) | (a & cin) | (b & cin);

end
endmodule

14

Quick Note on blocking vs. non-
blocking
 Order of blocking statements matter

 These are not the same

 Order of non-blocking statements doesn’t
 These are the same

 Use non-blocking with sequential, blocking with
combintational

c = a + b;
d = c + e;

d = c + e;
c = a + b;

c <= a + b;
d <= c + e;

d <= c + e;
c <= a + b;

8

15

Tips for maintaining
synthesizability
 Only leaf modules should have functionality

 All other modules are strictly structural, i.e., they only wire together
sub-modules

 Use only positive-edge triggered flip-flops for state
 Do not assign to the same variable from more than one

always block
 Separate combinational logic from sequential logic
 Avoid loops like the plague

 Use for and while loops only for test benches

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

16

Another Example (4 input MUX)
 We can use case

statements within
an always block

module mux4(input a, b, c, d,
input [1:0] sel,
output out);

 reg out;

 always @(*)
 begin
 case (sel)
 2’d0 : out = a;
 2’d1 : out = b;
 2’d2 : out = c;
 2’d3 : out = d;
 default : out = 1’bx;
 endcase
 end

endmodule

Adapted from Arvind & Asanovic’s MIT 6.375 lecture

9

17

Finite State Machines (FSMs)

 Useful for designing many different types of
circuits

 3 basic components:
 Combinational logic (next state)
 Sequential logic (store state)
 Output logic

 Different encodings for state:
 Binary (min FF’s), Gray, One hot (good for FPGA),

One cold, etc

18

A simple FSM in Verilog
module simple_fsm(input clk, start,

output restart);

 reg [1:0] state, next_state;
 parameter S0 = 2’b00, S1 = 2’b01, S2 = 2’b10; // binary encode
 always @ (*)
 begin : next_state_logic

case (state)
S0: begin
 if (start) next_state = S1;
 else next_state = S0;
 end
S1: begin next_state = S2; end
S2: begin
 if (restart) next_state = S0;
 else next_state = S2;
 end
default: next_state = S0;
endcase

 end // continued to the right

 // continued from left
 always @ (posedge clk)
 begin: state_assignment
 state <= next_state;
 end

endmodule

10

19

Tips on FSMs

 Don’t forget to handle the default case
 Use two different always blocks for next state

and state assignment
 Can do it in one big block but not as clear

 Outputs can be a mix of combin. and seq.
 Moore Machine: Output only depends on state
 Mealy Machine: Output depends on state and inputs

20

Next step: design your own HW

 Now that you have the basics…
Check out MIT’s 6.375 course webpage

 Thanks to Asanovic & Arvind for slides
 Lectures 2 and 3 on Verilog
 http://csg.csail.mit.edu/6.375/handouts.html

Try making some simple circuits
Beware when Googling for “verilog tutorial”

 A lot of code out there isn’t synthesizable

