
Recurrent Networks

Contains material from:

Andrej Karpathy’s blog:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Christopher Olah’s blog
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Geoffrey Hinton’s lecture:
https:

//www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf

1

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf


Recurrent Neural Network – vector notation

A simple example of a recurrent MLP:

I Input: ~x

I Hidden (state): ~h

I Output: ~y

I Matrices U,W ,V

~h = σ(U~x + W~h)

Here σ is an activation function (applied
component-wise), typically sigmoidal or ReLU.

~y = σ(V~h)

Here σ is typically softmax (so that we get
probabilities) or sigmoidal.

In what follows I will use σ to denote arbitrary activation functions, keep in
mind that each neuron may have different activation function.

2



Recurrent Neural Network – sequence modeling

I Input sequence: ~x1, . . . , ~xT of vectors.
I Output sequence: ~y1, . . . , ~yT of vectors obtained by

~ht = σ(U~xt + W~ht−1)

~yt = σ(V~ht )

3



RNN – Component-wise

Denote:

~x = (x1, . . . , xM)

~h = (h1, . . . ,hH)

~y = (y1, . . . , yN)

For all k = 1, . . . ,H

hk = σ

 M∑
k ′=1

Ukk ′xk ′ +

H∑
k ′=1

Wkk ′hk ′


For all k = 1, . . . ,N

yk = σ

 H∑
k ′=1

Vkk ′hk ′


4



RNN – Component-wise – Unfolding
I Input sequence: x = ~x1, . . . , ~xT

~xt = (xt1, . . . , xtM)

I Hidden sequence:
h = ~h0, ~h1, . . . , ~hT

~ht = (ht1, . . . ,htH)

We have ~h0 = (0, . . . ,0) and

htk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′


I Output sequence: y = ~y1, . . . , ~yT

~yt = (yt1, . . . , ytN)

We have ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)

5



RNN – Component-wise – Unfolding

6



RNN – Comments

I ~ht is the memory of the network, captures what
happend in all previous steps (with decaying quality).

I RNN shares weights U,V ,W across all steps.
Note the similarity to convolutional networks where the
weights were shared spatially over images, here they are
shared temporally over sequences.

I RNN can deal with sequences of variable length.
Compare with MLP which accepts only fixed-dimension
vectors on input.

7



RNN – language modelling (toy example)

RNN generating text character by character.

Models the probability distribution of the next character in a
given sequence.

Learns the distribution from a huge number of sequences.

For simplicity, assume 4 letter aplhabet: h, e, l, o

Encode letters using one-hot encoding, e.g. e is (0,1,0,0).

Output layer: Softmax
Error: Cross-entropy
Training: Gradient descent (simply unfold in time, see later)

8



RNN – language modelling (toy example)

9



Deeper RNN

Two hidden layers ... may be arbitrary number.
10



... and deeper

11



Binary addition – another toy

I MLP can be trained to do binary addition, but there are obvious
regularities that it cannot capture efficiently:

I We must decide in advance the maximum number of digits
in each number.

I The processing applied to the beginning of a long number
does not generalize to the end of the long number because
it uses different weights.

I As a result, feedforward nets do not generalize well on the binary
addition task.

12



Binary addition – another toy

A finite transducer, in every step reads a pair of numbers of {0,1}2

and prints an output number of {0,1}.

The network should imitate activity of the automaton.

Three hidden neurons should be enough.

13



Binary addition – another toy

The network has two input neurons and one output neuron.

Three hidden neurons are sufficient for binary addition.

14



Binary addition – another toy

I RNN learns four distinct patterns of activity for the 3 hidden
neurons. These patterns correspond to the nodes in the
finite state automaton.

I Do not confuse units in a neural network with nodes in a
finite state automaton. Nodes are like activity vectors.

I The automaton is restricted to be in exactly one state at
each time. The hidden units are restricted to have exactly
one vector of activity at each time.

I A recurrent network can emulate a finite state automaton,
but it is exponentially more powerful. With N hidden
neurons it has 2N possible binary activity vectors (but only
N2 weights)

I This is important when the input stream has two separate
things going on at once.

I A finite state automaton needs to square its number of
states.

I An RNN needs to double its number of units.
15



Machine translation with RNN

16



Variants of RNN

I one to one: Standard MLP, single vector in, single out.
I one to many: Single vector in, sequence out.

Image captioning: image in, sentence out.
I mnay to one: Sequence in, single vector out.

Sentiment analysis: sentence in, sentiment (positive/negative) out.

17



Variants of RNN

I many to many: Sequence in, sequence out.
Machine translator: English sentence in, Czech out (may have different
lengths).

I many to one: Synced sequences in and out.
Video classification, where we wish to label each frame of the video.

18



Image recognition: recurrent attention model

The recurrent network tells a "glimpse" network, where to look.

The state of the recurrent network changes based on location
and actual perception in the location.

19



RNN – Learning

We consider a fixed training example (x,d) where
I x = ~x1, . . . , ~xT is a given input sequence, here

~xt = (xt1, . . . , xtN)

I d = ~d1, . . . , ~dm is a given sequence of desired values.

~dt = (dt1, . . . ,dtM)

Unfolding the RNN for x gives a sequence of hidden states:

~h0, ~h1, . . . , ~hT each ~ht = (ht1, . . . ,htH)

here ~h0 = (0, ...,0) and a sequence of output values:

~y1, . . . , ~yt each ~yt = (yt1, . . . , ytM)

Error function (e.g. squared error): E(x,d) =
∑T

t=1
∑M

k=1(ytj −dtj)
2

20



Learning – backpropagation through time

RNN training algorithm is easy to obtain:
I Unfold the RNN for several time steps.
I Consider it to be a (deep) MLP.
I Train with gradient descent.

However, one has to keep in mind that U,W ,V
are shared in all time instants.

To simplify training and to connect with MLP and convolutional
networks, we abstract all neurons in the unfolding, and denote
them by indices i, j, etc. as before for MLP.

21



Learning – backpropagation through time

22



Recurrent networks – unfolding

Let us make neurons of the unfolding anonymous:
I Denote

I X a set of input neurons of the unfolding
I Y a set of output neurons of the unfolding
I Z a set of all neurons of the unfolding (X ,Y ⊆ Z)

I individual neurons of the unfolding denoted by indices i, j
I ξj is the inner potential of the neuron j after the computation

stops
I σj is the activation function of j
I yj is the output of the neuron j after the computation stops

I wji is the weight of the connection from i to j
I j← is a set of all i such that j is adjacent from i

(i.e. there is an arc to j from i)
I j→ is a set of all i such that j is adjacent to i

(i.e. there is an arc from j to i)
I jshare is a set of neurons sharing weights with j

jshare consists of all incarnations of the same neuron of the RNN in
different time instants t .

23



Gradient descent (single training example)

Consider the single training example (x,d).
In the case of SGD, minibatches of such pairs are used, their
errors are averaged.

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2), . . ..
Do not forget that these are weights in the RNN, possibly shared by some
neurons in the unfolding.

I weights in ~w(0) are randomly initialized to values close to 0
I in the step ` + 1 (here ` = 0,1,2 . . .), weights ~w(`+1) are

computed as follows:

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) · ∇E(x,d)(~w(t))

24



Backprop

∇E(x,d)(~w(t)) is a vector of all partial derivatives
∂E(x,d)

∂wji
.

I First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :

∂E(x,d)

∂wji
=

∑
r∈jshare

∂E(x,d)

∂yr
· σ′r (ξr ) · yi

I for every j ∈ Y :

∂E(x,d)

∂yj
= yj − dj

This holds for the mean-square error, for other error functions
the derivative w.r.t. outputs will be different.

I for every j ∈ Z r Y :

∂E(x,d)

∂yj
=

∑
r∈j→

∂E(x,d)

∂yr
· σ′r (ξr ) · wrj

25



In the notation of RNN

∂E(x,d)

∂Vkk ′
=

T∑
t=1

∂E(x,d)

∂ytk
· σ′ · htk

∂E(x,d)

∂Wkk ′
=

T∑
t=1

∂E(x,d)

∂htk
· σ′ · h(t−1)k

∂E(x,d)

∂Ukk ′
=

T∑
t=1

∂E(x,d)

∂htk
· σ′ · xtk

Backprop:

∂E(x,d)

∂ytk
= ytk − dtk

∂E(x,d)

∂htk
=

N∑
k ′=1

∂E(x,d)

∂ytk ′
·σ′·Vkk ′+

H∑
k ′=1

∂E(x,d)

∂h(t+1)k ′
·σ′·Wkk ′

26



Long-term dependencies

∂E(x,d)

∂htk
=

N∑
k ′=1

∂E(x,d)

∂ytk ′
· σ′ · Vkk ′ +

H∑
k ′=1

∂E(x,d)

∂h(t+1)k ′
· σ′ ·Wkk ′

I Unless Wkk ′ · σ′ ≈ 1, the gradient either vanishes, or
explodes.

I For large T (long-term dependency), the "deeper" gradient
is too small (large).

I A solution: LSTM

27



LSTM

(~yt =) ~ht = ~ot ◦ σh(~ct ) output

~ct = ~ft ◦ ~ct−1 +~it ◦ C̃t memory

C̃t = σc(WC ·
~ht−1 + UC · xt ) new memory contents

~ot = σg(Wo · ~ht−1 + Uo · ~xt ) output gate
~ft = σg(Wf ·

~ht−1 + Uf · ~xt ) forget gate
~it = σg(Wi · ~ht−1 + Ui · ~xt ) input gate

I ◦ is the component-wise product
I σh , σc original is hyperbolic tangents

(But in my opinion can be whatever you would put into the output and
hidden layers, resp.)

I σg original is logistic sigmoid
28



LSTM

29



RNN vs LSTM

30



LSTM

31



LSTM

~ft = σg(Wf ·
~ht−1 + Uf · ~xt )

32



LSTM

C̃t = σc(WC ·
~ht−1+UC ·xt )

~it = σg(Wi · ~ht−1 + Ui · ~xt )

33



LSTM

~ct = ~ft ◦ ~ct−1 +~it ◦ C̃t

~ft = σg(Wf ·
~ht−1 + Uf · ~xt )

C̃t = σc(WC ·
~ht−1+UC ·xt )

~it = σg(Wi · ~ht−1 + Ui · ~xt )

34



LSTM

(~yt =) ~ht = ~ot ◦ σh(~ct )

~ot = σg(Wo ·~ht−1 +Uo ·~xt )

~ct = ~ft ◦ ~ct−1 +~it ◦ C̃t

~ft = σg(Wf ·
~ht−1 + Uf · ~xt )

C̃t = σc(WC ·
~ht−1+UC ·xt )

~it = σg(Wi · ~ht−1 + Ui · ~xt )

35



Fun with LSTM – Shakespeare

I A LSTM generating new Shakespeare character by character!

I All works of Shakespeare concatenated into a single (4.4MB)
file.

I 3-layer RNN with 512 hidden neurons in each layer.

VIOLA: Why, Salisbury must find his flesh and thought That which I
am not aps, not a man and in fire, To show the reining of the raven
and the wars To grace my hand reproach within, and not a fair are
hand, That Caesar and my goodly father’s world; When I was heaven
of presence and our fleets, We spare with hours, but cut thy council I
am great, Murdered and by thy master’s ready there My power to give
thee but so much as hell: Some service in the noble bondman here,
Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods With his heads, and
my hands are wonder’d at the deeds, So drop upon your lordship’s
head, and your opinion Shall be against your honour.

36



Fun with LSTM – Wikipedia

I Hutter Prize 100MB dataset of raw Wikipedia data (96MB
for training, the rest for validation )

Naturalism and decision for the majority of Arab countries’ capitalide was
grounded by the Irish language by [[John Clair]], [[An Imperial Japanese
Revolt]], associated with Guangzham’s sovereignty. His generals were the
powerful ruler of the Portugal in the [[Protestant Immineners]], which could be
said to be directly in Cantonese Communication, which followed a ceremony
and set inspired prison, training. The emperor travelled back to [[Antioch,
Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful
fashioned the [[Thrales]], [[Cynth’s Dajoard]], known in western [[Scotland]],
near Italy to the conquest of India with the conflict. Copyright was the
succession of independence in the slop of Syrian influence that was a famous
German movement based on a more popular servicious, non-doctrinal and
sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http:
//www.humah.yahoo.com/guardian.cfm/7754800786d17551963s89.htm

Official economics Adjoint for the Nazism, Montgomery was swear to
advance to the resources for those Socialism’s rule, was starting to signing a
major tripad of aid exile.]]

37

http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm
http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm


Randomly halucinated (correct!!) xml:

<page>
<title>Antichrist</title>
<id>865</id>
<revision>
<id>15900676</id>
<timestamp>2002-08-03T18:14:12Z</timestamp>
<contributor>
<username>Paris</username>
<id>23</id>

</contributor>
<minor />
<comment>Automated conversion</comment>
<text xml:space="preserve">
#REDIRECT [[Christianity]]</text>

</revision>
</page>

38



Fun with LSTM – LaTeX

I Train RNN on an algebraic geometry book
http://stacks.math.columbia.edu/

I Raw LaTeX source file (a 16MB file) and trained a
multilayer LSTM.

I The resulting sampled Latex almost compiles!
I The authors had to step in and fix a few issues manually

but then you get plausible looking math.

39

http://stacks.math.columbia.edu/


40



Linux source code

I Trained on all the source and header files found in the
Linux repo on Github, concatenated all of them in a single
giant file (474MB of C code).

I 3-layer LSTM with approx. 10 million parameters.

41



42



43



Evolution of Shakespeare

100 iter.:

300 iter.:

500 iter.:

700 iter.:

1200 iter.:

2000 iter.:

44


