Vector quantization

» Assume we are given a probability density function p(x) on
input vectors X € R".
l.e. assume that the inputs are randomly generated according to p(X).
» Our goal is to approximate p(X) using finitely many
centres w; c R" wherei=1,...,h.
Roughly speaking: We want more centres in areas of higher density
and less in areas of low density.
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» Assume we are given a probability density function p(x) on
input vectors X € R".
l.e. assume that the inputs are randomly generated according to p(X).
» Our goal is to approximate p(X) using finitely many
centres w; c R" wherei=1,...,h.
Roughly speaking: We want more centres in areas of higher density
and less in areas of low density.
» Formally: To every input X we assign its closest centre
- -
> . =2 -
c(X) = arg i:rr11,|”r.1,h { ||x - W,'||}
and then minimize the error
=2 - 2 =2 =2
£~ [ 1K=t pi)0%

Caution! ¢(x) depends on X.
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Vector quantization

In practice, p(X) is obtained by sampling uniformly from a given
training (multi)set:

T ={XeR"|j=1,...,0

The error then corresponds to

1 ¢
E= Z;”’?f‘ We(s)

(keep in mind that ¢(X;) = argmini=1_n { 1% — wi| }.)

2

If 7~ has been randomly selected according to p(X) and ¢ is large

eough, then
2 - -
~ f 1% = Wiz

1 - > - AV Iy
7 Z HX/ — Wez) 2 p(X)dx
j=1




Example — image compression

» Every pixel has 256 shades of grey,

» each pair of neighbouring pixels is a
two-dimensional vector from
{0,...,255} x{0,...,255},

» our compression finds a small set of
centres that will encode shades of grey
of pairs of pixels,

» image is then encoded by simple
substitution of pairs of pixels with their
centres.




Example — image compression

pair distribution

naive quantization

smart quantization
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Lloyd’s algorithm

Assume a finite training set: 7 = {X; e R" | j=1,...,{)
The algorithm moves centres closer to the centres of mass of
closest points.
In the step t computes W'\, ..., v?/,(f) as follows:
» forevery k =1,..., h compute a set 7 of all vectors of 7~

-

to which ngt_” is the closest centre:
_Jz _ ; 2 w(t=1)
Tk = {x, €T | k=arg i:r?,l..r.],h{ ||xj w; H }}

» compute vT/,((t) as the centre of mass of 7:

We may stop the computation when, e.g. the error E is
sufficiently small.
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Kohonen’s learning

Disadvantage of Lloyd’s algorithm: It is not online!

The following Kohonen’s algorithm is online (i.e. the inputs may
be generated one by one and the centres are adapted online):

In step t, consider the input %; and compute w'"

. as follows:

If vT/IgH) is the closest centre to X;, i.e.

k = argmin; |[X; — v?/l.(t'”” then
V—‘»/l((t) _ —»’Et—1) +0- ()_()t _ W’Et—ﬂ)
St o (t-1)
else w, ' =w,

0 < 6 < 1 determines how much to move the centre towards
the input.

Let us formulate this algorithm in the language of neural
networks.
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Kohonen’s learning — neural network
Architecture: Single layer

Yk

58 B

Wy Wi Wkn

X1 Xj Xn
Activity: Foraninput X e R"and k =1,...,h:

|1 k=argmini_y_n ||)?— WI“
=10 otherwise



In step t, consider the input X; and compute vT/,((t) as follows:



Kohonen’s learning

In step t, consider the input X; and compute W( ) as follows:

If W,((t D is the cIosest center to X;, i.e.

k = arg min; th || then
- (t > (t-1
Wl(()—W( )+6( W,E ))
>(1)  o(t-1)
else w, ' =w,

0 < 6 < 1 determines how much to move the center towards
the input.
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Kohonen’s learning — efficiency

» Works well if most input vectors evenly distributed in a
convex area.

» In case of two (or more) separated clusters, the density
may not correspond to p(X) at all:

» Ex. Two separated areas with the same density.

» Assume that the centres are initially in one of the areas.

» The second then "drags” only one of the centres (which
always wins the competition).

» Result: One of the areas will be covered by a single centre
even though it contains half of the mass of the input
examples.

Solution: We tie centres together so that they have to move
together.



Kohonen’s map
Architecture: Single layer

Yk

T 1

Wk Wi Wkn

X1 Xi Xn

» Topological structure: neurons connected by edges so
that they are nodes in an undirected graph.

» In most cases, this structure is either a one dimensional
sequence or a two dimensional grid.



Kohonen’s map - illustration




Kohonen’s map — bio motivation

posterior cortex visual field of the
(lobus occipitalis) right eye

center of the visual field

: . visual field and corresponding cortex region
and corresponding cortex region

Fig. 15.2. Mapping of the visnal field on the cortex

Source: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996



Activity: Given an input vector X e R"and k = 1,..., h:

[t k=argmin_y_p||X - W
Yk = {o jinak



Kohonen’s map
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)1 k=argmini h||)7—"7’i||
yk_{o jinak

Learning: We use the topological structure.
» Denote by d(c, k) the length of the shortest path from
neuron ¢ to neuron Kk in the topological structure.
» For every neuron ¢ and a given s € N define topological
neighbourhood of the neuron c of size s :
Ns(c) = {k | d(c, k) < s}



Kohonen’s map
Activity: Given an input vector X e R"and k = 1,..., h:

)1 k=argmini h||)7—"7’i||
yk_{o jinak

Learning: We use the topological structure.
» Denote by d(c, k) the length of the shortest path from
neuron ¢ to neuron Kk in the topological structure.
» For every neuron ¢ and a given s € N define topological
neighbourhood of the neuron c of size s :
Ns(c) = {k | d(c, k) < s}

In step t, given training example X; adapt wy as follows:

> (t-1 - > (t-1 -
) _ {W,Et 6. (Xr —w )) k € Ns(c(Xt))

k w1 otherwise

k

where ¢(X;) = argmini—1__p H)?t — vT/I.(t_1)|| and O e Rand s € Ny
are parameters that may change during training. 13



Kohonen’s map - learning

More general version:

W =W 1 ee(®), k) (% - w' )

where ¢c(X;) = argmini_1 _p “)?t - Wi(t—ﬂ”_ The previous case
then corresponds to

O(c(R), K) = {g /;ifall:ls(c(xt))

A smoother version:

O(c(Xt), k) = 0o - exp (M)

where 6y € R is a learning rate and ¢ € R is the width (both
parameters may change during training).
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Example 1

>Bee

=

1900

Zdroj obrazku: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996

Inputs uniformly distributed in a rectangle.



Example 2

2-8ee

Inputs uniformly distributed in a triangle. zdroj obrazku: Neural Networks - A

Systematic Introduction, Raul Rojas, Springer, 1996



Example 3

Inputs uniformly distributed in a cuboid.

Zdroj obrézku: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996

17



Example 4

Y
s
1/
X ‘%t,/
N, )
v Sengyd)s
L "aqz-g“}t{-:‘r
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Al

Inputs uniformly distributed in a cactus.

Zdroj obrazku: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996



Example — defect

0.8
0.8 08
07
0.6 08
0.5 05
0.4
0.3 03
0.2 0.2
0.1
0 02 0.4 08 08 1 l,0 02 04 08

Topological defect — twisted network.

Zdroj obrazku: Neural Networks - A Systematic Introduction, Raul Rojas, Springer, 1996

08



By Kohonen'’s paper: Inital weights are not so important, should
be different from each other.
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Kohonen’s map — practical approach

By Kohonen’s paper: Inital weights are not so important, should
be different from each other.

Two phase learning:

coarse phase:

» Approx. 1000 steps

» learning rate 0: start with 0.1 and steadily decrement to
0.01

» topological neighbourhood of every neuron (determined by
s or by the width ¢) should be large at the beginning (i.e.
contain most neurons) and should shrink to few neurons at
the end
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Kohonen’s map — practical approach

By Kohonen’s paper: Inital weights are not so important, should
be different from each other.

Two phase learning:

coarse phase:
» Approx. 1000 steps
» learning rate 0: start with 0.1 and steadily decrement to
0.01
» topological neighbourhood of every neuron (determined by
s or by the width ¢) should be large at the beginning (i.e.
contain most neurons) and should shrink to few neurons at
the end
fine tuning:
» number of steps: approx. 500 times the number of neurons
» O close to 0.01 (otherwise topological defects are likely to
occur)
» neighbourhood of each neuron should contain just few
other neurons

20



Kohonen’s map — theory

» Convergence to "ordered" state has been proved only for
one dimensional maps and special cases of the distribution
p(X) (uniform), fixed neighbourhoods of size 1, and a fixed
learning rate.

There are simple counterexamples disproving convergence in case
these assumptions are not satisfied.
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Kohonen’s map — theory

» Convergence to "ordered" state has been proved only for
one dimensional maps and special cases of the distribution
p(X) (uniform), fixed neighbourhoods of size 1, and a fixed
learning rate.

There are simple counterexamples disproving convergence in case
these assumptions are not satisfied.

» In more than one dimension there are no guarantees at all,
convergence depends on several factors:

» initial distribution of neurons (centres)
» size of the neighbourhood
» learning rate

» What dimension to choose? Typically one or two
dimensional map is used (as a coarse version of
dimensionality reduction).

21



LVQ - classification using Kohonen’s map

Assume randomly generated training examples of the form
(X, d) where X; € R" is feature vector and d; € {C, ..., Cqg)
corresponds to one of the g classes.
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LVQ - classification using Kohonen’s map

Assume randomly generated training examples of the form

(X, d) where X; € R" is feature vector and d; € {C, ..., Cqg)
corresponds to one of the g classes.

Our goal is to classify objects based on our knowledge of their
features, i.e. to every X; assign a class so that the probability of
error is minimized.

Ex.: Conveyor belt with fruits, apples and oranges: Formally,
()_()t, dt) where

» % € R?, here the first component is the weight and the
second the diameter.

» d; is either A or O depending on whether the given object
is an apple or an orange.

We allow apples and oranges with the same features.

The goal is to sort out the fruits based on their weight and
diameter.

22



Classification using Kohonen’s map

We use Kohonen’s map as follows:
1. Train the map on feature vectors X; where t =1,...,¢
(ignore the classes for now).
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Classification using Kohonen’s map

We use Kohonen’s map as follows:

1.

2.

Train the map on feature vectors X; where t =1,...,¢
(ignore the classes for now).

Label neurons with classes. The class v, of a given neuron
c is determined as follows:

For every neuron ¢ and every class C; count the number
#(c, C;) of training examples X; with class C; for which the
neuron c returns 1 (i.e. is the closest to them).

To c, assign the class v, satisfying

ve = argmaxg #(c, Gj)
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Classification using Kohonen’s map

We use Kohonen’s map as follows:
1. Train the map on feature vectors X; where t =1,...,¢
(ignore the classes for now).

2. Label neurons with classes. The class v of a given neuron
c is determined as follows:

For every neuron ¢ and every class C; count the number
#(c, C;) of training examples X; with class C; for which the
neuron c returns 1 (i.e. is the closest to them).

To c, assign the class v, satisfying

ve = argmaxg #(c, Gj)

3. Fine tune the network using LVQ (see later)
The trained network is used as follows: Given a feature vector
X, evaluate the network with X as the input. A single neuron ¢

has the value 1, return v, as the class of X.
23



LvaQ

lterate over training examples. For (X;, d;) find the closes
neuron ¢

c =arg i:rr11,i“r.1,h ||%: — wi|

Adjust weights of ¢ as follows:

The parameter a should be small right from the beginning
(approx. 0.01 — 0.02) and go to 0 steadily.
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LvaQ

lterate over training examples. For (X;, d;) find the closes
neuron ¢

c =arg i:n?,igh ||%: — wi|

Adjust weights of ¢ as follows:

The parameter a should be small right from the beginning
(approx. 0.01 — 0.02) and go to 0 steadily.

By Kohonen: The border between classes should be a good
approximation of the Bayes decision boundary.

What is it??

24



Bayes classifier

For simplicity, consider two classes Cy and Cy (e.g. A and O).

Let P(C; | X) be the probability that the object belongs to C;
assuming that it has features X.

(e.g- P(A | (a, b)) is the probability that a fruit with weight a and diameter b is
an apple.)

Bayes classifier assigns to X the class C; which satisfies
P(Ci| X) = P(Ci-i | X).

Denote by Ry the set of all X satisfying P(Cy | X) > P(Cy | X)
and Ry = R"\ Ro.
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Bayes classifier

For simplicity, consider two classes Cy and Cy (e.g. A and O).

Let P(C; | X) be the probability that the object belongs to C;
assuming that it has features X.

(e.g- P(A | (a,b)) is the probability that a fruit with weight a and diameter b is
an apple.)

Bayes classifier assigns to X the class C; which satisfies

P(Ci| X) = P(Ci-i | X).

Denote by Ry the set of all X satisfying P(Cy | X) > P(Cy | X)
and R1 =R"\ Ro.

Bayes classifier minimizes the error probability:
P()_()E Ry A C1)+P()_()E Ry A Cp)

Bayes decision boundary is the boundary between the sets Ry
and R;.

25



Bayes decision boundary vs LVQ

Zdroj obrazku: The Self-Organizing Map, Teuvo Kohonen, IEEE, 1990

26



Source: Patterns of ocean current variability on the West Florida Shelf using
the self-organizing map. Y. Liu a R. H. Weisberg, JOURNAL OF
GEOPHYSICAL RESEARCH, 2005

Investigates currents in the ocean around Florida.
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Oceanographic data

» 11 measuring stations, 3 depths (surface, bottom, in
between).
» data: 2D velocity vectors of the current

» measured by every hour, for 25585 hours
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Oceanographic data

» 11 measuring stations, 3 depths (surface, bottom, in
between).

» data: 2D velocity vectors of the current
» measured by every hour, for 25585 hours

Thus we have 25585 data samples, 66 dimensions.
Kohonen’s map:

» grid3x 4
» neighbourhoods given by Gaussian functions
—d(c, k)?
@(C, k) =0 exp (T)

shrinking width
(linearly decreasing learning rate)

28
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Oceanographic data
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1998 1999 2000 2001

» Crosses are winning neurons)

» influenced by local fluctuations
» observable trend:

» winter: neurons 1-6 (south-east)
» summer: neurons 10-12 (north-west)

30



Grimm’s fairy tales

Zdroj: Contextual Relations of Words in Grimm Tales, Analyzed by
Self-Organizing Map. T. Kohonen, T. Honkela a V. Pulkki, ICANN, 1995

Our goal is to visualize syntactic and semantic categories of
words in fairy tales (depending on context).
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Grimm’s fairy tales

Zdroj: Contextual Relations of Words in Grimm Tales, Analyzed by
Self-Organizing Map. T. Kohonen, T. Honkela a V. Pulkki, ICANN, 1995

Our goal is to visualize syntactic and semantic categories of
words in fairy tales (depending on context).

Input: Grimm’s fairy tales (understandably encoded using a
stream of 270-dimensional vectors)
» triples of words (predecessor, key, successor)

» every component in the triple encoded using a randomly
generated 90 dimensional real vector

Network: Kohonen’s map, 42 x 36 neurons, weights of the form
w = (Wp, Wk, W) Where wp, wi, w, € R,

31



Grimm’s fairy tales

Learning:

Trained on triples of successive words in fairy tales
The training set consisted of 150 most common words, with "average”
context.

Coarse training: 600 000 iterations; Fine tuning: 400 000

In the end, 150 most common words labelled neurons:

A word u labels a neuron with weights w = (wj,, wi, wy) when
Wy is closest to the code of u.

32
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Great summary — models

We have considered several models of neural networks:
ADALINE (aka linear regression)

Multilayer Perceptron

Hopfield Networks

Restricted Boltzmann Machines and Deep Belief Networks
Convolutional Networks

Recurrent Networks (LSTM)

Kohonen’s Maps
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Great summary — algorithms

Gradient descent!

The only exception were Kohonen'’s maps (Kohonen learning)
and Hopfield (Hebb’s learning).

The gradient computed using
» Backpropagation:
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Great summary — algorithms

Gradient descent!

The only exception were Kohonen'’s maps (Kohonen learning)
and Hopfield (Hebb’s learning).

The gradient computed using
» Backpropagation: MLP, Convolutional, Recurrent (LSTM)
» Simulations: RBM
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Deeper thoughts

» Most neural network models are universal approximators
(i.e. capable of approximating any reasonable function),
but it is difficult to find the appropriate configuration —
such configuration can be learned efficiently (without
guarantees of course)

» Depth is stronger than size: deep networks are more
succinct in their representation but are harder to train: Do
not forget the vanishin/exploding gradient problem!

» The way how backprop is derived: Unification of all
neurons using indices, backprop for models then differs
very little, only in specification of neurons with tied weights!

» Weight tying = single most effective trick in the history of
neural networks!



